
A Low-Power Synthesis of Submicron Interconnects
with Time and Area Constraints

A. Mahdoum, R. Benmadache, A. Chenouf, M. L. Berrandjia

 Abstract— Technology scaling has resulted in interconnect delay
increasing significantly. Buffer-insertion is a well-known technique
to reduce wire delays of critical signal nets in a circuit. However, the
power consumption of buffers has become a critical concern with the
increase of the number of buffers. In this paper, it is shown that this
problem is not polynomial in time. Thus, we developed a genetic-
based algorithm that provides optimal or near optimal solutions for
reducing the power dissipation while meeting the time and area
constraints.

 Keywords— Submicron interconnections, buffer insertion, low-
power design, area and time constraints, genetic-based algorithm.

I. INTRODUCTION
ith the advent of new semiconductor technologies, it is
possible today to integrate multiple systems on a single
chip (SOC). This tight integration offers several

advantages, but is certainly not without problems: hybrid
systems (digital, analog, mixed RFs) that are present on the
same chip require proper and complicated design (e.g.
consistent interfacing and communication protocols ...).
Compared to older systems, there are other problems due to
electro thermal phenomena, coupling ... Among these
problems, it is one that is no less important: energy
consumption. This problem arises in two ways: i) a strong
energy dissipation resulting in an increase in temperature,
which could affect the reliability of the system; ii) there exist
on the current market many portable systems (PDAs, mobile
phones, notebook PCs, etc ...) and for which the operating
time of batteries is limited. Obviously, the same problem can
arise for the systems on board satellites (the stored
energy during the day should be sufficient to operate the
system during the night). These are all reasons that lead to a
need to low-power circuit designs. Thus, the power dissipation
problem is tackled at each level of abstraction either to
propose diverse and varied methods estimating this parameter
or to design circuits with low power consumption [1]-[24].
 In past technologies, gate delay was the major concern.
Today, with submicron technologies, this is no longer true.
Indeed, wire delay has become a critical concern. Buffer
insertion and wire sizing are two interesting techniques to deal
with the interested problem. The reader may found many
interesting works that addressed this problem ([25]-[29]). In
this paper, we show that buffer insertion is not a polynomial in
time problem. We then present our genetic-based algorithm
that features a twofold purpose: solution search processed in
polynomial time while targeting the most interesting (near
optimal) solutions. Because power consumption is also a
critical problem in modern technologies, our buffer insertion is
processed with power (and area) constraints. Our paper is
organized as follows. In the next section we present the

models we used. In section 3 we give details of our buffer
insertion technique. Section 4 presents some obtained results.
Finally, we conclude the paper in section 5.

II. MODEL DEFINITIONS

A. Delay Model
 Let us consider “Fig.1” in which 1 and 6 are respectively
source and sink nodes while 2–5 are candidate positions for
buffer insertion. Because a precise delay model for an inverter
exists in literature (e.g. [30]), we implement buffers with
inverters. Equation (1) shows the delay model for an inverter.
Di is the delay for the buffer inserted at node i (2 ≤ i ≤ 5),
CLoad(i) is the capacitance at the output node of the ith buffer, Li
and Wi are the transistor sizes of the NMOS transistor (a
similar model as that shown in (1) can be given for the PMOS
transistor of the inverter). Vdd(i) and Vth(i) are respectively the
supply voltage and the threshold voltage of the NMOS
(PMOS) transistor of of the ith inverter. Equation (2) is a delay
model of the wire portion between nodes i and j ([28]). CWij
and rWij are the capacitance and the resistance of the wire
portion between nodes i and j, respectively. lWij is the length of
this wire portion.

Fig. 1 Delays involved by candidate positions for buffer insertion

()
()

)1(1
4

ln
2

.
)(

)()(

)()(

)(

)()(

)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
+

−

×
−

×
=

idd

ithidd

ithidd

ith

ithiddiOx

iiLoad
i

V
VV

VV
V

VVWC
LC

D
µ

())2(
2
1 2

bjWijWijWijWijWijij ClrlCrd +=

The total delay Dij between nodes i and j (as shown in “Fig.1”)
is then:

)3(ijiij dDD +=

W

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 112

B. Area Model
 The area consumed by the buffers is merely estimated as the
sum of the transistor sizes of the inserted inverters.

C. Power Model
 The switching power dissipation is given by (4). However,
because we target dual Vdd dual Vth circuit designs, we
transform it as shown in (5).

