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Abstract—This paper is presented a method for improving

predictive coding. The method is the independent quantization

predictive coding as its two predictors are learning. Its coding process

is characterized in independently processing quantizations of an

original series signal and a prediction series signal to eliminate

quantization errors. It is performed to reduce prediction error as the

predictors using error-convergence neuron network are learning. The

method is the lossless data compression with the highest compression

ratio, if quantization step size for an original series signal is the same

as one when the signal was obtained. Then, computer simulations to

evaluate its compression ratio were executed for a normal sinus

rhythm electrocardiogram with using input-delay second-order

Volterra neuron networks for neuron networks in an

error-convergence neuron network predictor. As a result, the

compression ratio was 1.71. In addition, an obtained quantization error

series signal is more compressed with cabinet. Its compression ratio

was 2.02. This method can be expected to perform excellent predictive

coding for every signal with functional relationships between inputs

and a prediction.

Keywords—Accuracy, Electrocardiogram, Lossless data

compression, Neuron network, Predictive coding.

I. INTRODUCTION

HE error-convergence neuron network predictor (ECNNP)

designed by S. Kobayakawa [1] can be used for predictors

of predictive coding as an application [2]. The data

compression ratio of predictive coding elevates by its

prediction accuracy high, and the evaluation to its performance

becomes high. It is necessary to evaluate prediction accuracy of

the ECNNP, that is, its generalization capability, though its

complete learning without error is confirmed, when it is used as

this predictor.

There are on-line learning and off-line learning when the

learning method for the ECNNP is roughly classified. The

learning styles concerning a neuron network (NN) at each step

are simultaneous learning which is concerning every datum at

the same time, and sequential learning which is independently

finished up every NN at each step. These learning are executed

S. Kobayakawa is with KOBAYAKAWA Design Office, 102
Kimiegakkendairejidensu 3-13-1 Shioya, Wakamatsu-ku, Kitakyushu-shi,

Fukuoka 808-0131, Japan (corresponding author to provide phone:
+81-80-5204-2641; e-mail: s-kobayakawa@live.jp).

H. Yokoi is with Graduate School of Life Science and Systems Engineering,

Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi,
Fukuoka 808-0196, Japan (phone: +81-93-695-6045; fax: +81-93-695-6045;

e-mail: yokoi@life.kyutech.ac.jp).

from an NN at low step in order of an NN at high step using a

teacher signal to an NN at the down step signal, which is an

error signal which is simply obtained from an output signal and

a teacher signal of an NN at the up step. Even an NN which

expresses one system, characteristics of its output signal is

different to each input signals of learned and unlearned, if its

generalization capability is not enough. Therefore, a highly

accurate and error-free output signal at all is obtained for

learned input signals. However, it is difficult for unlearned

input signals. This cause is thought that an output signal of an

NN at the down step prove convergence for an output error

signal of an NN at the up step oppositely. Because an output

signal of the NN at the down step has only characteristics to

compensate an output signal of the NN at the up step for learned

input signals though characteristics of an output signal of the

NN at the up step is different to learned input signals and

unlearned input signals.

The prediction of a predictor used for typical predictive

coding influences the quantization errors always [3]. Therefore,

high accurate reconstruction series signal cannot be obtained

from the quantization error series signal. Then, highly accuracy

predictive coding has been designed to eliminate the problem

by S. Kobayakawa. This is called independent quantization

predictive coding (IQPC) [1]. The coding process is

characterized in independently processing quantizations of an

original series signal and a prediction series signal. Therefore,

the quantization error series signal is unaffected by the

prediction. That is, quantization errors by IQPC are only one by

the original series signal.

Most signals of recent are quantized, when they are obtained.

Therefore, a quantizer for original series signal with IQPC is

often unnecessary. An original series signal without errors with

IQPC can be completely reconstructed if quantization step size

for the original series signal then is the same as one for IQPC.

That is, this is a lossless data compression. In a past research by

A. Fukunaga et al. [4], the method in which this is limited to the

lossless compression of the image data is. In addition, F. Alexa

et al. [5] and R. Logeswaran [6] applied NNs and Generalised

Regression NNs to predictors of lossless predictive coding,

respectively. Moreover, the improvement of the compression

ratio can be expected with using ECNNPs for predictors of

IQPC.

Then, purposes of this study are a confirmation of

compensating effect of an output signal of the NN at the down

step in an ECNNP when it is used with generalization,

evaluation for generalization capability of the ECNNP, and
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Fig. 1 Second-order Volterra neuron or input-delay second-order Volterra neuron

improvement of predictive coding with an ECNNP. As a result,

the compensating effect can be confirmed. Moreover, three

original techniques concerning the independent quantization

learning predictive coding (IQLPC), which predictive coding is

performed as the ECNNP is learning for an unlearned input

signal, the means to reduce values of an error series signal, and

the double compression using IQLPC and cabinet (CAB) are

described. And, the computer simulations to evaluate its

compression ratio were executed for a normal sinus rhythm

electrocardiogram (ECG) with using input-delay second-order

Volterra NNs (ID2VNNs) which input-delay NN [7] and

second-order Volterra NN are combined proposed by J.

Miyoshi et al. [8], [9] for NNs in the ECNNP.

