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Abstract—To predict an occurrence of extraordinary
phenomena, such as earthquakes, failures of engineer-
ing systems and financial market crushes, it is impor-
tant to identify precursory events in time series. How-
ever, existing methods are limited in their applicability
for real world precursor detections. Recently, Ide and
Inoue [1] have developed an SSA-based change-point
detection method, called singular spectrum transfor-
mation (SST). SST is suitable for detecting various
types of change-points, but real world precursor
detections can be far more difficult than expected.
In general, precursory events are observed as minute
and less-visible fluctuations preceding an onset of
massive fluctuations of extraordinary phenomena and
therefore they are easily over-looked. To overcome
this point, we extend the conventional SST to the
multivariable SST. The originality of our strategy is
in focusing on synchronism detections of precursory
events in multiple sequences of univariate time series.
We performed some experiments by using artificial
data and showed the superiority of multivariable SST
in detecting onset of precursory events. Furthermore,
the superiority is also shown statistically in determin-

ing the onset of precursory events by using real world
time series.

I. INTRODUCTION

W ITH the prevalence of digital data acquisi-
tion, data mining has become important in

diverse fields. In particular, mining extraordinary
events from time series, such as earthquakes, fail-
ures of engineering systems and financial market
crushes, has been pointed out as a significant prob-
lem to be studied because these phenomena could
be one of the most serious threats for human activ-
ities. In most cases, such extraordinary phenomena
have some underlying energy storage and release
process and therefore they are often accompanied
by some precursory events. If precursory events
could be detected in any of these situations, and
appropriate alarming mechanisms could be in place,
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one is given the possibility of preventing, or at least
minimizing the losses caused by the phenomena.
Hence it is an immediate concern to develop a
method to detect precursory events from time se-
ries.

Here, we define the problem setting and consider
difficulties of precursor detections in real world
time series. Let us show a good example of ex-
traordinary phenomena in real world time series.
The right panel of Fig. 1 shows the northward
component of geomagnetic field variations obtained
at KAG (Kagoshima, Japan) station on 8 January
1997. The vertical axis in Fig. 1 indicates relative
variabilities of the northward component of geo-
magnetic fields. Looking over the figure, we can
find two noticeable features. The first thing we
notice is that there is an extraordinary oscillations
started around t = 500. Such geomagnetic vari-
ations reflect the explosive auroral activity called
auroral substorms, which is widely recognized as
an extraordinary phenomenon caused by the inter-
action between solar wind and the Earth’s magneto-
sphere (e.g., [2]). The extraordinary oscillations, so
called Pi 2 magnetic pulsations in Solar-Terrestrial
Physics, usually observed all over the world at the
onset of the explosive auroral activity called auroral
breakup. The second thing is that the background
trend begins to increase gradually around t = 100–
200. As we will discuss in Section IV-B2, such
gradual increasing of geomagnetic data is almost
synchronized with the precipitation of electrons
from space to polar-ionosphere preceding the auro-
ral breakup. We can say that the gradual increasing
of geomagnetic fields is one of precursory events
associated to the auroral substorm. Like this ex-
ample, what we would like to detect is minute
and less-visible fluctuations preceding an onset of
massive fluctuations of extraordinary phenomena.
Additionally, in order to predict occurrences of
extraordinary events or discover knowledge about
underlying generation process of extraordinary phe-
nomena, it is important to determine the exact
onset time of precursory events. Needless to say,
it is not easy to determine the onset time with a
gradual initiation, especially in a case of an on-line

detection. Moreover, real world time series contains
various measurement noise. In noisy conditions, we
can easily imagine that detecting precursory events
become much more difficult.

Fig. 1. Northward component of geomagnetic data around an
auroral substorm onset observed at KAG station.

Studies have been made on a change-point detection
in time series for a long time, and various methods
have been proposed. However, conventional change-
point detection methods, such as methods based on
Fourier/Wavelet analysis [3] [4], AR modeling [5],
text mining [6] [7] [8] and clustering [9], are not
suitable for precursor detections due to reasons that
we mentioned above. Besides, some researchers
attempted to detect precursory events based on
described precursory patterns (e.g., [10]). However,
these approaches depend on the specialized ex-
periences and therefore their applicability is only
limited in specific fields.

