
 

 

  

Abstract—Feature matching plays a key role in many image 

processing applications. To be robust and distinctive, feature vectors 

usually have high dimensions such as in SIFT (Scale Invariant Feature 

Transform) with dimension 64 or 128. Thus, accurately finding the 

nearest neighbor of a high-dimension query feature point in the target 

image becomes essential. The kd- tree is commonly adopted in 

organizing and indexing high dimensional data. However, in searching 

nearest neighbor, it needs many backtrackings and tends to make 

errors when dimension gets higher. In this paper, we propose a 

multiple kd-trees method to efficiently locate the nearest neighbor for 

high dimensional feature points. By constructing multiple kd-trees, the 

nearest neighbor is searched through different hyper-planes and this 

effectively compensates the deficiency of conventional kd-tree. 

Comparing to the well known algorithm of best bin first on kd-tree, the 

experiments showed that our method improves the precision of the 

nearest neighbor searching problem. When the dimension of data is 64 

or 128 (on 2000 simulated data), the average improvement on 

precision can reach 28% (compared under the same dimension) and 

53% (compared under the same number of backtrackings). Finally, we 

revise the stop criterion in backtracking. According to the preliminary 

experiments, this revision improves the precision of the proposed 

method in the searching result. 

 

Keywords—feature matching, nearest neighbor searching (NNS), 

kd-tree, backtracking, best-bin-first, projection.  

I. INTRODUCTION 

EATURE matching is very important to many image 

processing applications. This issue is equivalent to the 

optimization problem for finding nearest points in metric spaces 

[1], [2], [5]-[7]. The nearest neighbor search (NNS) problems 

have been developed in a rich literature. Linear searching, the 

simplest method, works for small databases but quickly 

becomes intractable as either the size or the dimensionality of 

the problem is large. To solve this problem, several 

space-partitioning methods including kd-tree have been 

developed [3], [4]. Kd-tree is a kind of binary tree which 

iteratively bisects the search space into two regions containing 

half the points of the parent region. Queries are performed via 

traversal of the tree from the root to a leaf by evaluating the 

query point at each split [8].   

In 2004, Lowe proposed the SIFT (Scale Invariant Feature 

Transform) to extract and describe feature points in object 

recognition application [9]. A local descriptor of dimension 64 

or 128 is used for feature points. To match feature points in such 

high dimensions Lowe used a kd-tree to organize the feature 

 
 

points of the database and a backtracking method called best bin 

first (BBF) with limited number of backtrackings [10]. Kd-tree 

with BBF performs quite well and has been adopted in many 

research works. However, since its result is merely an 

approximate nearest neighbor, improving the accuracy of 

finding the exact nearest neighbor under the same number of 

backtrackings becomes very attractive. 

In this paper, we propose a multiple kd-trees method to 

efficiently search the nearest neighbor of high dimensional 

feature points. The motivation of the proposed algorithm is 

based on the fact that two near points are always close under 

different projections; but two not-so-close points are still not so 

close for most of projections and, if there is any, may turn out to 

be close under one or two particular projections. Thus, by 

increasing the number of different projections, we can increase 

the probability of finding the exact nearest neighbor of the query 

point.  

The remaining of the paper is organized as following. In 

Section 2, we give a review on kd-tree and BBF. In Section 3, 

our method is proposed and the time complexity is analyzed. 

Experimental results are given in Section 4. Finally our 

conclusion and future work are stated.  

II. RELATED WORK 

In this section, we give a review on the nearest neighbor 

searching methods including kd-tree and the BBF algorithm. 

A. The Nearest Neighbor Searching Methods 

Though the exact nearest neighbor can be found by 

brute-force searching, it only works for small databases and 

quickly becomes impractical as either the size or the 

dimensionality of the problem becomes large. Thus many 

improvements have been proposed. Hashing and indexing are 

among those efforts [11]-[13]. However, it is difficult to find an 

appropriate hashing function for high dimensional data so that 

points can be allotted to the hashing table uniformly [14]. 

