
 

 

  

Abstract—The paper presents some angular stabilization systems 

of the rockets in vertical pane using differential or integrator 

gyroscope. The first system has not a correction subsystem, while the 

second one has. One has determined the transfer functions (in closed 

loop or in open loop) of the two systems. The positioning of the 

systems’ eigenvalues proofs the systems’ stability. The systems 

respond very fast to a step input – the duration of the transient 

regime, for the two systems, is about one second. Using three 

different methods (least square method, instrumental variables’ 

method - MVI and neural networks method), one makes the 

identification of the system. For both systems one obtains, using a 

Matlab/Simulink program, the frequency characteristics, indicial 

functions in the complex plane and in discrete plane, responses to 

impulse input in the complex and discrete planes. With least square 

method (LSM) the output of the system and the output of the model 

for the two systems were plotted. The identification is made very well 

– the two signals overlap. With the second identification method, one 

obtained the frequency characteristics for LSM and MVI on the same 

graphic. The identification is made using neural networks. Using this 

method, one obtained the indicial responses of the systems and of the 

neural networks (these signals overlap too), the weights and the 

biases of the neural networks and so on. The system’s identification 

made also be done using the prediction error method (MEP). This 

method is more complicated than the others, but it is more precisely. 

The author also presents other two systems for rockets’ stabilization: 

systems with accelerometer and correction subsystem (figures 16 and 

17). These two systems also give good stabilization results. 

 

Keywords— rockets’ movement, stabilization, identification 

methods, differentiator gyroscope, neural network. 

I. INTRODUCTION 

HE stabilization systems for the anti-aircraft rockets, air-

to-air rockets and ground-air rockets fulfill the functions 

of control over the load. Since most of these oscillations 

damping is weak ( ) ,1,0≤ξ  it is difficult to control the over-

load. The more the speed and flight altitude increases, the 

more difficult this mission is. Thus, the stabilization systems  
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must correct the dynamic characteristics of the rockets. One 

also requires that the stabilization systems reduce the influence 

of external disturbances and internal noise. For this, bandwidth 

of the control and disturbance signals is chosen according to 

technical quality indicators [1]. 

II. DYNAMICS OF THE ROCKETS’ MOVEMENT 

Next, one studies the stabilization systems’ dynamics of 

rockets with cross empennage. Mathematical model of rocket’s 

motion in the vertical plane is given by equations’ system (1), 

the coefficients being those of form (2). 
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where θ  is the pitch angle of the rocket, −ω z  the pitch angu-

lar velocity, −α  the incidence angle of the rocket, −δ  the 

rocket’s command, −ϑ  the slope of the trajectory; the other 

terms are coefficients with formula [2] 
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To obtain the frequency characteristics, step and impulse 

responses and identification of the system using three different 

methods (least square method, instrumental variables’ method 

and neural networks method), one uses the following coeffici-

ents 
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In the case of vertical flight of the rockets, the above equ-

ations set suffers little modifications 
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For each rocket’s type one must obtain the variation in time 

of coefficients .5,1, =id i  In fig.1 the time variation curves 

of these coefficients for a ERLIKON rocket are presented. The 

values of these coefficients for second 10 of the flight are 
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The coefficients id  characterize the stability of the system 

and the stability reserves; if ,05 =d  then .1dnv =α  The  ma- 

neuverability of the system may be expressed on a graded 

scale which permits the choose of optimal maneuverability [1]. 

 

Fig.1 Time variation curves of the coefficients  

from rockets’ dynamics equations 

The maneuverability of the system depends on an indicator 

which expresses the dependence of the ratio 12 / TT  or of the 

product 2Tnv
α  of the damp coefficient .ξ  For the stability’s 

improvement and maneuverability’s increase one uses a nega-

tive feedback after angular velocity ;θɺ  it leads to the increase 

of the damp coefficient.  

III. ANGULAR STABILIZATION SYSTEMS WITH DIFFERENTIAL 

GYROSCOPE, WITH OR WITHOUT CORRECTION SUBSYSTEM 

The block diagram of the rockets’ angular stabilization 

system with differential gyroscope, without correction subsys-

tem is presented in fig.2. The input variable is the rocket’s 

command ,vu  while the output of the system is the pitch angle 

( )θ  or the pitch angular velocity ( );θɺ  the differentiator gyro-

scope measures this angular velocity and gives a voltage signal 

which is applied to the input of the differential amplifier [1]. 