The present work is intended to propose a general
method for detecting precursory events in real world
time series. From what has been discussed above,
the required method for precursor detections should
ideally satisfy following five essential points: (i)
data adaptive, (ii) non-parametric and not underlie
any specific generative models, (iii) independent on
the amplitude level of signals, (iv) robust against
measurement noise and (v) extendible to an algo-
rithm that works in an on-line manner. Here, (i)
and (ii) are important in terms of general versatility.
(iii) and (iv) are mandatory to detect minute and
less-visible changes in time series. Finally, (v) is
essential to predict occurrences of extraordinary
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phenomena.

Recently, singular spectrum analysis (SSA) has
been used for change-point detections in time se-
ries [11]. Ide and Inoue [1] developed the SSA-
based change-point detection method, as referred
to singular spectrum transformations (SST), and
showed that it was useful in knowledge discovery
of causal relationships from a set of heterogeneous
time series. Unlike other conventional approaches,
the SSA is data adaptive, non-parametric and does
not employ any specific generative models. In ad-
dition, although basic SST performs in an off-line
manner, it can be extended to work in an on-line
manner. From these arguments, we can say the SST
satisfies previously described essential points (i), (ii)
and (v). In other words, SST is possibly applicable
as a general method for detecting precursory events
if we solve remaining essential points (iii) and
(iv).

In this paper, we extend the basic framework of
SST. In origin, the SST aims at transforming the
time series into a new time series based on the
change-point score (CP-score). The CP-score rep-
resents a relative anomaly metric of time series.
But when we consider the nature of SSA, it is
reasonable to suppose that the shaped width of
the CP-score depend on the amplitude level of
raw data. Let us put it another way, the original
framework of SST does not satisfy the essential
point (iii). To overcome this point, we propose to
extend the conventional SST to the multivariable
SST that uses multiple sequences of univariate time
series. In the right panel of Fig. 2, we shows a set
of geomagnetic time series obtained at KAG and
CBI (Chichijima, Japan), which are comparatively
adjacent observatories (see TABLE 1). What has
to be noticed is that the correlation between the
two data set is apparently high. In particular, the
precursory event seems to start simultaneously at
the two stations. Assuming some sort of an energy
storage and release process underlies extraordinary
phenomena, we may say the synchronism detection
in multiple time series is an universal nature of
precursory events. It is our expectation that we
can solve the difficulties of precursor detections

TABLE I
LOCATIONS OF GEOMAGNETIC OBSERVATORIES USED IN THIS

PAPER.

Station Geographic Latitude Geographic Longitude

CBI 27.15 142.30

KAG 31.48 130.72

by focusing on the nature of precursory events,
which is the reason why we propose multivariable
SST.

Fig. 2. Northward component of geomagnetic data around an
auroral substorm onset observed at KAG and CBI station.

As an initial stage of this study, we propose
the framework of precursor detections in an off-
line matter. Ideally, precursory detection should be
done in an on-line matter to predict occurrences
of extraordinary phenomena. However, in most
cases, the nature of precursory events is not fully-
comprehended. Thus, as a first step, it is necessary
to collect precursory events in an off-line matter. As
shown in Fig. 3, precursory events can be defined as
the interval between the onset of precursory events
and that of extraordinary phenomena. That is, once
the two types of onsets are determined, precursory
events are identified automatically. Furthermore,
since a determination of the onset of extraordinary
phenomena is not so difficult, the determination of
the onset time of precursory events in an off-line
matter is an immediate concern. This is our goal at
present.

The outline of the rest of the paper is as follows.
In Section II, we provide a brief review of original
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Fig. 3. A conceptual diagram of precursory events in time
series. Precursory events can be defined as the interval between
two types of onsets.

SST. In Section III, the multivariable SST is in-
troduced. In Section IV-A, we perform some com-
parative experiments using artificial data and show
the superiority of multivariable SST in detecting
precursory events. In Section IV-B, we performed
further comparative experiments by using ground-
magnetometer data and show the superiority is
valid in real world precursor detections. Section V
is devoted for related work and Section VI con-
cludes.