Space partition methods are commonly used in the NNS and 

the kd-tree is one of the most widely used in dealing with high 

dimensional data [15]-[18]. However, the accuracy is not ideal 

and gets worse as the dimension gets higher. Backtracking is a 

way to improve the performance of kd-tree but has a tradeoff of 

complexity in computation.  

B. Kd-Tree with Best Bin First 

In 1997, Beis and Lowe proposed an algorithm combining 

kd-tree and the BBF method (BBF in short) on priority queue 
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[10]. The kd-tree is built by iteratively bisecting search space on 

the medium of the dimension with the greatest variance. A query 

point traverses the constructed kd-tree and the distances to each 

split (branching point) are recorded on a priority queue. Let D 

be the distance of the query point and the leaf. In backtracking 

phase, split distances of branching points recorded in the 

priority queue are compared with D. If the distance at a 

branching point is smaller than D, the corresponding 

not-yet-traversed branch will be traversed. The backtracking is 

stopped if either the queue is empty or it reaches the allowed 

maximum backtracking number. The returned nearest neighbor 

is the one with the minimum distance so far. BBF is designed to 

efficiently find an approximate nearest neighbor in high 

dimensional spaces that, according to [10], it returns the exact 

nearest neighbor for a large fraction of queries and a very close 

neighbor otherwise.  

III. THE PROPOSED METHOD 

The kd-tree recursively projects feature points into two 

lower-dimensional hyper-planes according to the branching 

conditions. But, false positive may occur after projection. For 

example, a query point A=(5,5) and two data points B=(7,4), 

C=(5,10). Clearly the nearest neighbor of A is B because of 

d(A,B)=√5 and d(A,C)=5. When projecting to X-axis, A’=5, 

B’=7 and C’=5. The nearest neighbor of A becomes C in the 

projected space. This error can be resolved by backtracking 

with a computation burden especially when the dimension of 

feature point or/and size of data set increases. We propose an 

algorithm to project data points into three hyper-planes and to 

build two different kd-trees from each hyper-plane. Finally, the 

nearest neighbor is the minimum one from these nearest 

neighbors found from different perspective. 

A. Multiple kd-Trees 

Assuming n is the number of data points, d is the dimension 

of data, Vi = (vi1,vi2,…,vid) is the ith data point i =1, 2,…, n. 

Data points are first projected into three hyper-planes to view 

these data from different perspective. Three axes are located 

from dimensions which have the largest variances. Without loss 

of the generality, assume these three axes are X, Y, Z and points 

are projected to hyper-planes X=0, Y=0, and Z=0. These 

hyper-planes are denoted by hyplaneX, hyplaneY, hyplaneZ. 

On each hyper-plane, points are divided into four parts 

according to the centroid given in (1). For example, assuming 

data are in 3-dim, in hyplaneZ, the points are divided into four 

parts according X = XV and Y = YV as indicated in Fig. 1(a). Note 

that ZV = 0 in (1) for points on the hyplaneZ. The cases for 

hyplaneX and hyplaneY are similar. Figure 1(b) shows the 

corresponding tree of Fig. 1(a) with the first split on X= XV  and 

then split on Y = YV . 
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(a) 

 
(b) 

Fig. 1 (a) Data points are projected into hyplaneZ and divided by X 

= XV and Y = YV . (b) The corresponding tree. 

 

After three corresponding trees are built, kd-trees are 

constructed on four leaves of the trees. That is, as in Fig. 1(b), 

kd-trees are constructed from points A, B, C, and D. But, we 

build kd-trees by two different ways. The first one is the 

conventional one, i.e., build the kd-tree by iteratively bisecting 

search space according to the slitting hyper-plane on the 

medium of the dimension with the greatest variance. The second 

one is similar to the conventional one except the first split is on 

the dimension that has the second largest variance. Again, we 

expect projecting points on different perspectives to provide a 

better chance of getting the exact nearest neighbor. Fig. 2 (the 

first kd-tree) and Fig. 3 (the second kd-tree) illustrate the 

situation where P1, …, P10 are data points and q is a query point 

in a 2-dim plane. The exact nearest neighbor for q is P7. As the 

thick line segments shown in Fig. 2(b), the query point q 

traverses the tree and finally lies in A but the exact nearest 

neighbor P7 is in B. If we want to find the exact nearest 

neighbor using this tree we have to take six backtrackings. Fig. 3 

shows the second kd-tree that is built with the first split on the 

medium of the coordinate axis with the second largest variance. 

