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New non-linear adaptive command system
for the aircrafts’ attitude control

Mihai Lungu

Abstract— The paper presents a new complex adaptive non-
linear system with one input and one output (SISO) which is based
on dynamic inversion. The stabilization command of the linearised
system using as input the difference between closed loop system’s
output and the reference model’s output is made by the linear
dynamic compensator. The state vector of the linear dynamic
compensator, the output and other state variables of the control
system are used for the obtaining of the adaptive control law; this law
is modeled by a neural network. The purpose of the adaptive
command is to compensate the dynamic inversion error. Thus, the
command law has two components: the first is the command given by
the linear dynamic compensator and the second one is the adaptive
command given by the neural network. As control system one
chooses the non-linear model of the aircrafts’ roll movements. One
chooses a linear reference model. One obtains the structure of the
adaptive control system of the roll angle and the Matlab/Simulink
models of the adaptive command system’s subsystems. Thus, charac-
teristics that describe the adaptive command system’s dynamics are
obtained.

Keywords— attitude, adaptive, neural network, dynamic
inversion, aircrafts, roll angle.

1. INTRODUCTION

HE complexity and incertitude that appear in the non-

linear and instable phenomena are the main reasons that

require the projecting of non-linear adaptive structures for
control and stabilization; in these cases the linear models are
far from a good describe of the flying objects’ dynamic [1],
[2], [3]. Another reason is the non-linear character of the
actuators. The observers must be easily adaptable and their
project algorithms must allow the state’s estimation of the
flying objects even in the case of their failure or no use of the
damaged sensors’ signals. In these situations, it’s good to use
the real time adaptive control based on neural networks and
dynamic inversion of the unknown or partial known non-
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linearities from the dynamic model of the flying object [4].
The neural network’s training is based on the signals from
state observers; these observers get information about the
control system’s error [5], [6], [7]

II. DYNAMIC SYSO SYSTEMS

Let’s consider the dynamic system (A) with single input
and single output described by equations

X = f(x,u),

1
y = hx), @

with x(nx1),n— unknown f and & — unknown nonlinear
functions, u and y — measurable.

One projects an adaptive control law v after (in rapport
with) the output; the neural network (NN) models a function
that depends on the values of input and output of the system
(A) at different time moments so that y(t) follows the finite

y(t). The feedback linearization may be made through trans-
formation [8], [9]
v=h (nu), 2)
where v is the pseudo-command signal and };,.(y,u) — the

best approximation of 4,(x,u) = h, (x(y), u).
Equation (2) is equivalent with the following one

u=h'(nv) . 3)
If i, = h,, one yields ) = v; otherwise (5, = 4,

O = v, @)

where

& = &(x,u) = h,(x,u) = h,(,u) ©)

is the approximation of function %, (inversion error). Asse-
ssing y to follow y, then v has form [8], [9], [10], [11]
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v:)_/(’)+vpd—va+\7,

(6)

where v, is the output of the dynamic linear compensator for
stabilization, used for liniarised dynamic (4), with ¢ = 0,v, —

the adaptive command that must compensate € and v has the
form [8], [12]

-

with k_,k, > 0 gain constants,

V4 7

Lt Z)i HEH +k,E,

7 H — the Frobenius norm of
F

matrix Z Z — the ideal matrix of the neural network and

E = EPB, with E,P and B — matrices. The derivative 3

is introduced for the conditioning of the dynamic error
¥ =y —y. This derivative is given by a reference model

(command filter) [9]. ) may be cumulated with other sig-
nals and it results the component v, of form (12).

Let’s consider H, (s) — the transfer function of the linear
subsystem of A (flying object) with the input u, and the
output y, having to the numerator a p order polynomial and
at the denominator a 7 order polynomial; p < r —1. For this

system the author proposes the command structure from fig. 1,
with the linear part described by equations (9) + (11).

A
u, i
RO
£ . B (x,u)
B () "
+ T - b
. =

INVERSE 1
MODEL -
- yu Ls

By (a0 = By (10

Fig. 1. The block diagram of the adaptive command system based on dynamic inversion