)4(5.0
_

1

2
Gi

gatesNb

i
Giddsw NCfVP ×××= ∑

=

)5(5.0
1 1

2
,

2
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+×= ∑ ∑

= =

L HE

i

E

i
GiGiHddGiGiLddsw NCVNCVfP

Vdd and f are respectively the supply voltage and the
frequency. CGi is the load capacitance of the ith logic gate
while NGi is the number of times CGi is charged or discharged
under some input sequence. Vdd,L and Vdd,H are the lower and
the higher supply voltages, respectively. EL (EH) is the set of
the logic gates that are fed with Vdd,L(Vdd,H).
The leakage power dissipation is given in BACPAC (Berkeley
Advanced Chip Performance) by (6).

)6(2813.0 V
tV

avgtransddleak LWNKVP α−
××××××=

Wavg, L, Ntrans and Vt are the average transistor width, the
transistor length (in µm), the total number of transistors in the
circuit and the threshold voltage, respectively. K=10 µA/µm,
αV = 0.095 V.
Again, because we are dealing with low-power circuits, we
transform it by (7) so that dual Vdd dual Vth design
methodology could be possible.

)7(1010.

2813.0

,

_

1
,,

,,

idd

gatesNb

i

V

iP

V

iN

avgleak

VNbNb

LWKP

V
itP

V
itN

∑
=

−

⎥
⎦

⎤
⎢
⎣

⎡
×+×

××××=

αα

NbN,i (NbP,i) is the number of NMOS (PMOS) transistors of
the buffers, VtN,i (VtP,i) is the threshold voltage of the NMOS
(PMOS) transistors in the ith buffer and Vdd,i is the supply
voltage of the ith buffer.

III. BUFFER INSERTION
 Let N be the maximal number of buffers to insert between
the source and sink nodes (see “Fig.1”). In order to reduce the
wire delay while meeting power and area constraints, an
obvious way is to consider all the cases (inserting 1, 2, …, or
N buffers) then to pick the best solution. But to insert only a
single buffer, we have N possibilities: placing it at node
2, 3, …., or (N+1). For inserting m (m ≠ 1) buffers, the
number of possibilities is much larger. The total number of

possibilities is ∑∑
==

−=
N

k

N

k

k
N kNk

NC
11

)!(!
! , which is a huge

number of possibilities. Like many other problems that are
intractable [31], this obvious buffer insertion is
computationally infeasible, which led us to develop a genetic-
based algorithm that features a reasonable CPU time while
insuring near optimal solutions. Before describing our method,
notice that our genetic-based algorithm handles a single
individual at each generation. This is due to the following
reasons:

- starting with the most interesting one, namely with
the one that meets the time and area constraints while
consuming the lowest power

- in case one or both constraints are not met with the
current individual, the next one is generated from it
with making few modifications: if the obtained
solution will meet the constraints, it will be near
optimal since it is generated from the best
candidate(s)

Notice also that at each generation, the individual is generated
in a deterministic way for the following reasons:

- to keep it not too far from the most interesting
solutions (but that did not meet the constraints)

- to guarantee that already explored solutions are not
again generated (the CPU time is only consumed to
explore new solutions)

- to avoid falling in a cyclic scenario (i.e. the same
explored solutions are periodically generated)

 Such advantages are explained in details in our book review
[32].
 For each interconnection in each equipotential, our main
algorithm determines, if possible, the buffer positions such
that the time and area constraints are met while minimizing
the power dissipation.
 Determine_buffer_positions() includes three main parts. For
each combination (i.e. for some number of buffers and their
positions) among M ones, it generates the ideal individual,
namely the one with which the power dissipation is the lowest
one. In case the time and area constraints are met, the search
process continues with another combination. Else, the
procedure tries to find an individual (belonging to the same
combination) that meets the constraints with carefully tuning
(to keep the solution not too far from the ideal one that did not
meet the constraints) the characteristics of the current
individual (supply voltage, threshold voltage, size transistors,
…): this is the part (k=2) in the procedure
Generate_Individual(). In case the previous individual met the
constraints but it is not the ideal one, Generate_Individual()
enhances it in order to reach a lower power dissipation that is
possible without violating the constraints: This is the part (k >
2).
 Select_configuration() returns, if the combinational
problem is solvable, three possible solutions:

- Ecand_1 (the set that includes the positions of the
buffers whose electrical parameters are stored in
Ebuffer_1) and Ebuffer_1 (the set that includes the
solutions that meet the time constraint while
consuming both the less power and the less area)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 113

- Ecand_S (the set that includes the positions of the
buffers whose electrical parameters are stored in
Ebuffer_S) and Ebuffer_S (the set that includes the
solutions that meet the time constraint while
consuming the less area)

- Ecand_P (the set that includes the positions of the
buffers whose electrical parameters are stored in
Ebuffer_P) and Ebuffer_P (the set that includes the
solutions that meet the time constraint while
consuming the less power)

 We give hereafter the details of our algorithms with
necessary comments:

BEGIN /* main algorithm */
for each equipotential
do {Determine all the interconnections belonging to this

equipotential, then sort them in the decreased length ;
 /* in order to first satisfy the constraints for the longest

interconnections */
 for each interconnection
 do {Determine G = (V, E); /* V={nodes in the wire,

including the source and sink ones},
 E={(vi,vj); vi ∈ V ∀ i ≠ j} –see “Fig.1”- */
 Determine_buffer_positions(); /* determine the

number of buffers and their positions */
 Select_configuration (); /* in case of many
candidate solutions that infer the same wire delay, select the
one that best suits the application – power and/or area is the
most critical parameter for the interested application - */ }
 end }
end
END

Determine_buffer_positions()
Smin=+∞; Pmin=+∞; Ecand_1=∅; Ecand_S=∅; Ecand_P=∅;
Ebuffer_1= ∅; Ebuffer_S= ∅; Ebuffer_P= ∅;
/* Smin (Pmin) is the minimal area (power) of the buffer
configuration that meets the time and area constraints
 Ebuffer_1 is the set that includes the solutions that meet the
time constraint while consuming both the less power and the
less area
 Ecand_1 is the set that includes the positions of the buffers
whose electrical parameters are stored in Ebuffer_1
 Ebuffer_S (Ebuffer_P) is the set that includes the solutions that
meet the time constraint while consuming the less area
(power) but not the less power (area)
 Ecand_S (Ecand_P)is the set that includes the positions of the
buffers whose electrical parameters are stored in Ebuffer_S
(Ebuffer_P) */
for i=1 to M /*M is the number of explored combinations;

M ≤ ∑
=

N

k

k
NC

1

*/

do {Generate_Ideal_Individual(); /* Assign WL, VthNH, VthPL,
VddL for all the buffers in the current combination */

 /* An ideal individual is a number n of buffers (n ≤ N)
such that each one is designed with WL, VthNH, VthPL and
VddL, i.e. the individual that better maximizes the power

reduction; subscripts L and H stand to Low and High,
respectively */

 k=1;
 LABEL:
 D=delay(); // calculate the wire delay
 S=estimate_area(); // calculate the area of the buffers
 if |D - Tf| ≤ ε and |S - Sf| ≤ ε /* Tf and Sf are the time

and area constraints, respectively */
 then {P=Power(); /* calculate the power due to the

current buffer insertion */
 if S < Smin and P < Pmin
 then {Ebuffer_1= {combination i};
 /* combination i stores the electrical
parameters W, Vdd, Vth of the m buffers (1 ≤ m ≤ N) */
 Ecand_1={less costly path that is found};
 /* this path includes the source and the sink

nodes, and m buffers */
 Smin=S; Pmin=P; }
 else {if S < Smin
 then if P = Pmin
 then {Ebuffer_S =
 {combination i};
 Ecand_S={less costly path that is

found }; }
 else {Ebuffer_S=Ebuffer_S ∪

{combination i};
 Ecand_S=Ecand_S ∪
 { less costly path that is found}; }
 end if
 end if
 if P < Pmin
 then if S=Smin
 then {Ebuffer_P=
 {combination i};
 Ecand_P={less costly path that

is found}; }
 else {Ebuffer_P=Ebuffer_P ∪

{combination i};
 Ecand_P=Ecand_P ∪ {less costly

path that is found }; }
 end if
 end if }
 end if
 if k=1 // ideal case
 then continue; /* stop generating individuals for

the current combination,
 then continue with another one */

 end if }
 end if
 k++;
 if k ≤ nb_individuals
 then {Generate_Individual(D, S, P);
 goto LABEL;}
 endif }
end

Generate_Individual(D, S, P)
{ if k > 2
 then {i=1;