 

Fig.2 The block diagram of the rockets’ angular stabilization system  

with differential gyroscope and without correction subsystem 

For the system from fig.2, with negative unitary feedback, 

the closed loop transfer function and the open loop transfer 

function are, respectively 
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where  
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The block diagram of the rockets’ angular stabilization 

system with differential gyroscope and with correction subsys-

tem is presented in fig.3. 

 

Fig.3 The block diagram of the rockets’ angular stabilization  

system with differential gyroscope and correction subsystem 

For the system from fig.3, with negative unitary feedback, 

the closed loop transfer function is 
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where 
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The open loop transfer function for the system from fig.3, 

with negative unitary feedback is 
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Fig.4 The indicial functions and responses to impulse input  

in the complex and discrete planes for the system from fig.2 

 

Fig.5 The indicial functions and responses to impulse input  

in the complex and discrete planes for the system from fig.3 

For both systems one obtains, using a Matlab/Simulink 

program (see the Appendix), the frequency characteristics, 

indicial functions in the complex plane and in discrete plane, 

responses to impulse input in the complex and discrete planes. 

Also, one identifies the systems using three different methods 

(least square method, instrumental variables’ method and 

neural networks method). For each of these methods, some 

graphics were obtained. 

For the system without correction subsystem, the indicial 

functions and responses to impulse input in the complex and 

discrete planes are presented in fig.4 (the first two graphics 

correspond to the complex plane, while the last two corres-

pond to the discrete plane). The program calculates the matri-

ces that describe the state equations of the system in the com-

plex plane or in the discrete plane. Also, the Matlab/Simulink 

program gives the transfer functions in complex description or 

in discrete description. 

For the system with correction subsystem, one has obtained 

the graphic characteristics from fig.5. 

IV. IDENTIFICATION OF THE SYSTEMS USING THE LEAST 

SQUARE METHOD (LSM) 

A state estimator must assure the controllability of the 

system whose parameters are estimated, whatever the adap-

tive structure [2], [3]. The least square method doesn’t 

always give models characterized by controllability. That’s 

why in some cases it must be modified. The system, whose 

parameters must be determined, is described by the equation 
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where −−1z  the delay operator and the polynomials )z( 1−L  

and )z( 1−M  are 
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The estimated model Â  of the leading system A  

(aircraft), obtained by an parametric identification method, 

may be described by equation 

 

( ) ( ) ( ) ( ) ( ) ( ) ,ˆzˆzˆzzˆ 111 dteCtuMtyL q ++= −−−−  (14) 

 

where ( )tê  is the noise applied to the model and the poly-

nomials ( ) ( )11 zˆ,zˆ −− ML  and ( )1zˆ −C  have expressions  
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LSM algorithm (least square algorithm) modification is 

based upon the discrete transfer function modification 

through origin pole ( )0z =  compensation. The modified 

LSM algorithm (LSMM) builds a convergent vector )(tν  and 

with it the vector of the estimated parameters [4] 

 

).()()(ˆ)(ˆ kkPkbkb ν+=′   (16) 

 

Thus, the coefficient b′ˆ  is almost non-null.  

The control law may be chosen of general form 
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with the polynomials 
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The closed loop system is described by equation [4] 
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and 

 

[ ] ),1()()()()1( ++−=+ knkbkbkxke TT  (21) 

 

)1( +kn  is a white noise. 

 

Fig.6 The output of the system and of the model for the system  

with differential gyroscope and without correction subsystem 

In the Matlab program, one forms first the matrices qA  

and qB  (they contain the coefficients of the discrete transfer 

function). The input u  and the perturbation e  of the leaded 

system are chosen as random type. For the b̂  parameters of 

model Â  estimation one uses ARX operator from Matlab, 

which has the following syntax th=ARX(z,nn), where 

−= ][ uyz  matrix that contains the output vector ( )y  and 

the input vector ( );u  nn −= ][ ncnbna  defines the denomi-

nator order ( na ), numerator order ( nb ) and the model’s 

delay ( nc ); th returns the estimated parameters in theta 

format (the elements of the vector b̂ ) using the least square 

method. The program plots the characteristics )(ty  and 

,)(ˆ ty  presented in fig.6 and fig.7; )(ty  is the output of the 

control system ,)(A  while )(ˆ ty  is the output of the estimated 

model ( ).Â  

 