As shown in Fig. 3, q traverses the tree and reaches the leaf P7 in 

E which is the exact nearest neighbor of q. 

To summarize the procedure of building multi-kd trees for 

the data set, first these data points are projected to three 

different hyper-planes; then, on each hyper-plane, a binary tree 

is built in a way that the first two levels are centroid-based and 

the rest of the levels are kd-trees. Two kinds of kd-trees are 

constructed, one is the conventional one and the other has the 

first split on the medium of the axis with the second largest 

variance. Therefore, there are two binary trees for each 

projected hyper-plane and a total of six binary trees are formed 

for the data set. For any given query point q, it traverses all these 
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trees with the maximum number of backtrackings allowed just 

as in the BBF method. It returns the point P to be the nearest 

neighbor if the distance between q to P is the minimum among 

all the nearest neighbors found. 

 

 
(a) 

 
(b) 

Fig. 2 (a) The conventional kd-tree for points P1, …, P10. (b) The 

corresponding binary tree where the thick lines constitute the path 

as q traverses the tree. 

 

 

 
(a) 

 
(b) 

Fig. 3 (a) The kd-tree with the first split on the second largest 

variance. (b) The corresponding binary tree where the thick lines 

constitute the path as q traverses the tree. 

B. Complexity analysis 

Assume that n is the number of data and d is the dimension of 

data. The proposed method needs to compute and sort the 

variance of each dimension as in conventional kd-tree 

construction. After projecting points on three hyper-planes with 

first three largest variances, we use (1) to compute the centroid. 

The calculations mentioned above are additional comparing to 

the building kd-tree in the BBF algorithm. In building the rest of 

trees, the complexity in our method is equivalent to build 24 (= 

3x4x2) kd-trees each with n/4 points comparing to only one 

kd-tree with n points in BBF algorithm. Since n is usually much 

larger than d, the rest of discussion is under the assumption that 

the dimension d is a constant. Thus, calculations in both 

variance and centroid are complexity of O(n), and sorting d 

variances is a constant time. The complexity of building a 

kd-tree with n points, T(n), has the recurrence relation shown in 

(2) where the term O(n + nlog n) is for computing the variances 

and finding the medium. Solving (2) can find T(n) is equal to 

O(nlog2n) which is also the complexity of building tree in BBF 

algorithm. 
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The overall complexity of building trees in our algorithm is 

O(n) plus the complexity of building 24 kd-trees of n/4 points. 

That is still O(nlog2n) with different constants. In practical 

situation, we expect the time consumption in our algorithm to be 

less than 6 times of that in BBF algorithm. For building one 

complete tree as in Fig. 1(b) (including 4 kd-trees for points in 

A, B, C, D) is the same of building one conventional kd-tree with 

less computation required since 
XV and 

YV  (from the centroid) 

are known already. And in total there are six such trees to be 

built. The experiments later also confirm this claim.  

Assume that the maximum number of backtrackings allowed 

is k and the average length of the backtracking path is half of the 

tree height. In the proposed method, the maximum backtracking 

number k/6 since  the query point traverses six trees. Equations 

(3) and (4) are the querying complexity of BBF and the 

proposed method. 