II. SINGULAR SPECTRUM TRANSFORMATIONS

In this section, we review the basic algorithm of
the conventional SST proposed in Ide and Inoue
[1]. Basically, SST is a nonlinear transformation
from an original time series to a new time series
that represents a relative anomaly metric of the
original time series. The metric is defined as the
distance between two subspaces, which spanned
by left singular vectors obtained via the singular
value decomposition (SVD) on a Hankel matrix
generated from subsequences of the original time
series.

A. Pattern Extraction by SSA

In this subsection, we provide an explanation of
procedure for the pattern extraction by SSA. Ba-

sically, the SSA is an exploratory method intended
to perform decomposition of a time sequence into
a sum of interpretable components, such as trend,
periodicities and noise. These interpretable com-
ponents can be viewed as representative patterns.
The procedure for the pattern extraction is done
via the singular value decomposition (SVD) on
a Hankel matrix generated from an original time
sequence.

First of all, let us consider a transformation of a
sequence time series Y = {y1, y2, ..., yK , ..., yN}
into the multi-dimensional series X =
[X1, X2, . . . , XK ], where the Xi denotes
a subsequence that can be described as
Xi = (yi, . . . , yi+L−1)T (1 ≤ i ≤ K). Here,
subscript T denotes the transpose of a matrix.
Vectors Xi’s and the matrix X are called
L-lagged vectors and an L-trajectory matrix,
respectively. Note that an L-trajectory matrix X is
an L × K Hankel matrix described as

X =


y1 y2 · · · yK

y2 y3 · · · yK+1

...
. . .

...
...

yL yL+1 · · · yN

 . (1)

We call K and L a window length and an embed-
ding dimension, respectively.

The second step of the SSA is the SVD of the
Hankel matrix X. Let us denote (λ1, λ2, . . . , λL)
as squared singular values of XXT in decreasing
order of the magnitude (λ1 ≥ λ2 ≥ · · · ≥ λL),
where the subscript T denotes transpose of a matrix.
Now the SVD of the Hankel matrix X can be
described as X = λUVT , where λ denotes a
diagonal matrix whose diagonal element equal to
the squared singular values, U denotes a left sin-
gular matrix and V denotes a right singular matrix.
Then, the Hankel matrix X can be described as a
sum of rank-one bi-orthogonal elementary matrices
X = X1 + X2 + · · · + XL. The ith elementary
matrix Xi can be described by using the ith left
singular vector and the ith right singular vector
as Xi = λiUiV

T
i . Note that L corresponds to

the number of singular vectors. Now let us define
representative patterns using left singular vectors
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{Ul} (1 ≤ l ≤ L). As described above, the method
to extract dominant structures in time series via the
SVD on the Hankel matrices is referred to as the
singular spectrum analysis (SSA).

B. Change-Point Score

In this subsection, we introduce the original def-
inition of the Change-point score (CP-score) that
represents a relative anomaly metric of time series
at the present time t. The CP-score is calculated
by using left singular vectors obtained by the SVD
of the Hankel matrix X, which can be viewed as
representative patterns.

First, we define the reference interval and the test
interval as illustrated in the left panel of Fig. II-A.
Next, the reference subspace is defined to be a
subspace spanned by representative patterns ex-
tracted from the reference interval. If we denote
N = {1, ..., n}, the reference subspace is described
as Href = span{U ref

n } (n ∈ N). Similarly, if
we denote M = {1, ...,m}, the test subspace is
described as Htest = span{U test

m } (m ∈ M). In
the right panel of Fig. II-A, we show a diagram
of the reference subspace and the test subspace.
Then, the CP-score at time t is defined as Z ≡
1 − cosΘ(Href ,Htest), where Θ(Href , νtest) rep-
resents the angle between the reference subspace
and the test subspace. In this paper, the angle be-
tween two subspaces computed by using MATLAB
function subspace. Note that Z is non-dimensional
parameter and limited to the range from zero to one
by definition. The calculation of the CP-score can
be viewed also as a nonlinear transformation from
an original time-series T to a new time-series Tc,
i.e.

T → Tc(K,L, g,m, n). (2)

This is the basic algorithm of the singular spectrum
transformation (SST).