Fig.7 The output of the system and of the model for the  

system with differential gyroscope and correction subsystem 

As one can see in the above figures that the identification is 

made very well - the two signals overlap ( ).ˆ yy →  

V. IDENTIFICATION OF THE SYSTEMS USING THE INSTRUMENTAL 

VARIABLES’ METHOD (MVI) 

This method is a generalization of LSM. It gives the 

estimated parameters only for the determinist part of the 

model Â  and not for the parameters of the polynomial 

)z(ˆ 1−C  associated to the random perturbation. The control 

system model )(A  is described by the equation (12) and the 

one of the estimated model )ˆ(A  by equation (14); in this 

equation one considers .1)z( 1 =−C  The equation equivalent 

to equation (14) is 
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By multiplication of this equation with −)(kW  instru-

mental variable vector (whose elements haven’t physic signi-

fications, they are only necessary “instruments” for the b̂  

estimation), one obtains the equation of estimator b̂  
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where N  is the measurements number; the vector W  may 

be chosen in different ways. Let vector W  be [5] 

 

( )[ ] ,)()2()1()( 1 T
WnkukukuzFkW −−−= −

…  (25) 

 

where nmnW += ; if ( )1zˆ −L  and ( )1zˆ −M are the ( )1z−L  and 

( )1z−M  polynomials estimations, one chooses  

 

( ) ( ).zˆz 111 −−− = LF   (26) 

 

The input u  and perturbation e  of the leading system are 

random type. For the parameters estimation of the vector b̂  

one uses, in Matlab, the operator iv4. In fig. 8 and fig.9 the 

frequency characteristics for the two systems (using LSM – 

continuous line, blue color and MVI – dashed line, red 

color) are plotted. 

 

Fig.8 The frequency characteristics for the system with 

differential gyroscope and without correction subsystem 

 

Fig.9 The frequency characteristics for the system with 

differential gyroscope and correction subsystem 

VI. IDENTIFICATION OF THE SYSTEMS USING THE NEURAL 

NETWORKS’ METHOD 

Flying parameters’ modification and atmospheric distur-

bances leads to difficulties in stability derivates calculus and to 

flying objects’ models stabilization. That’s why one may use 

identification methods or state estimate methods [6], [7], [8], 

[9], [10], [11]. The identification method presented in this 

paper is based on a neural network’s use. As one can see in 

fig.10 [6], for off-line identification, a feed-forward neural net-

work is used; the network is trained by minimizing the quadra-

tic quality indicator )(),(
2

1
)( 2 kekekJ =  being the training 

error. 

 

Fig.10. Dynamic model of the control system 

The dynamic of the rockets’ movement may be described 

by equation 

 

( ) ,)1()()()2()1()( +−−−−−−= uy nqkuqkunkykykyfky ⋯⋯  (27) 

 

with −θ=y  the pitch angle, −= vuu  rocket’s command, 

−q  dead time; yn  and un  express the system’s order. 

 

Fig.11 The output of the system from fig.2 (blue color)  

and the output of the NN (red color) before training. 

If nothing is known about the control system ( fqnn uy ,,,  

and −hn  the number of hidden layer neurons), by identi-

fication one determines these parameters. So that, starting 

from minimal neural network’s architecture (numbers 

yhu nnn ,,  and q ) and imposing a value for the error )(ke  

and a maxim number of training epochs, the neural networks 

begins the training process. If the error )(ke  doesn’t tend to 

the desired value then yu nn ,  and hn  are modified. 

For identification process’s simulation of the rockets’ 

dynamics with neural network one may use discrete transfer 
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function associated to the two systems. A neural network with 

one hidden layer is chosen. This network is characterized by 

5,3,1 === hyu nnn  and .0=q   

 

Fig.12 The output of the system from fig.2 (blue color)  

and the output of the NN (red color) after training. 

 

Fig.13 The output of the system from fig.3 (blue color)  

and the output of the NN (red color) before training. 