The transfer function of the linear system A with the input u,

and the output y is

b,s? +b, ;sP7! + .. +bs+b

H,(s)= ,p<r-1. 8
/) ST R, ST L As + A P ®)
Considering

YT =y y ...y D ZzT =y v ... v

5ot 27—y o ] N

A =g oy Ay, BT = by By ),

with b,,i =0,p ,%;,j=0,r—1 — the coefficients of the nu-

merator and denominator of the transfer function for the
system with input u, and output y, the linear system with

input v and output y is described by equation

Yy =AY +b7Z +¢. (10)
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If p=0, then Z =v,b =5, and the previous equation

becomes
Y0 = ATV 4 byt (1)
In the particular case y) = 3 one obtains

1 (GO +ary
v, =— (3" +177). (12)

by

The compensator may be described by state equations
c=A.c+b.e,
S ST 0 (13)
Vpa = €6+ d e,
where ¢ has at least dimension (r — 1),
e=y=ceel = [e é - e(”l)],
(14)

c=[100--0],,.
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The state equation of the linear subsystem with input (v + ¢)

and output y is

X =Ax+b(v +e),

_ 15
V=Vpy = Ve 1V, (13)
where
0
00 0
A= b= (16)
1 :
1
.0 rx1

The stable state x ()_c =v=¢g= 0) verifies equation A4x =0

and, taking into account (15), leads to the equation of the error
vector e= X = X — X,

e=Ade—-bv,, +b(va—17—8).

(17)

With notations

e| — |Ad-dbc -bc,| - |b| = |cO
E=| |,4= b= .C = . (18)
G b.c A, 0 07

where [ is the identity matrix, one obtains

E=fE+b(va -V -¢g), 19
z=CE,;

A,,b,,c,,d, from (13) are calculated so that 4 is a Hurwitz

co c
matrix.
For the estimation of the vector £ one uses a linear state
observer of order (2r - 1) described by equations

é' = AE + L(z - 2), (20)

Ql n

N>

>

with the gain matrix L calculated so that matrix
A= (Z . Lg) is stable.

Considering w — the sensor measure error, y,, — the mea-
sured value of y, then y, =y -y, =¥ +w and the com-

pensator’s equations become

E=ZE+I7(va —17—8)+Gw,

_ 2D
z=CE + Hw.
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with H” =[1 0],G" = [-bd, b,].
If state ¢ of the compensator is known, one uses a reduced
order observer for estimation of vector e

é=dé+1,(z - %), (22)

The gain matrix L, is obtained so that matrix 4 = (Z - ch)

A

is stable. With vectors é and ¢ vector ET = [¢ ¢] is obta-

ined. The signal E = ETPb is used for neural network’s

adapting; the weights % and V are obtained with equations

Vf/ =-Ty, [2(6 — 6’I}Tn)ETP§ + k(Vf/ - Vf/o)], (23)

V=T, [2nETP§6s’ + k(r? 7, )]

where the role of B is played by b. In (23) o is the sigmoid
function

1
olz)= 24
()= 1= (24)
., d6(z) . . R -
6 = —— is the Jacobian of vector &, W, and ¥, — the
dz -
initial values of weights W s v Iy, >0,
—12 — — ~
> 2k + 1B ). by = koo +[PB,. &, = 5] +[7B]. P
and P — the solutions of the Liapunov equations
ATP + P4 = -0,
¢ (3)

AP+ B = -0

for Q’ Q > O’)\'min (Q) > 1’ 7“min (Q) > 1. 7\‘min (Q) and A‘min (é)
are the minimum eigenvalues of the matrices (O and Q .

The structure of the neural network is the one from fig. 2

(5], [13]

Fig. 2. The neural network

The input - output relationship for the neural network is
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ny

Vo = b0, + D w0,k = 1n;, (26)
j=1

where
1

G; =0|b9, ; +Zvi,j17‘ ; (27)
i=1

ny, n,,n; are respectively the input nodes’ number, hidden

layer nodes’ number and output layer nodes’ number. The
sigmoid function is

1 1
,0:\Z —_—
J 4.z,
1+e %%

ofz) =

Clte @’

(28)

o is a vector with the elements o,

j(z), a; is the activation

potential having a distinct value for every neuron. The

matrices V' and W are respectively

ev,l : ev,nz 6w,l ) ew,n3
R N e @
vn],l vn],nz wnz,l an,n3
One defines a new sigmoid vector
6(2) = |p,, olz,) oz,) - olzn, )| s (30)

b,, = 0 allows to the threshold 6 to be included in the matrix

/8 Also, one defines the vector

s=lbonn1,] 31)

b, > 0 is the bias which allows to the threshold 6, to be

included in matrix V. Thus,

v, = WTolpTx). (32)
The derivative of the sigmoid vector 6(2) is
0 - 0
Oo(z)
5 - dCZ(Z) _ afl : : . (33)
i o . 00
02,,2
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Conform to (36) there is a set of weights W~ and V' that
of NN, the

neighborhood of the inversion error g; the neighborhood has

leads the output v in a domain D -—

a

the maximum dimension p1”. The matrices 7~ and V" are the

matrices W and V that minimizes p”, value that can be made
small by choosing of a sufficient number of neurons in the
hidden layer (n2) [14].