C. Choice of Parameters

As expressed in Eq. (2), the SST algorithm includes
five parameters. By nature of SST, these parameters

should be determined experimentally. To detect
precursory events, some careful tuning of these SST
parameters may be required. In particular, Moskvina
and Zhigljavsky [11] pointed out the choice of K
depends on the kind of structural changes that we
are looking for. Ide and Inoue [1] showed that the
stability of SST against the change of K in an
simple experiment by using artificial data, but it is
not clear whether the stability is valid even in real
world applications. So we will show SST results
as a function of K in the following applications.
Remaining parameters, L, g, m and n, are obliged
to determined empirically. In Fig. 5, we show an
example of SST results for the periodic signal. The
SST parameters were set to K = 40–78, L = K,
g = K/2, m = 1 and n = 3. The periodic signal
shown in upper panel of Fig. 5 was generated using
sine functions whose frequency changes at t = 1000
and t = 2000. We see that the CP-score increases
sharply at t = 1000 and t = 2000 over the wide
range of K. This result is consistent with that in
[1].
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Fig. 5. Upper panel: Original data generated using sine
functions whose frequency changes at t = 1000 and t = 2000.
Lower panel: The resulting conventional SST series with K =
40–78, L = K, g = K/2, m = 1 and n = 3.
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Fig. 4. (Left panel) A diagram of pattern extraction by conventional SST. From L subsequences at both side of present time t,
representative patterns are calculated. (Right panel) A diagram of the reference subspace and the test subspace. Change-point score
is defined by using the angle between these two subspaces.

III. MULTIVARIABLE SST

In this section, we extend the conventional SST to
the multivariable SST that uses multiple sequences
of univariate time series. As we stated in Section I,
precursory events are usually observed as minute
and less-visible fluctuations preceding an onset of
massive fluctuations of extraordinary phenomena
and therefore they are easily over-looked. Now,
recall our problem setting of real world precursor
detections discussed in Section I. First, the onset
of precursory events are synchronized in multiple
sequences of univariate time series, which is the
most essential assumption on our strategy. Sec-
ond, extraordinary phenomena are observed almost
simultaneously but not synchronized exactly in
multiple sequences. Third, real world time series
contains various measurement noise. Here, mea-
surement noise can be regarded as uncorrelated of
each other in multiple time sequences. It follows
from these arguments: In oder to detect precursory
events in real world time series, it is likely valid to
focus on changes that observed simultaneously in
multiple time sequences. This is why we propose
the multivariable SST.

Now let us redefine the CP-score shown in Sec-
tion II-B. First of all, consider J sets of sequences
as Yj = {yj,1, yj,2, . . . , yj,K , . . . , yj,N}. By embed-

ding these sequences, the Hankel matrix described
in Eq. (1) can be rewritten as

Xj =


yj,1 yj,2 · · · yj,K

yj,2 yj,3 · · · yj,K+1

...
. . .

...
...

yj,L yj,L+1 · · · yj,N

 . (3)

According to the procedure in Section ??, we
obtain representative patterns as left singular ma-
trices U(l,j)(1 ≤ l ≤ L) (j ∈ J) via the SVD
on Hankel matrix as X(l,j) = λ(l,j)U(l,j)VT

(l,j).
Then, the reference subspace is redefined as
Ĥref = span{U ref

(n,j)}(n ∈ N, j ∈ J). Simi-
larly, the test subspace is redefined as Ĥtest =
span{U ref

(m,j)}(m ∈ M, j ∈ J). Finally, the def-
inition of the CP-score is redefined as Z ≡ 1 −
cosΘ(Ĥref , Ĥtest), where Θ(Ĥref , Ĥtest) repre-
sents the angle between the redefined reference
subspace and the redefined test subspace. This pro-
cedure can be viewed as a nonlinear transformation
from original J sets of sequences of univariate time
series Tj (j ∈ J) to a new time-series Tc, i.e.

Tj (j ∈ J) → Tc(K,L, g,m, n). (4)

We call this transformation multivariable SST. Al-
though we use multivariable time sequences, note
that our purpose is somewhat different from that
in Ide and Inoue [12]. In particular, the purpose in
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Fig. 6. Left panel: Test data 1. The variance of noise components (c) and (d) are set to zero. Right panel: Test data 2. The variance
of noise components (c) and (d) are set to 0.1.

Ide and Inoue [1] is to make the multivariable time
series of heterogeneous types be comparable with
each other by applying the SST. However, we are
not concerned with such heterogeneous data set. We
limit the application of the SST to comparatively
homogeneous data set.