 

Fig.14 The output of the system from fig.3 (blue color)  

and the output of the NN (red color) after training. 

One chooses calculus steps ( ) ,p  which is equal with 

vector 

'y s components number (the values at respective moments of 

the control system). The matrix of neural network P  is obta-

ined (it has the dimension ( ) ( )( ).3−×+ pnn yu  Also, matrix 

T  (of desired output of the network, which represents control 

system’s output values matrix) is the matrix of the system 

output’s values at time moments corresponding calculus 

steps; ( ) ( ) ee npnT ,3dim −×=  being output neurons’ 

number (in this example 1=en ). 

In fig.11 one presents the output of the system from fig.2 

(blue color) and the output of the NN (red color) before 

training. After the training process, the two signals overlap 

(fig.12). For the system with correction subsystem, the corres-

ponding graphics are the ones from fig.13 and fig.14. 

 

Fig.15 Dependence between error of the training process  

and training epochs’ number for the system from fig.2 

Neural network‘s training is made using instruction “train” 

till the moment when )()(ˆ)()( imposed kekykyke →−=  or 

until the number of training epochs is reached (in our example 

this number has been chosen 10000); 10
imposed 10)( −=ke  for 

the first system and 8
imposed 10)( −=ke  for the second one. In 

fig.15 (for the system from fig.2) and fig.16 (for the system 

from fig.3) the dependence between error )(ke  and training 

epochs’ number is presented.  

 

Fig.15 Dependence between error of the training process  

and training epochs’ number for the system from fig.3 

The training process takes longer in the case of first system 

compared with the second one because for the first system the 

desired error is greater then the second case desired error. 
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By neural network’s training pseudo – neurons weight 

matrix 1W  and hidden layer neurons weight vector 2W  are 

obtained. Also, vectors 1B  and ,2B  which contains polari-

zation coefficients’ values (bias) for neurons from hidden 

layer and for output neuron, respectively, are obtained. For the 

two systems they are, respectively 
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VII. OTHER ROCKETS’ STABILIZATION SYSTEMS 

Stabilization system that uses differentiator gyroscope, 

although has superior dynamic performances, doesn’t assure 

their constant in different flight regimes. That’s why, this 

system is recommended only for the stabilization of the 

rockets’ angular position. The mono-loop stabilization sys-

tems have some disadvantages which prevent their use for 

the overload’s control. Much better are the bi-loop stabiliza-

tion systems. 

The block diagram of the rockets’ angular stabilization 

system with differentiator gyroscope, accelerometer and 

correction subsystem is presented in figure 16 [1]. The input 

variable is the rocket’s command ,vu  while the output of the 

system is the rocket’s overload .vn  On the direct way of the 

system one has introduced an integrator gyroscope and on 

the feedback of the exterior contour – an acceleration 

transducer (accelerometer), a correction network with the 

transfer function 
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and an amplifier with kk  amplification factor for the 

compensation of the voltage’s failure at the output of the 

correction network (subsystem). The transfer function of the 

interior loop is calculated as follows [12],  
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The closed loop transfer function is obtained with equation 
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After calculus, the transfer function in closed loop becomes 
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the transfer function in open loop is calculated in rapport 

with the one presented above. The coefficients that appear in 

the numerator and dominator of the transfer function (33) are 
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Fig.16: Block diagram of the rockets’ angular stabilization system with differentiator gyroscope, accelerometer and correction subsystem 
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Fig.17: The block diagram of the rockets’ angular stabilization system with integrator gyroscope, accelerometer and correction subsystem 

The block diagram of the rockets’ angular stabilization 

system with integrator gyroscope, accelerometer and correc-

tion subsystem is presented in figure 17 [1]. The input and 

the output variables are the same with the ones from the 

previous case.  