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 114

 while |D - Tf| ≤ ε and i ≤ nb_buffers
 do {if Wi=WH /* minimize power and area while

meeting the time constraint */
 then {Wi=WL; calculate D; }
 end if
 i++; }
 end
 if |D - Tf| > ε and i > 1
 then {i--; Wi=WH; }
 end if
 // Begin process with VthN
 i=1;
 while |D – Tf| ≤ ε and i ≤ nb_buffers in the current

combination
 do {if VthN,i = VthNL /* minimize the leakage

current in the NMOS transistors */
 then {VthN,i=VthNH; calculate D; }
 end if
 i++; }
 end
 if |D – Tf| > ε and i > 1
 then {i--; VthN,i=VthNL; }
 end if
 // End process with VthN
 // Begin process with VthP
 Use process with VthN, replacing: VthN with VthP,

VthNL with VthPH, VthNH with VthPL
 // End process with VthP
 // Begin process with Vdd

 Use process with VthN, replacing: VthN with Vdd,
VthNL with VddH, VthNH with VddL

 // End process with Vdd
 }
else { // k=2: Generate an individual from the ideal one that

did not meet the time constraint
 i=1;
 while |D-Tf| > ε and i ≤ nb_buffers in the current

combination
 do {if Wi=WL
 then {Wi=WH; /* Attempting to meet the time

constraint with enlarging
 the sizes of the transistors */
 S1=S; calculate S;
 if |S – Sf| ≤ ε
 then calculate D;
 else { Wi=WL; S=S1; }
 endif
 }
 endif
 i++; }
 end
 // Begin process with VthN
 i=1;
 while |D – Tf| > ε and i ≤ nb_buffers in the current

combination
 do {if VthN,i=VthNH
 then {VthN,i=VthNL; /* Attempting to meet the
time constraint with reducing the threshold voltage of NMOS
transistors */

 calculate D; }
 endif
 i++; }
 end
 // End process with VthN
 // Begin process with VthP
 Use the last process with VthN, replacing: VthN with
VthP, VthNL with VthPH, VthNH with VthPL
 // End process with VthP
 while |D – Tf| > ε and i ≤ nb_buffers in the current

combination
 do {if Vdd,i=VddL
 then {Vdd,i=VddH;
 for j=i+1 to nb_buffers in the current

combination
 do {Vdd,j=VddH; /* Attempting to
meet the time constraint with increasing the supply voltages of
the buffers */
 j++; }
 end
 i=j; }
 else i++;
 endif }
 end }
 endif

Select_configuration()
{
 if Ebuffer_1 = ∅ and Ebuffer_P = ∅ and
 Ebuffer_S = ∅
 then {Write “No solution for this problem: Too hard

constraints“; exit();}
 endif
 if Ebuffer_1 ≠ ∅ /* this set includes solutions that minimize
both the power and the area while meeting the time constraint
*/
 then use Ebuffer_1 and Ecand_1 for buffer insertion;
 else if Ebuffer_S ≠ ∅ and Ebuffer_P ≠ ∅
 then {select 1 combination ∈ Ebuffer_S (resp.
 ∈ Ebuffer_P)
/* in case the area constraint (resp. the
 power constraint) has the highest priority for the
 interested application */
 use (Ebuffer_S and Ecand_S) or
 (Ebuffer_P et Ecand_P) for buffer
 insertion; }
 else {select 1 combination among those
 included in the non-empty set ;
 use (Ebuffer_S and Ecand_S)
 (resp. (Ebuffer_P and Ecand_P)) for
 buffer insertion;
 /* according to Ebuffer_S ≠ ∅ (resp. Ebuffer_P ≠ ∅) */
 }
 endif
 endif }

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 115

IV. RESULTS
 Many results were obtained for different wire lengths and
time and area constraints targeting the 0.18µm CMOS
technology. We present some of them.