IV. EXPERIMENTS

A. Application to Artificial Data

1) Experiment Settings: In this subsection, we per-
form some experiments to compare performances
of conventional SST and multivariable SST in de-
termining the onset of precursory events by us-
ing artificial data. Fig. 6 shows two types of test
data, which we generated based on geomagnetic
variations shown in Fig. 2. These data was gen-
erated by combining following four components:
(a) trend, (b) extraordinary oscillations, (c) noise
1 and (d) noise 2. (a) was generated using two
linear functions. Its slope changes at t = 1000.
Recalling our problem setting about precursor de-
tections described in Section I and in Section III,
the change of slopes are regarded as the onset of
precursory events. This slope change are shown as
the vertical dashed line in red. Since one of our
interest is to validate how measurement noise affect

the precise in the precursor detection, the test data
shown in right panel of Fig. 6 contains two types
of noise components. Noise components in (c) are
low-pass transformed random noise whose elements
are normally distributed. Noise components in (d)
are high-frequency random noise whose elements
are normally distributed.

2) Application to Noiseless Data: First, we show
SST results applied for the noiseless data shown in
the left panel of Fig. 6. In Fig. 7(a), we represent
the resulting conventional SST series for the test
data 1 shown in the left panel of Fig. 6. Similarly,
in Fig. 7(b), we represent the resulting multivariable
SST series for the test data 1 shown in the left
panel of Fig. 6. Comparing these results, we can
see the noticeable difference between the resulting
conventional SST series and the resulting multivari-
able SST series. In the resulting multivariable SST
series, the CP-score increases sharply at t = 1000.
This result show that the onset of the precursory
event, which we defined above, was detected ex-
actly by multivariable SST. Contrastively, in the
resulting conventional SST series shown in 7(a),
we can see some noticeable peak of the CP-score
around t = 1400–1600. These peak most likely
corresponds to the extraordinary oscillations, which
is shown in the panel (b) of the Fig. 6. However,
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and n = 3. The vertical dashed line shown in red indicates the onset time of the precursory event.
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Fig. 8. (a) The resulting conventional SST series for the test data 1 shown in the right panel of Fig. 6. (b) The resulting multivariable
SST series for the test data 1 shown in the right panel of Fig. 6. SST parameters were set to K = 40–78, L = K, g = K/2,
m = 1 and n = 3. The vertical dashed line shown in red indicates the onset time of the precursory event.

we cannot find any clear peak around t = 1000.
This result show that conventional SST is suitable
for detecting extraordinary phenomena but weak in
detecting slope changes, or probably in detecting
gradual changes. These results strongly show the
superiority of multivariable SST in detecting pre-
cursory events.

3) Application to Noisy Data: Next, two exper-
iments were done in the noisy condition, which
is more realistic one. Fig. 8(a) shows resulting
conventional SST series for the test data 2 shown
in right panel of Fig. 6. Similarly, Fig. 8(b) shows
multivariable SST series for the test data 2 shown
in right panel of Fig. 6. The SST parameters were

set to K=40–78, L = K, g = K/2, m = 1 and
n = 3. In Fig 8(b), the first point to notice is that
the CP-score increases rapidly around t = 1000 in
the multivariable SST series, as similar to the result
in Fig. 7(b). Although some false peak of the CP-
score are seen around t = 400 and t = 700, such
instabilities are most likely within a the allowable
range.

Third, we performed the similar experiment with
a different parameter of m and n. Fig. 9(a) and
Fig. 9(b) shows resulting conventional SST series
and multivariable SST series, respectively. Here,
SST parameters were set to K=40–78, L = K,
g = K/2, m = 4 and n = 5. As shown in
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Fig. 9(b), the essential result in resulting multivari-
able SST series was same in Fig. 6. Thus we can
say that multivariable SST is not so sensitive for
the parameter change of m and n. In contrast, in
the resulting conventional SST series, the peaks of
the CP-score around t = 1400–1600 went down
drastically. This result imply that the conventional
SST is comparatively sensitive for the parameter
change of m and n.