 

BBF:  

( ) ( ) nkknn log2/1log2/1log +=×+  
(3) 

  

Proposed: 
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(4) 

 

where the first term (log n) in (3) and (4) is first time traversing, 

1/2 log n in (3) and 1/2 log (n/4) in (4) are the average height 

when backtracking. There is almost no difference between (3) 

and (4). The complexity favors ours when k is large. 
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IV. EXPERIMENTS 

The experiments are conducted using Borland C++ Builder 

6.0 in an environment of WINDOWS XP SP3, Pentium4 CPU 

and 512 RAM. The input points and query point are randomly 

generated real numbers within 0 and 1000. All figures shown in 

Fig. 4, Fig. 5, and Tables are the average of 1000 repeated tests. 

The experiments are first conducted in two respects, accuracy 

and time consumption, of the NNS problem. Finally, a 

preliminary experiment on stop criteria of backtracking is also 

performed. Comparisons are made between the proposed 

method and BBF algorithm. 

A. Precision comparison 

Fig. 4 is a summarization of the accuracy of the proposed 

method under different data dimension d and allowed 

backtracking number k. As in Fig. 4(a), the database size is n = 

500, if the dimension of the data is d =10 then the precision is 

0.873 with 10 backtrackings on each tree (i.e., k=60), and rises 

to 0.98 with 30 backtrackings on each tree (i.e., k=180). 

However, the performance drops if dimension increases.  As in 

d = 50, the precision is 0.505 with k=60 and 0.803 with k=180. 

Comparing Fig. 4(b) to 4(a), a 4-folds of data size (n = 2000), all 

the precisions descend. For example, when d = 10 (blue lines), 

0.873 drops to 0.803 (k=60), 0.98 drops to 0.925 (k=180); for d 

= 50 (purple lines), 0.505 drops to 0.347 (k=60), 0.803 drops to 

0.604 (k=180). These results confirm that as the dimension d or 

size of database n increase the precision reduces, and when the 

number of backtrackings k increases the precision increases. 

Fig. 5 is a summarization of the precision results of BBF 

method under different dimensionalities and the different 

number of backtrackings. It gives the similar conclusion as in 

Fig. 4. 

 

 

 
                     (a) n=500 (b) n=2000 

Fig. 4  The experimental results of the proposed method under different number of backtrackings 

 

 

(a) n = 500                                                                     (b) n = 2000 

Fig. 5  The experimental results of the BBF method under different number of backtrackings 
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Table II. Comparison of two algorithms in high dimension (n = 2000 data) 

 

Table I. Precision comparison of two algorithms 

(a) n =500 data 

 

(b) n = 2000 data 
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Table I and Table II list the precisions of these two 

algorithms (under the same dimensionality and the same total 

number of backtrackings) where the shaded box indicates a 

better result and the number inside the parenthesis is the 

improved ratio of ours comparing to BBF algorithm. In these 

tables, the last column (“Average improvement of Ours to BBF”) 

shows the improved accuracy ratios under fixed numbers of 

backtrackings, and the last row (“Average”) show the improved 

accuracy ratios under the fixed number of dimensionality. We 

can observe that in general our proposed method outperforms 

the BBF algorithm. In Table I, comparing (a) and (b), the 

proposed algorithm outperforms the BBF more when dimension 

is higher and the data size gets larger.  

As in SIFT, the dimensionality of the feature point can be 64 

or 128, and the size of feature points usually is in hundreds to 

thousands, we simulate a very complex case with data size to be 

2000 and dimensionality is 64 or 128 as summarized in Table II. 

The improvement is consistent and up to 28% for both d in 64 or 

128. Observing the results on k = 0, the effectiveness of 

projecting data into different perspectives in finding the nearest 

neighbor is also confirmed. Among eleven out of twelve of these 

tests, our method is better with an average of improvement ratio 

to be 79.9% (the exception one is when n = 2000, d = 50, and the 

ratio would be 72.4% for all 12 tests). 