P from the signal used for the neural network’s adapting
is the solution of first equation (25) with 4 = (A - dcbc).
Second output of the compensator (T/a) is used for obtaining

of an error signal that is useful for adapting of the neural
network’s weights (fig. 3).
From (4) and (6) one yields

yO =y 4y -y, +V +e, (34)
equivalent with the dynamic error’s equation
Y =y v, -V —¢ (35)

Error € may be approximated with the output of a linear
neural network NN [8]

g = WTd(n)+ un), ||u|| <pu", (36)

where W is the weights’ matrix for the connections between
layer 2 and layer 3 (NN has 2 layers), H(Tl)— the recon-

struction error of the function and n — the input vector of NN

n=[vo ol (37)
where

Vi@ = [v@) e =d) - At = (= r = 1)) 7,

- (38)
3I@) = [y vt —d) - ye—(n, -1)a)]7,

with n; 2 n and d > 0;v, is projected so that

v, = WTa(n), (39)

where W is the estimation of W.

The actuators’ characteristics (time delays, nonlinearities
with saturation zone) lead to neural network‘s adapting
difficulties. This is why a block “PCH?” is introduced; it limits
the adaptive pseudo-control v, and v by the mean of one

component which represents an estimation of the actuator’s
dynamic (PCH — Pseudo control Hedging). PCH “moves back
the reference model” introducing a correction of the reference
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S _

7=y,
i
y, |REFERENCE Bt v
] MODEL LINEAR U=
(COMMAND [* —p—t . INVERSE A
FILTER) |V + ¥y DYNAMIC MODEL
COMPENASTOR

NON-LINEAR ADAPTIVE CONTROLLER

Fig. 3. Automat control system with non-linear adaptive controller

position [6], [12]. Because the dependence between § and &,

is expressed by a non-linear function /#,, one yields

h.(x,8,) # h,(x,0); (40)

it results a difference between the two functions

vy = h(x,8,)—h,(x,5). (41)
Taking into account that

h,(x,8,)=h, (x, o (x, v)) =, (42)

function (41) becomes

v, =V— l;,.(x, 8). (43)

This signal is introduced in the reference model as an
additional input [6]; one compares it with ) inside of the
reference model and, after integration, it leads to the modify of
the signals y and y.

The existence and uniqueness of v, is guaranteed by the

following hypothesis [11], [15]: Conform to equations (2), (5),
(6) and (8) one gets

oo | |l i) eu ov| _|ola, —)eu|
ov, ou ov ov, ou ov
R (44)
a!h, —h, ) Ou Oh,. / Ou
= — = = -1 <1 ,
Ou Oh,| |Oh, /ou
condition that is equivalent with the following one
oh oh, | |oh,| 1 |on
Il = R R S N A 45
sgn( Ou ) gn{ Ou } Ou 2 | Ou 43)

Conform to (35) and to the block diagram from fig. 3, one
obtains the block diagram of the dynamic error’s model (fig.
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4); the equation of the compensator with the input  and the

outputs v, and Y, is

vpd (S):| _ 1 |:Mpd (s)i| ~ _ |:de (S):| ~
O 5 = 7). (46)
|: y(s) Lpd (S) Ma(s) Ha (S)
COMPENSATOR Vi
DINAMIC
NELIN[AR ~ [—#=
Ya
Fig. 4. Block diagram of the dynamic error’s model
The equation (46) is equivalent with
de (S) _ Vﬁd (S) _ Mpd (S) ,
) Tl )
]‘NI (S)Z :)70(8) — Ha(s) — Mas

(va — 8)(5) s” + de (s) s"Lpd s) + Mpd (s)
The polynomial M (s) doesn’t affect the stability of the

system from fig. 4. For the stability the next condition must
be fulfilled

g=gradl , (s)> gradM , (s)>r-1 (48)
The transfer function H ,(8) is built so that it is strictly

po-sitive real (SPR). From equations (47), (36) and (39) one
gets

—H,6)v, -7 -8)=1, () o) -um),  ©9)

)

where W = (W - W) is the error of the matrix’s weights. If

7.6

r>1, f]a (s) one can obtain a SPR using a filter with the
and the degree (r—1);the resulted SPR

function (conform to (47)) is

operator T(s)
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é T _ Ma (S)T(S) 50
GO =H OO = M S (50)
Using the notations
_ -l
D, =T (s)0, 1)
wr(m)=7"s)um),
the equation (49) becomes
74(5) = GO, + AG) - w, ()], (52)
where
G(s)= H,(s)T(s),
6)=A,6)76) .