B. Application to Ground-
Magnetometer Data

1) Data Set: Ground magnetometer data obtained
from the CPMN (Circum-pan Pacific Magnetometer
Network) stations in the 210◦ magnetic merid-
ian (MM) chain [12] have been applied for SST.
CPMN consists of about 50 stations. In this study,
the data set obtained at KAG and CBI stations
were selected for application of SST. The loca-
tions of these stations are listed in TABLE 1. The
observations were based on vector measurements
by fluxgate magnetometers with a sampling rate
of 1Hz. Fig. 10(c) shows northward component
of ground-magnetometer data around an auroral
breakup. Thick line represents KAG data and thin
line represents CBI data. Horizontal axis shows
universal time.

2) Reference Data: In order to validate the reli-
ability of the SST-based precursor detections, in-
formation about auroral activities are useful. In this
paper, we referenced the Polar Satellite Ultra Violet
Imager (Polar/UVI) to check the global auroral
activities. In Fig. 10(a), we represent Polar/UVI
images at N2 Lyman-Birge-Hopfield bands (1400-
1600Å) on 4 January 1997. We see that the in-
tensity of aurora started to enhance exponentially
between 14:45:08UT and 14:46:22UT. This sudden
brightening of aurora is called an auroral breakup
(or just breakup), e.g., [13], which is widely rec-
ognized as an extraordinary phenomenon caused
by the interaction between the solar wind and the
magnetosphere. While, we see the initial bright-
ening of aurora started between 15:42:04UT and
14:44:50UT.

Further, to provide more evidence about the pre-
cursory event, AKR (Auroral Kilometric Radia-
tion) spectrogram provided by Polar satellite Plasma
Wave Instrument (Polar/PWI) electric field observa-
tions was also checked. Such remote observation
of AKR has been used as a tool for detecting
the dynamics of the auroral acceleration region.
Morioka et al. [14] and [15] derived the features
of the sudden build-up process of field-aligned
acceleration at substorm onset from remote AKR
observations. In Fig. 10(b), we represent AKR
spectrogram around substorm onset. In Fig. 10(b),
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we can see the high-frequency AKR developed
gradually around 15:44UT and the low-frequency
AKR developed explosively around 14:46UT. Such
two stage evolution of AKR are recently reported in
Morioka et al.[15] [16]. They also reported that the
explosive enhancement of the low-frequency AKR
and the gradual appearance of the high-frequency
AKR is likely corresponds to the auroral breakup
and auroral initial brightening.

From these observations, we can infer that the auro-
ral breakup, the extraordinary phenomenon, likely
started within the interval between 15:45:08UT and
15:46:22UT. Similarly, we infer the auroral initial
brightening, the precursory event, started within
the interval between 15:42:04UT and 15:44:50UT.
These information enables us to evaluate the re-
liability of onset time determined by applying
SST.

3) Application of the Conventional SST: Now
let us apply conventional SST to the ground-
magnetometer data shown in Fig. ??(c). In a middle
and bottom panel in Fig. 11(a), we represent results
of the conventional SST for the geomagnetic data
shown in Fig. 10(c) calculated with K = 40–78(s),
L = K, g = K/2, m = 4 and n = 5. A onset
time can be defined as maximum time of the CP-
score. The red dot in a top panel in Fig. 11(a) shows
an average of maximum time of the CP-score,
which corresponds to the onset time determined by
conventional SST. The error bar shows its standard
deviation. We see the CP-score increases rapidly
around 15:49:52UT over the wide range of K.
As we mentioned in Section IV-B2, the auroral
breakup likely started around 15:46UT. Hence, the
sharp peak of the CP-score around 14:37UT likely
corresponds to the auroral breakup. While, as shown
in Section IV-B2, the formation of the filed-aligned
electric fields started around 15:44UT. But we can
not find any sharp peak of the CP-score around
15:44UT.

4) Application of the Multivariable SST: Next, let
us apply multivariable SST to two sets of ground-
magnetometer data shown in Fig. 10(c). A middle
and bottom panel of Fig. 11(b) shows the resulting

multivariable SST series calculated with K=40 –
78, L = K, g = K/2, m = 4 and n = 5.
The parameter settings were same in Fig 11(a).
The red dot in a top panel in Fig. 11(b) shows an
average of maximum time of the CP-score, which
corresponds to the onset time determined by multi-
variable SST. The error bar shows its standard devi-
ation. Interestingly, the CP-score increases rapidly
around 15:45:12UT around K=50–60. As we have
mentioned in Section IV-B2, the precursory event
likely started around 15:44UT, so it is reasonable
to suppose that the precursory event in geomag-
netic data is detected successfully by multivariable
SST. It follows from these experimental results that
the multivariable SST is more suitable than the
conventional SST to determine the onset time of
precursory events in time series, at least in this case
study. This will be examined further in the next
subsection.