B. Time consumption 

Table III is the average time consumption in constructing tree 

and per backtracking. As analyzed in Section 3.B, the 

constructing time of the proposed method is approximately six 

times of that of BBF algorithm. In the experiments, when the 

dimension d is 50, the tree construction time of ours method is 

5.406 times (n = 500) and 4.835 times (n = 1000) of those in 

BBF method. Overall, the tree construction time is low even in 

our method (0.62 second for a database size n = 1000 and d = 

50). As for the backtracking time consumption, these average 

numbers from experiments are of total 100, 150, and 200 

backtracking. There is not too much difference between these 

two algorithms; however, our method is a bit less. As in (4) of 

Section 3.B, when the number of allowed backtracking is large 

the time consumption will favor our method. And the 

experiments also show that when the number of allowed 

backtracking is 200, our time consumption per backtracking is 

less than half of that of BBF algorithm. 

C. Criteria for backtracking termination 

When using Best Bin First (BBF), there are two criteria in 

determining whether backtracking should proceed (as 

mentioned in Section 2.B). First, the priority queue is empty, i.e., 

every recorded distance, if there is any, is not smaller than D, the 

minimum distance of the nearest neighbor of q so far. Second, 

the maximum number allowed for backtracking is reached. 

However, according to our observation, the backtracking stops 

mostly due to the second condition even if the exact nearest 

neighbor has been found. When evaluating the distance between 

the query q to the splitting hyper-plane, it is a distance on 

one-dimension, whereas the stop criterion D is a distance on 

d-dimension. Thus, we expand the one-dimension distance into 

a hyper-sphere distance of d dimension. That is equivalent to 

revise the first constraint in stop criteria of backtracking to be 

D’ which is D divided by d  as shown in (5).  

 

d

D
D ⋅=′ β , (5) 

 

where β is a constant, D is the minimum distance so far, and d is 

the dimension of the data. 

We tested the efficacy of the new constraint D’ on a database 

of n = 500 and d = 50 with different β values (0.75, 1, 1.25, 1.5, 

1.75). Average results from a repetition of 1000 tests are 

summarized on Table IV, the number in the cell is the average 

number of backtrackings and the number in the parenthesis is 

the corresponding precision such that the bolded one meaning 

precision is the same or better than the original one. According 

to these preliminary tests, the average number of backtracking is 

not too much different from those of the allowed maximum 

number. However, in (a), our proposed method, at the beginning 

of the backtracking, say 10 backtrackings (a total of 60), the 

precision is improved most for β = 0.75 (0.538 comparing to 

0.505), then in 20 backtrackings (a total of 120), the precision is 

improved most for β  = 1.25 (0.724 comparing to 0.708), finally 

in 30 backtrackings (a total of 180), the precision is improved 

most for β = 1.25 (0.815 comparing to 0.803). And in (b), the 

kd-BBF-tree algorithm with only one tree, the best precision all 

happens on largest β  (1.75) except when the maximum allowed 

backtracking number is 20 (happened on β  = 1.25). We 

conclude that the revised D’ does not benefit to a shorter 

execution of backtrackings but it improves the precision to our 

proposed algorithm especially when β  = 1.25. 

 

Table III.  Time consumption (in seconds) 

(a) n = 500 and d = 50                                                                              (b) n = 1000 and d = 50 

Method 

Average Time 

in Tree 

Construction 

Average Time Per Backtracking 

k=100 k=150 k=200 

BBF 0.056123 0.000159 0.000187 0.000315 

Ours 0.303400 0.000126 0.000128 0.000128 
 

Method 

Average Time 

in Tree 

Construction 

Average Time Per Backtracking 

k=100 k=150 k=200 

BBF 0.128131 0.000141 0.000235 0.000298 

Ours 0.619562 0.000124 0.000118 0.000120 
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Table IV.  The results on revised constraint D’ on backtracking stop criterion (n=500, d=50) 

(a) Our method 

OURS the average number of backtracking & precision 

# of allowed backtracking 10x6 20x6 30x6 

β=0.75 57.582  (0.538) 108.303  (0.669) 149.091  (0.740) 

β=1.00 59.826  (0.532) 119.049  (0.706) 177.042  (0.791) 

β=1.25 59.973  (0.524) 119.904  (0.724) 179.802  (0.815) 