AS) =T )T 0 =T D A < 7] e > 0.
The polynomial M, (s)T(s) from the nominator of the
transfer function G(s) is chosen so that G(s) is a SPR. For

this, first one expresses G(s) as

b, ;sP +--bys + by

G(s) = H,(5)T(s) = : (54)

-1
sP +a, s +--a;s+ag

where p = r +q;q = grd (Lpd (s)) The system with the
transfer function G(s), having the input (Va —s) and the

output y,(s), may be described using the state equations in

the canonical form

s=dz+BFTO, +A-p,),

Y, =C

(55)

cZ>

where z7 = [%P*U =2 o ym }a] is the state vector and

Apy —dpp =4 — 4 1 b,
1 0 0 0 0 b, (56)
A. = 0 1 0 0 |,B.=|.[,Cl=]|:
: : . : : b
0
0 o -1 0 by

G(s) is SPR only if the conditions from the lemma Lefschetz

— Kalman — Yakubovici (LKY) are fulfilled; that means
3Q,. > 0 so that P, is the solution of the Liapunov equation

AP, +P. 4. =-Q.;CI =P.B,. (57)

Because G(s) is a Hurwitz polynomial one results that

7(s) and M (s) are Hurwitz polynomials too.
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The filter with the transfer operator 7! (s) may be
described by the state equations

zp =4z, +B;D,

(58)

where z,is the state vector of the filter. Also, the equation of
the positive matrix P;
AjPr+ Prdy ==-07,0p > 0. (59)

corresponds to the equation (58).
The signal @ is used in the adapting law of NN, [9]

W= —F(5,0, + 1, 07), (60)

where F' and A, are adapting positive coefficients.

T e v
RNy N

j:la

Fig. 5. Block diagram of the adaptive subsystem from din fig. 3

III. ADAPTIVE SYSTEM FOR THE COMMAND

OF THE AIRCRAFTS’ ROLL ANGLE

One considers the nonlinear model of the roll movement
described by equations [16]

X =Xy, % = f(X)+dou, x; =@, x5 =@,u =95,

. (61)
f(x)=bx; +byx, + b3|x1|x2 + b4|x2|x2 + bsxy;
where
b, = —-0.0186,b, = 0.0152,b; = —0.0625,b, = 0.01, b5 = 0.021,
dy, =1
The matriceal description of the movement is
01
X=Ax+hr(x,u),xr =[x1 xz],Az ,
b, b, (62)
h,.(x,u) = b3|x1 |x2 + b4|x2|x2 +bsx} +dgu.
The system (61) is equivalent with equation
§ = by + by + b d + by|§lp + b5 + du, (63)
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where ¢ is the aircraft roll angle and u = §, — the ailerons

deflection. From (63) it results the relative grade of system
(r = 2) and the transfer function H ,(s)

1

- 64
s2 + ks + A 64

Hy(s) =

One chooses the reference model described by equation

2
r0

s? + 280,08 + 07,

()

y= Ve (65)

with &, =0.7 and o, =Ilrad/s;y = ¢,y =¢. With (38),

equation (10) becomes

O=-MP-Aop+v+e (66)

and by elimination of ¢ between this and equation (63) and

identification, one yields

u=29, = Lv = };;I(x,v),
d, 67)
€= (7‘0 +b1)(9+(7*1 +b2)¢+b3|¢|¢+b4|¢|¢+b5(P3~

h NON LINEAR

Equation (35) becomes

P=—V,y tv, —V - (68)

with v, of form [7]

Vg =k, ¥+ kY. (69)

Implicit the dynamic equation of the error ¢ = — ¢ is

m = bo{ o ! }m - H (bova = bov —2), (70)
y —kp, —ka || ¥] L1

with b, =1. One chooses 1, = 4, = Lk, = 0} (o, = Irad/s)
and k,; = 2Ew, (& =0.7).

One considers E =e = [6 $]T,E —c=[10],z=5=e
and 2 = ¢; E - the observer state (20) The gain matrix of the
observer L is obtained so that matrix 4 = (Z - LC) is stable;

A is the matrix of system from equation (70) with by = 1.