5) Statistical Evaluation: Finally, we evaluate sta-
tistically the precise of precursor detections by con-
ventional and multivariable SST and illustrate the
superior performance of multivariable SST with a
comparative experiments. TABLE 2 shows an event
list of auroral substorms used in the experiment.
Seventeen isolated substorm events in 1997 were
picked up by checking UVI data obtained by Polar
satellite and ground-magnetometer data obtained
at KAG station. Fig IV-B5 illustrates the timing
relations between auroral brightening and precursor
onsets in ground-magnetometer data. Red dots show
the average of maximum time of the CP-score
calculated by multivariable SST, which is defined
as the onset time determined by multivariable SST.
Blue squares shows the average of maximum time
of the CP-score calculated by conventional SST,
which is defined as the onset time determined by
conventional SST. Error bars represent their stan-
dard deviations. SST parameters were set to K=40
– 78, L = K, g = K/2, m = 4 and n = 5, which is
same in subsection IV-B3. The vertical axis shows
the time difference from auroral initial brightening
determined by viewing Polar/UVI. Error bars shown
in black represent time gap between UVI images.
This clearly shows that onset time determined by
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Fig. 10. (a) Polar/UVI images at N2 Lyman-Birge-Hopfield bands (1400-1600Å) on 4 January 1997. (b) AKR spectrogram provided
by Polar/PWI electric fields observations on 4 January 1997, which shows a precursory event and an auroral breakup started around
15:44UT and around 15:46UT, respectively. (c) Northward component of ground magnetometer data obtained at KAG station (thick
line) and CBI station (thin line) on 4 January 1997.

multivariable SST is earlier than that determined
by conventional SST in all events. Furthermore,
in 14 events, the onset time determined by multi-
variable SST is closer to the onset of the auroral
initial brightening in comparison with the onset
time determined by conventional SST. From the
results, we can safely say that the superiority of
multivariable SST in determining the onset time
of precursory events is valid in most of isolated

substorm events.

V. RELATED WORK

The problem of precursor detections has been stud-
ied for a long time. Traditionally, Fourier analy-
sis [3] and Wavelet analysis [4] have been used for
detecting change-points in time series. But their ap-
proaches are most likely unsuitable for detecting a
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Fig. 11. (a) Resulting conventional SST series with K=40–78, L=K, g=K/2, m=4, n=5. (b) A diagram of the reference subspace
and the test subspace. Change-point score is defined by using the angle between these two subspaces.

TABLE II
AN SUBSTORM EVENT LIST USED IN THIS STUDY.

Event No. Date Universal Time
1 4 January 1997 15:37:21-15:55:21
2 7 January 1997 17:18:51-17:36:51
3 8 January 1997 14:03:51-14:21:51
4 8 January 1997 14:27:51-14:45:51
5 12 January 1997 15:34:51-15:52:51
6 13 January 1997 12:14:51-12:32:51
7 21 January 1997 14:17:21-14:35:21
8 22 January 1997 14:58:21-14:16:21
9 2 February 1997 12:46:21-13:04:21
10 15 February 1997 13:44:21-14:02:21
11 15 February 1997 15:37:21-15:55:21
12 1 March 1997 12:50:51-13:08:51
13 1 March 1997 13:22:51-13:40:51
14 4 March 1997 14:11:51-14:29:51
15 15 March 1997 16:09:21-16:27:21
16 23 March 1997 15:24:21-16:42:21
17 18 May 1997 16:25:21-16:43:21

gradual onset, which is probably an essential feature
in precursory events. Besides, some re- searchers
attempted to detect precursory events of earthquake
based on described precursory patterns [10] or
based on AR modeling [5]. Since it is highly
unlikely that some general rules underlie precursory
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Fig. 12.

events, the applicability of their approaches is lim-
ited to the phenomena whose structures are compar-
atively understood. More recently, the problem of
precursor detections are discussed in terms of sym-
bolic dynamics and it has been applied for detecting
earthquake precursors [6] and failure precursor in
electrical systems [7]. But these approaches, and
any other text mining based approaches, are most
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likely unsuitable for detecting minute and less-
visible fluctuations preceding an onset of massive
fluctuations from real world time series data. Batch-
style scenarios, such as KeyGraph [8] and based
clustering [9], have been proposed for finding risky
active faults. But since these approaches based on
huge amount of data set, their applications are only
limited in an off-line manner.