TABLE I
OBTAINED RESULTS WITH WIRE LENGTH=750 µM, TF=2.60PS, AND

SF=5.70µMÉ

NA: Not Applicable

Assuming that VddL=1.8V, VddH=3.3V, VthNL=0.45V,
VthNH=0.55V, VthPL=-0.55V, VthPH=-0.45V, WL=0.22µm and
WH=1.76µm, Table I shows the obtained results for inserting
buffers in a wire whose length is equal to 750µm with time
and area constraints equal to 2.60ps and 5.7024µm2,
respectively. The heuristic-based method was able to output
the exact solution (inserting 2 buffers at nodes 3 and 5. Note
that 0 and 7 are source and sink nodes, respectively). The total
power, wire delay and area are obtained with the following
parameters:

- Buffer3: Vdd=3.30V, VthN=0.55V, VthP=-0.55V,
WN=0.22µm, WP=0.44 µm

- Buffer5: Vdd=3.30V, VthN=0.55V, VthP=-0.55V,
WN=0.22µm, WP=0.44µm

Vdd is the supply voltage feeding the inverter, VthN and VthP are
respectively the threshold voltages of the NMOS and PMOS
transistors of the inverter. WN and WP are respectively the
widths of the NMOS and PMOS transistors of the buffer. Due
to an exhaustive search, the CPU time consumed by the exact
method was much larger than that of the heuristic-based
method (4 s VS 1015 s). Note that this buffer insertion leads
to 95% (100 - 59/12.05) reduction in power dissipation
against wire design without buffer insertion (0.59 µW VS
12.05 µW) while meeting the time and area constraints.
Table II shows the obtained results for inserting buffers in a
wire whose length is equal to 900µm with time and area
constraints equal to 3.73 ps and 7.6 µm2, respectively. Again,
our heuristic-based method was able to output the exact
solution in a shorter CPU time (23 s) with respect to the exact
method (21529 s). The best solution was achieved with
inserting 2 buffers at nodes 6 and 8 (the results in Table I -
that are obtained for another wire length and other constraints
- show that the buffer insertion concerns nodes 3 and 5
instead of nodes 6 and 8) and assigning the following values
for the different parameters:

- Buffer6: Vdd=3.30V, VthN=0.55V, VthP=-0.55V,
WN=0.22µm, WP=0.44 µm

- Buffer8: Vdd=3.30V,VthN=0.55V, VthP=-0.55V,
WN=0.22µm, WP=0.44µm

TABLE II

OBTAINED RESULTS WITH WIRE LENGTH=900 µM, TF=3.73PS, AND
SF=7.60µMÉ

 Toal Power
(µWatts)

Wire
delay
(ps)

Area
(µm²)

CPU
Time

(s)
Without
Buffer

Insertion

14.46

3.73 NA NA

path :
0 1 3 5

7 9

1.19 3.59 0.475200

path :
0 1 3 9

1.23 3.67 0.237600

path :
0 1 4 9

1.23 3.33 0.237600

path :
0 1 5 9

1.13 3.17 0.237600

path :
0 1 6 9

1.23 3.18 0.237600

path :
0 1 7 9

1.23 3.38 0.237600

path :
0 2 3 5

7 9

1.04 3.59 0.475200

path :
0 2 3 9

1.09 3.67 0.237600

path :
0 2 4 5

7 9

1.04 3.59 0.475200

path :
0 2 4 6

7 9

1.04 3.59 0.475200

path :
0 2 4 6

8 9

1.04 3.52 0.475200

path :
0 2 4 9

1.14 3.24 0.237600

path :
0 2 5 9

0.98 2.99 0.237600

path :
0 2 6 9

0.98 2.91 0.237600

path :
0 2 7 9

1.14 3.02 0.237600

path :
0 2 8 9

1.09 3.30 0.237600

path :
0 3 4 9

1.00 3.33 0.237600

path :
0 3 5 9

0.89 2.99 0.237600

path :
0 3 6 9

0.84 2.82 0.237600

path :
0 3 7 9

0.89 2.84 0.237600

path :
0 3 8 9

1.00 3.03 0.237600

path :
0 4 5 9

0.75 3.17 0.237600

path :
0 4 6 9

0.75 2.91 0.237600

path :
0 4 7 9

0.75 2.84 0.237600

path :
0 4 8 9

0.75 2.94 0.237600

path :
0 5 6 9

0.60 3.18 0.237600

path :
0 5 7 9

0.60 3.02 0.237600

 Toal Power
(µWatts)

Wire
delay
(ps)

Area
(µm²)