; Py

Eq.(67)

ACTUATOR

Ye=

REFERENCE

MODEL

(65)

H, (S}
(84)

NEURAL NETWORK |

Fig. 6. Block diagram of the system for the control of aircrafts’ roll angle

The component v, is calculated using the equation
(71)

P — the solution of the Liapunov equation (25) and Q = I,;
one chooses I'y =8I, =10,k =5 and activation potentials
between 0.1 and 1 [7]. The input vector n has the form (37)
with components (38); n, =n =2,d = 0.05;

n? = [l v(e) v(t — d) v(t - 2d) v(t - 3d) y(t) y(t - d)]. (72)
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For the calculus of component v one uses (7), where
k, =0.6,k, =08,Z = 30.

The block diagram of the system for the control of
aircrafts’ roll angle is presented in fig. 6, while the block
diagram of the reference model is the one from fig. 7 with
y=0,y., =9, y=¢,n ofform (45), H,(s) of form (64)
and & obtained with (67). One has chosen the initial values
¢(0) = 20grd, @(0) = 100grd/s.

In fig. 8, the Matlab/Simulink model for the structure from
fig. 6 is presented. The four subsystems (“NEURAL NET-
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WORK 1=2”, “Reference model =2, “Forming subsystem for . {- 0.13} {1.41 0.50} (73)

vector deltaec (r=2)” and “Calculus subsystem for eps (r=2))” | o1l 0.50 0.71
are presented in figures 9-12.

and matrices W and V' after the neural network training are

WwT =1[-20.7035 - 3.7136 -1.7557 -8.8042 - 6.8664 - 5.9634 - 6.1923 - 6.4364],
[0.01 0.01 001 002 0.02 004 0.08]
0 0 0.01 0.01 0.01 0.01 0.02
0.01 0.01 0.02 0.02 0.02 0.03 0.03
V =1-0.27-029 -0.30 -0.31 -0.32 -0.24 - 0.08 |.
0.02 0.03 0.04 0.06 0.09 0.19 040
0.06 0.07 0.09 0.11 0.14 025 047
Fig. 7. The block diagram of the reference model 0.12 014 0.16 0.18 023 034 058

For ¢, =4°;c = [1 O];ET = [0 1], one obtains

model =2

L1 L)
Calculus subsystem
for eps (r=2)

Forming subsystem
for vector deltaec (1=2)

Fig. 8. Matlab/Simulink model for the structure from fig.6

In1

Diferential
equations (=2}

e Horiz Cat

—ii— <) [ a4

MMato
sizmap (=2)

Fig. 9. Matlab/Simulink model for “NEURAL NETWORK r=2"
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Cutl

e

Cutt

Fig. 11. Matlab/Simulink model of “Forming subsystem
for vector deltaec (1=2)”

Fig. 12. Matlab/Simulink model of “Calculus
subsystem for eps (r=2)”

©.¢ldeg] 2
2 i i I
0 2 4 [
Time [sec]
40
30 - y\\
8.8, 1de) [
10
ol-- :
0 i ; ; i
0 2 4 [ 8
Time [sec]

vy [deg]

5

T
a S

3

. 0[deg] 2 1, [deg/s’]4

1 2
0

Ei 2

0 2 4 6 8 10 0 2 4 6 8 10
Time [sec] Time [sec]

0 2

0.5
o A L
3.9, [de;

814 5 v[deg]
2

\ +
25
3

0 2 4 6 8 10 0 2 4 6 8 10
Time [sec] Time [sec]

Fig. 13. Time characteristics in the case of linear actuator’s use

In fig. 13 the functions G(r), o(¢), &(1), v, (1), 8, (1), 8, ()
and v(r) (o,¢, Se — with blue color, continuous line and

¢,v,,5, with red color, dashed line) are presented.

If the actuator is non-linear one obtains the charac-
teristics from fig. 14; additionally, characteristics v, (¢#) and

('p((p) appear. When v, = 0 the actuator is in the saturation
state and it works in the linear zone when v, # 0. The
characteristic ('p((p) (phase portrait of the system) shows that

the non-linear system tends to a stable limit cycle.

Time [sec]

Time [sec]

Time [sec]

8 5 0 5 10 15 20

P [deg]

Fig. 14. Time characteristics in the case of non-linear actuator’s use
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IV. CONCLUSIONS

The aim of the adaptive command is to compensate
the dynamic inversion error. Thus, the command law has
two components: the command given by the linear dynamic
compensator and the adaptive command given by the neural
network. As control system one chooses the non-linear
model of aircrafts’ dynamics in longitudinal plain. The
reference model is linear. One obtains the structure of the
adaptive control system of the roll angle and Matlab/
Simulink models of the adaptive command system’s subsys-
tems. Using these, some characteristics families are obta-
ined; these describe the adaptive command system’s dyna-
mics with linear or non-linear actuator. The system is a
stable one and has very good dynamic characteristics.
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