On the direct way of the system one has introduced an 

integrator gyroscope and on the feedback of the exterior 

contour – an acceleration transducer (accelerometer), a 

correction network with the transfer function 
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and an amplifier with kk  amplification factor for the com-

pensation of the voltage’s failure at the output of the correc-

tion network (subsystem). The transfer function of the inte-

rior loop is calculated as follows 
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The closed loop transfer function is obtained with equation 
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In equations (36) and (37) the values of the constants are 

the ones from equation (33). After calculus, the transfer 

function in closed loop becomes 
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the transfer function in open loop is calculated in rapport 

with the one presented above. The coefficients that appear in 

the numerator and dominator of the transfer function (38) are 
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VIII.  IDENTIFICATION OF THE SYSTEM USING THE                    

PREDICTION ERROR METHOD 

The system’s identification made also be done using the 

prediction error method. This method is more complicated 

than the others, but it is more precisely. MEP calculates the 

coefficients of the polynomials ( ) ( )11 z,z −− LM  and the 

coefficients of the polynomials that “modify” perturbation 

which affects the leading system. Starting from an initial 

estimation, one calculates the parameter of the system through 

successive iterations till the convergence criteria is reached. 

The initial estimations used by MEP may be obtained using 

one of the previous methods [5], [13], [14], [15].  

The prediction error is the perturbation e   

 

.ŷye −=   (40) 

 

The leading system is described by equation 
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Thus, the residue is 
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The estimated parameters (the vector b̂ ) are determined 

through the sum’s minimization of the square prediction  

 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 5, 2011 16



 

 

errors 

 

,)(minargˆ

1

2











= ∑

=

N

k
b

keb   (43) 

 

where N  is the available data number. An estimation 

algorithm is the following one [5]: 
 

1) one makes an initial estimation of the coefficients of 

( )1z−C  using a CMMP type method, and thus it results 

( );zˆ 1−C  

2) using the previous estimation ( ),Ĉ  one calculates the 

filtering signals 
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3) one determines the estimations ( )1zˆ −L  and ( )1zˆ −M  of  the 

polynomials ( )1z−L  and ( )1z−M  
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4)   hereby a new estimation ( )1zˆ −C  is calculated [3]  
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where V̂  is expressed function of assessments ( )1zˆ −L  and 

( )1zˆ −M  from previous step; 
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The calculus formula for b̂  is 
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IX. CONCLUSIONS 

The paper presents two angular stabilization systems of the 

rockets in vertical pane using differential gyroscope. The first 

system has not a correction subsystem, while the second one 

has. One has determined the transfer functions (in closed loop 

or in open loop) of the two systems; a study of stability is 

made. All the eigenvalues of the systems are placed in the left 

complex semi-plane. This is a proof of systems’ stability. The 

systems respond very fast to a step input – the duration of the 

transient regimes is about one second. Using three different 

methods (least square method, instrumental variables’ method 

and neural networks method), one makes the identification of 

the system. For both systems one obtains, using a Matlab/ 

Simulink program (the one from Appendix), the frequency 

characteristics, indicial functions in the complex plane and in 

discrete plane, responses to impulse input in the complex and 

discrete planes. With the least square method (LSM) the 

output of the system and the output of the model for the two 

systems are plotted (fig.6 and fig7). As one can see in these 

figures, the identification is made very well - the two signals 

overlap ( ).ˆ yy →  

With the second identification method (instrumental varia-

bles method - MVI), one obtained the frequency characteris-

tics for LSM and MVI on the same graphic.  

The identification may also be made using neural networks. 

Using this method, one obtained the indicial responses of the 

systems and of the neural networks (these signals overlap too), 

the weights and the biases of the neural networks and so on. 

One also presented the dependence between the error of the 

training process and the training epochs number for the two 

systems. The training process lasts longer in the case of first 

system (900 epochs) compared with the second one (600 

epochs). This doesn’t mean that the second system is better. 

This fact happens because for the first system the desired error 

is greater then the desired error in the second case. 

APPENDIX 

% Angular stabilization of the rocket in vertical plane 

clear all;close all; 

% The coefficients 

d1=1.5;d2=37.5;d3=-18.75;d4=0.90;T1=0.66;T2=0.22; 

Kteta=2.79;Kv=0.5;Kd=1;Ks=1;Ts=0.1;csi=0.05;Ks=1; 

% The transfer functions 

numi=[0 0 Kv*Ks*Kteta*T1 Kv*Ks*Kteta]; 

deni(1)= Ts*T2*T2; 

deni(2)= Ts*2*eps*T2+T2*T2; 

deni(3)= Ts+2*eps*T2+Kv*Kd*Ks*Kteta*T1; 

deni(4)=1+Kd*Kv*Ks*Kteta; 

deni=[deni(1) deni(2) deni(3) deni(4)]; 

numd=numi;dend=deni-numi; 

sysi=tf(numi,deni);sysd=tf(numd,dend); 

poli=pole(sysi);zerouri=zero(sysi); 