β=1.50 59.982  (0.512) 119.958  (0.719) 179.931  (0.813) 

β=1.75 59.982  (0.507) 119.958  (0.710) 179.94   (0.807) 

Original precision 0.505 0.708 0.803 
 

(b) The kd-BBF-method 

BBF the average number of backtracking & precision 

# of allowed 

backtracking 
20 40 60 80 100 120 140 160 180 

β=0.75 
17.690 

(0.216) 

28.594 

(0.276) 

33.532 

(0.286) 

35.254 

(0.292) 

35.797 

(0.293) 

35.979 

(0.293) 

36.024 

(0.293) 

36.223 

(0.293) 

36.223 

(0.293) 

β=1.00 
19.729 

(0.249) 

38.395 

(0.333) 

54.194 

(0.405) 

67.056 

(0.445) 

76.413 

(0.464) 

82.525 

(0.473) 

86.199 

(0.477) 

88.015 

(0.480) 

88.905 

(0.480) 

β=1.25 
19.966 

(0.259) 

39.821 

(0.366) 

59.449 

(0.442) 

78.652 

(0.510) 

96.923 

(0.560) 

114.179 

(0.598) 

130.120 

(0.620) 

144.544 

(0.639) 

157.418 

(0.650) 

β=1.50 
19.980 

(0.258) 

39.960 

(0.386) 

59.935 

(0.466) 

79.881 

(0.540) 

99.787 

(0.606) 

119.636 

(0.642) 

139.295 

(0.678) 

158.719 

(0.710) 

177.919 

(0.738) 

β=1.75 
19.980 

(0.258) 

39.960 

(0.391) 

59.940 

(0.470) 

79.920 

(0.543) 

99.900 

(0.605) 

119.880 

(0.663) 

139.860 

(0.709) 

159.840 

(0.734) 

179.820 

(0.759) 

Original 

precision 
0.259 0.393 0.47 0.543 0.605 0.663 0.709 0.734 0.759 

 

 

V. CONCLUSION AND FUTURE WORK 

This paper proposed a method using multiple kd-trees to 

find the nearest neighbor in high dimensional space. We build 

six trees by projecting data into different hyper-planes so that 

these data can be viewed in different perspective. We 

compared our method to BBF algorithm. Although our tree 

constructing time is longer than that of BBF algorithm, but on 

the whole our construction time is acceptable (not more than 

0.62 seconds for 1000 data of dimension 50). Under the same 

number of total allowed backtracking number, our method 

almost outperformed on every test. For example, when the 

dimension of data is 64 or 128, the average improvement on 

precision can reach 28% (dimension fixed) and 53% (number 

of backtracking fixed). Experimental results illustrated that the 

proposed algorithm improves the precision especially when 

dimension is high and size of data set is large. The 

effectiveness of projecting data into different perspectives to 

look for the nearest neighbor is also confirmed by the 

experiments. Under the condition that no backtracking is used, 

as our method uses six trees and BBF algorithm uses only one 

tree, in eleven out of twelve tests our method is better with an 

average of improvement ratio to be 79.9%. 

To understand more on the consequence of backtracking, we 

performed a preliminary experiment on revising the constraint 

D’
 such that D’= )/( dD⋅β such that no more backtracking is 

performed when every recorded distance in priority queue, if 

there is any, is not smaller than D
’
 where D is the minimum 

distance of the query point q to the splitting hyper-plane and d 

is the dimension of the data. Although the results did not favor 

shorting the execution numbers of backtrackings, the precision 

of our proposed method is improved. Moreover, these results 

seem to indicate that, in one tree, the precision has a relation 

with β in the constraint )/( dD⋅β  as well as the allowed 

backtracking number. For example, β = 0.75 is better if the 

number of backtracking is not more than 10;  β = 1.25 is better 

when the number of backtracking is between 10 and 30; β = 

1.75 is better when the number of backtracking is between 30 

and 60, etc. Further study on this issue is necessary to better 

understand the relation if there is any. 
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