CPU
Time

(s)
Without
Buffer

Insertion
 12.05 2.60 NA NA

path :
0 2 4 7 0.85 2.49 0.237600

path :
0 2 5 7 0.85 2.41 0.237600

Heuristic-

Based
Method

 path :
0 3 5 7 0.59 2.41 0.237600

4

path :
0 2 4 7 0.85 2.49 0.237600

path :
0 2 5 7 0.83 2.52 1.069200

Exact

Method path :
0 3 5 7 0.59 2.41 0.237600

1015

 Heuristic-
 Based
 Method

23

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 116

path :
0 5 8 9

0.60 3.03 0.237600

path :
0 6 7 9

0.51 3.38 0.237600

path :
0 6 8 9

0.51 3.30 0.237600

path :
0 1 3 5

7 9

1.19 3.59 0.475200

… … … …

Exact

Method path :
0 6 8 9

0.51 3.30 0.237600

21529

NA: Not Applicable

Finally, note that this buffer insertion leads to 96%
(100 - 51/14.46) reduction in power dissipation against wire
design without buffer insertion (0.51 µW VS 14.46 µW) while
meeting the time and area constraints.Our CAD tool was
developed with C++ language and qt tool under Linux
operating system. Our GUI shows that our tool is user-friendly
and enables the user to perform different tasks: “Fig.2” shows
the window that allows him to do some common tasks (editing
a file, saving it, …) while both “Fig.3” and “Fig.4” serve to
capture the parameters of the technology process and the time
and area constraints. The windows in “Fig.3” and “Fig.4”
serve to perform the exact method and the heuristic-based one,
respectively.

Fig. 2 The main window of our CAD tool (editing a file, saving it, …)

Fig. 3 Editing the constraints then launching the exact method

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 117

Fig. 4 Editing the time and area constraints then launching the heuristic-based method

V. CONCLUSION
 In this paper, we have presented our genetic-based technique
for low-buffer insertion in order to reduce the power
dissipation in submicron wires while meeting the time and
area constraints. The obtained results show that our method is
a potential and a promising way to deal in a reasonable CPU
time with wires of circuits designed for modern technologies.

REFERENCES
[1] A.P.Chandrakasan, M.Potkonjak, R.Mehra, J. Rabaey, and R.W.

Brodersen, “Optimizing power using transformations,” IEEE Trans. CAD
of ICS, vol. 14, no. 1, pp. 12-31.

[2] B.S. Haroun, and M.I. Elmasry, “Architectural synthesis for DSP silicon
compilers, IEEE Trans. CAD for ICS,” vol. 8, no. 4, pp. 431-447.

[3] A. Mahdoum, “Synthèse de systèmes monopuce à faible consommation
d’énergie,” in Proc. 8th Annu. Faible Tension Faible Consommation
FTFC’09, Centre Suisse d’Electronique et de Microtechnique,
Neuchâtel, Suisse, 2009.

[4] Y-H. Lu, L. Benini, and G. De Micheli, “Low- power task scheduling for
multiple devices,” in Proc. Intl. Workshop on Hardware/Software
Codesign, 2000, pp. 39-43.

[5] P. Rong, and M. Pedram, “Power-aware scheduling and DVS for tasks

running on a hard real-time system,” in Proc. ASPDAC, 2006, pp.463-
478.

[6] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A coordinated
HW–SW approach for dynamic thermal management,” in Proc. DAC,
2006, pp. 548–553.

[7] A. Mahdoum, N. Badache, H. Bessalah, “A Low-Power Scheduling Tool
for System on Chip Designs,” WSEAS Transactions on Circuits and
Systems, vol.6, issue 12, Dec. 2007, pp. 608-624.

[8] G. Paci, P. Marchal, F. Poletti, and L. Benini, “Exploring temperature-
aware design in low-power MPSoC,” in Proc. Design And Test in
Europe, 2006, pp. 838–843.

[9] B. Tabbara, A. Tabbara, and A. Sangiovanni-Vincentelli,
“Function/architecture optimization and Co-Design of Embedded
Systems,” Kluwer Academic Publishers, 2000.

[10] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-
Vincentelli, “Efficient power estimation techniques for HW/SW
systems,” in Proc. IEEE VOLTA'99 International Workshop on Low
Power Design, Como, 1999, pp. 191-199.

[11] L. Yuan, G. Qu, T. Villa, and A. Sangiovanni-Vincentelli, “FSM Re-
engineering and its application in low power state encoding,” in Proc.
ASP-DAC, Shanghai, 2005.

[12] E. Hwang, F. Vahid, and Y-C. Hsu, “FSMD Functional partitioning for
low power,” in Proc. Design And Test in Europe, 1999, pp. 22-28.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 118

[13] E. Hwang, F. Vahid, and Y-C. Hsu, “Procedural functional partitioning
for low power,” in Proc. Intl. Symp. on Low-Power design, 2000, pp. 65-
69.