[A,B,C,D]=tf2ss(numi,deni) 

Ts=.025;sys_z=c2d(sysi,Ts); 

[num_z,den_z]=tfdata(sys_z,'v'); 

sys_z=tf(num_z,den_z) 

[A_z,B_z,C_z,D_z]=tf2ss(num_z,den_z); L=eig(A_z); 

% Graphical characteristics 

h=figure;margin(sysd); 

[Gm,Pm,Wcg,Wcp]=margin(sysd) 

Gm=20*log10(Gm); h=figure; 
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subplot(2,2,1);step(sysi);grid; 

subplot(2,2,2);impulse(sysi);grid; 

subplot(2,2,3);dstep(num_z,den_z);grid; 

subplot(2,2,4);dimpulse(num_z,den_z);grid; 

% System's identification using LSM 

Bq=[num_z(2) num_z(3) num_z(4)]; 

Aq=[den_z(1) den_z(2) den_z(3) den_z(4)]; 

tho=poly2th(Aq,Bq); u=idinput(300,'rbs');    

e=randn(300,1);y=idsim([u,e],tho);    

z=[y,u]; nn=[3 2 0];th=ARX(z,nn); 

y_model=idsim([u,e],th);    

% Comparative graphics of the two systems 

h=figure;tt=1:length(y); 

plot(tt,y,'r',tt,y_model,'--*k');grid; 

present(tho) 

present(th) 

% System's identification using MVI method 

tho=poly2th(Aq,Bq); u=idinput(300,'rbs');    

e=randn(300,1); y=idsim([u,e],tho);    

z=[y,u]; nn=[3 2 0];th=iv4(z,nn); 

% Frequency characteristics for LSM and MVI methods 

h=figure;[Gs,Nss]=spa(z);    

Gi=trf(th);bodeplot([Gs Gi]);grid;    

present(tho) 

present(th) 

% System's identification using neural networks method 

sim('S1'); 

sim('S2'); 

M=length(y);    

ny=3;nu=1;nh=5;d=0;    

% The obtaining of the matrix P 

s1=max(0,nu+d-ny);s2=max(0,ny-nu-d); 

s3=max(nu+d,ny); 

P=uy(s1+1:M-ny,1)';         % P=uy(1:M-3,1)'; 

for i=2:ny 

    P=[P;uy(s1+i:M-ny+i-1,1)'];   

    % P=[P;uy(2:M-2,1)'];P=[P;uy(3:M-1,1)']; 

end 

for i=1:nu 

   P=[P;uy(s2+i:M-d-nu+i-1,2)'];    

   %P=[P;uy(3:M-1,2)']; 

end 

% The desired output of the system, t, is plotted 

T=y(s3+1:M,1)'; timp=1:length(T); 

h=figure;plot(timp,T,'k');grid; 

% NN’s initialization 

Z=[min(P(1,:)) max(P(1,:)); 

   min(P(2,:)) max(P(2,:)); 

   min(P(3,:)) max(P(3,:)); 

   min(P(4,:)) max(P(4,:))];     

h=figure; 

net=newff(Z,[5 1],{'tansig' 'purelin'}); 

y1=sim(net,P);    

% y1 is the output of the NN before training 

plot(timp,T,'b',timp,y1,'r');grid; title('Desired indicial response 

(blue) and the output of NN before training (red)'); 

xlabel ('Time [s]'); 

% NN's training 

net.trainParam.epochs=10000;net.trainParam.goal=1e-10; 

net = train(net,P,T);grid; 

h=figure;y2 = sim(net,P);    

% y2 is the output of the NN bafter training 

plot(timp,T,'bo',timp,y2,'r');grid; 

title('Desired indicial response (blue) and the output of NN 

after training (red)'); xlabel('Time [sec]'); 

% Bias and weight calculus 

W1=net.iw{1,1} 

W2=net.lw{2,1} 

B1=net.b{1} 

B2=net.b{2} 
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