Recently, it has been studied well in terms of
data mining [17] [18] [19]. Traditionally, Fourier
analysis and Wavelet analysis have been used for
detecting change-points in time series. But their
approaches are most likely unsuitable for detecting
a gradual onset, which is probably an essential fea-
ture in precursory events. Besides, some researchers
attempted to detect precursory events of earthquake
based on described precursory patterns [10] or
based on AR modeling [5]. Since it is highly
unlikely that some general rules underlie precursory
events, the applicability of their approaches is lim-
ited to the phenomena whose structures are compar-
atively understood. More recently, the problem of
precursor detections are discussed in terms of sym-
bolic dynamics and it has been applied for detecting
earthquake precursors [6] and failure precursor in
electrical systems [7]. But these approaches, and
any other text mining based approaches, are most
likely unsuitable for detecting minute and less-
visible fluctuations preceding an onset of massive
fluctuations from real world time series data. Batch-
style scenarios, such as KeyGraph [8] and based
clustering [9], have been proposed for finding risky
active faults. But since these approaches based on
huge amount of data set, their applications are only
limited in an off-line manner.

Moskvina and Zhigljavsky [11] used the singular
spectrum analysis (SSA) technique for change de-
tection in time series, based on the SVD of the Han-
kel matrix. Originally, SSA aim at reconstructing
principal structures from time series and making
a decomposition of an original time series into
the sum of a small number of uncorrelated and
interpretable components. It has been applied to
forecast various phenomena, such as industrial pro-
duction [20], daily exchange rates [21] and hydro-

logical variations [22]. Ide and Inoue [1] developed
the SSA-based change-point detection method, as
referred to singular spectrum transformations (SST),
by adopting dimensionless definition of the CP-
score and showed their algorithm is applicable for
various types of time series generated in hetero-
geneous dynamic systems. In this paper, we have
extended it from conventional SST to multivariable
SST so that it is applicable for real world pre-
cursor detections. The originality of our strategy
is in focusing on synchronism detections of pre-
cursory events in multiple sequences of univariate
time series. We performed some experiments by
using artificial data and showed the superiority of
multivariable SST in detecting onset of precursory
events. Furthermore, the superiority is also shown
in real world precursor detections by using ground-
magnetometer data. In authors best knowledge, this
is the first work to show the validity of an SSA-
based change-point detection method to determine
the onset time of precursory events in time series
in an objective and a quantitative matter.

VI. CONCLUDING REMARKS

It is easy to imagine that the detection of precur-
sory events is important to predict occurrences of
extraordinary phenomena. In order to minimize the
losses caused by extraordinary phenomena, precur-
sory events should be detected in an on-line matter.
However, in most cases, the generation mechanism
or nature of the precursory events is not fully-
comprehended. Thus, the first step should be done
for hazard prediction is to collect precursory events
in an off-line matter. Precursory events can be
defined as the interval between the onset of precur-
sory events and that of extraordinary phenomena.
The determination of onset time of extraordinary
phenomena is not so difficult. Hence, in this paper,
we focused our attention on how to determine the
onset time of precursory events in an off-line matter.
Although the problem of precursor detections have
been studied for a long time, conventional methods
are no match for precursor detections. In this paper,
we have extended the conventional SST to the
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multivariable SST, focusing on synchronism detec-
tions of precursory events in multiple sequences
of univariate time series. We applied the multi-
variable SST for ground magnetometer data that
records the precursory event associated to the auro-
ral substorm. In a case study. the multivariable SST
showed the superior performance in determining
the onset time of precursory events in comparison
with conventional SST. Furthermore, we performed
further experiments for 17 auroral substorm events.
As a result, we confirmed that the superiority of
multivariable SST is valid in another 14 auroral
substorm events.
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