[14] M. Takahashi, N. Ishuara, A. Yamada, and T. Kambe, “Thread
composition method for hardware compiler Bach maximizing resource
sharing among processes,” IEICE Trans. Fundamentals, vol.E83-A,
no.12, pp. 2456-2463.

[15] Y. Fei, and N. K. Jha, “Functional partitioning for low power distributed
systems of systems-on-a-chip,” in Proc. 15th Intl Conf. on VLSI Design,
2002, pp. 274-281.

[16] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-static assignment of voltages
and optional cycles for maximizing rewards in real-time systems with
energy constraints,” in Proc. Design Automation Conference, CA, 2005,
pp. 889-894.

[17] A. Mahdoum, N. Badache, and H. Bessalah, “An efficient assignment of
voltages and optional cycles for maximizing rewards in real-time systems
with energy constraints,” Journal Of Low Power Electronics, vol.2, no.2,
pp. 189-200.

[18 A. Mahdoum, “SPOT: A tool for estimating the maximal switching power
dissipation of CMOS circuits,” accepted in SASIMI’97, Osaka, Japan, 1-2
Dec. 97.

[19] A. Mahdoum, “SPOT: A tool for estimating the average and the maximal
switching power dissipation of CMOS circuits,” in Designer’s Forum
Proc. Design And Test in Europe, Paris, 2002, p 260.

[20] T. Mahnke et all, “Power optimization through dual supply voltage
scaling using power compiler,” European Synopsys Users Group
Meeting, Paris, 2002, pp. 87-92.

[21] Q. Wang, and S.B.K. Vrudhula, “Static power optimization of deep
submicron CMOS circuits for dual Vt technology,” in Proc. IEEE
ICCAD, 1998, pp. 490-496.

[22] K. Usami et all, “Automated Low-power technique exploiting multiple
supply voltages applied to a media processor,” IEEE Trans. J. Solid
State Circuits, vol. 33, no. 3, pp. 463-472.

[23] A. Mahdoum, M. L. Berrandjia, “FREEZER2: Un outil à base d’un
algorithme génétique pour une aide à la conception de circuits digitaux à
faible consommation de puissance,” in Proc. 6th Annu. IEEE/FTFC’07,
Paris, 2007, pp. 143-148.

[24] D. Markovic, C. Wang, L. Alarcon, T.T. Liu, and J. Rabaey, “Ultra low-
power design in near-threshold region,” in Proc. IEEE, 98, pp. 237-
252, 2010.

[25] S. Turgis, N. Azemard, and D. Auvergne, “Design and selection of
buffers for minimum power-delay product,” ED&TC’96, pp. 224–227.

[26] Y. Gao, and D. F. Wong, “A graph based algorithm for optimal buffer
insertion under accurate delay models,” in Proc. Design And test in
Europe, 2001, pp. 535–539.

[27] C. Alpert, C. Chu, G. Gandham, M. Hrkic, J. Hu, C. Kashyap, and S.
Quay, “Simultaneous driver sizing and buffer insertion using a delay
penalty estimation technique,” IEEE Transactions on computer-aided
design of integrated circuits and systems, vol.23, no.1, pp. 136–141.

[28] R. R. Rao, D. Blaauw, D. Sylvester, C. J. Alpert, and S. Nassif, “An
efficient surface-based low-power buffer insertion algorithm,” ISPD, pp.
86–93.

[29] H. Ghasemzadeh, N. Jain, M. Sgroi, and R. Jafari, “Communication
minimization for in-network processing in body sensor networks: a
buffer assignment technique,” in Proc. Design And Test in Europe,
2009, pp. 358-363.

[30] N. H. E. Weste, and K. Eshraghian, “Principles of CMOS design: a
systems perspective, Addison Wesley, 1993.

[31] M.R. Garey, and D.S. Johnson, “Computers and intractability: a guide to
the theory of NP-completeness,” San Francisco, CA, Freeman, 1979.

[32] A. Mahdoum, “Review of the book Representations for genetic and
evolutionary algorithms written by F. Rothlauf, edited by Springer-
Verlag Editions,” The Computer Journal, Oxford journals, vol.49, no.5, p
629, 2006.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 4, 2010 119