II.CONSTRUCTION OF PREDICTOR

A.Second-Order Volterra �euron

Fig. 1 shows a second-order Volterra neuron (2VN) designed

by H. Yokoi [10]–[12]. Its I/O characteristics are shown in (1)

to (3).
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where u is the input weighted sum, xi is the ith input signal, wi is

the ith connection weight, s is the input sum, D is a delay

element, Q is the filter order, σ 1 is the prediction coefficient of

the first-order term corresponding to the signal obtained from

between from the first delay element input to the Qth delay

element output, σ 2 is the prediction coefficient of the

second-order term corresponding to the product of

combinations of all two signals included in combinations of the

same signal obtained from between from the first delay element

input to the Qth delay element output, h is the threshold, z is the

output signal, f is the output function, A is the output coefficient,

τ is discrete-time which is an integer value. w i , h, σ 1 , a nd

σ 2 are changed by training.

B. Input-Delay Second-Order Volterra �euron

Fig. 1 shows an input-delay second-order Volterra neuron

(ID2VN) also. Its I/O characteristics are shown in (4) to (6).
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where wpi is the connection weight corresponding to signal

obtained from between from the first delay element input to the
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Fig. 2 Input-delay second-order Volterra neuron network

Qi
th delay element output concerning the ith input signal, Qi is

the number of delay elements concerning the ith input signal.

w p i , h, σ 1 , a nd σ 2 are changed by training.

C.Input-Delay Second-Order Volterra �euron �etwork

An ID2VNN is constructed of ID2VNs in middle layer and

a2VN in output layer. This is used for three-layer networks of

one or two input one output in an ECNNP. The ID2VNN is

shown in Fig. 2.

D.Error-Convergence �euron �etwork Predictor

A nonlinear predictor used for predictive coding and its

principle must be improved to obtain high accuracy, though it is

more appropriate than a linear predictor [13] when a nonlinear

signal is predicted. Here is a method to improve the learning

capability of an NN at each step in an error-convergence neuron

network (ECNN) [14], [15] for a nonlinear predictor used for

predictive coding. This is an ECNNP. The learning for a

nonlinear predictor using NNs is easier by strengthening of

functional relationships between signals from past to present

and a prediction signal. Therefore, the learning for an NN at the

first step in the ECNN is comparatively easy. However, the

learning for an NN at the high step is difficult, because it is

guessed that the functional relationships weaken by rising of

the number of steps. Then, the NN at each step in the ECNN is

used as a predictor to strengthen functional relationships

between its input signals and one teacher signal.

Moreover, the learning capability of the NN can be elevated

by increasing the number of input signals which have

functional relationships to a teacher signal [16]. Fig. 3 is

redesigning of an ECNN to realize it. The I/O characteristics of

ECNNP are shown in (7) to (17). Initial conditions for NNs

from the second step are shown in (14). I/O relations of NNs in

the ECNNP are shown in (16). An output signal of the ECNNP

is shown in (17). A teacher signal to the ECNNP is shown in

(18).
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where Z is whole number, a suffix of the NN is the step number,

x is the input signal vector, Aini is the amplification factor

vector of input signals at the ith step, ai is the amplification

factor of an input signal at the ith step, xAi is the input signal after

amplification at the ith step, suffixes of ai and xAi are input signal

numbers, xi is the input signal vector after amplification at the

ith step, xij is the input error signal at the ith step to input signal xj
to the ECNNP, Aeini is an amplification factor of the input error

signal at the ith step, zi is the output signal to NNi after

restoration, zAi is the output signal of NNi, fi is the nin variables

function when i is 1 or the nin + 1 variables function when i is 2

or more to show I/O relation of NNi, xj is the prediction to xj, y

is the teacher signal to the ECNNP, yiA is the teacher signal to

NNi after amplification, Ai is the amplification factor of the

teacher signal to NNi.

II.INDEPENDENT QUANTIZATION LEARNING PREDICTIVE

CODING

Model parameters of predictors used for typical predictive

coding were decided by learning etc., and fixed beforehand

according to signal characteristics to a predictive object.

Therefore, there are problems which the amplitude of error

series signal of the predictive coding is large, when its

generalization capability is poor and a predictive object is a

time-variant system [17]. A. Romero et al. [18] introduced

adaptive predictors to improve this problem. Moreover, there is

a problem which quantization errors of the predictor is included,

because an error series signal which is obtained from an

original series signal and a prediction series signal, is quantized

with a quantizer. This problem is eliminated with IQPC.

Process of IQPC is shown in Fig. 4. Here, a method to improve

the first problem is proposed. It is IQLPC which the prediction

with predictors of IQPC is executed as the predictors are

learning. This is shown in Fig. 5. Principle of IQLPC is as

follows.

Two same predictors for a coding process and a decoding

process of IQLPC are learnable. They are preprocessed by

∧
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Fig. 3 Error-convergence neuron network predictor

( )
x

τ

( )1

qx
τ −

( )
qx
τ

( )
pqx
τ

( )
qe
τ

( )
px
τ

( )
pqx
τ

( )
qx
τ

( )1

qx
τ −

( )
px
τ

( )
qe
τ

Fig. 4 Independent quantization predictive coding



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 5, 2010

98

( )
x

τ

( )1

qx
τ −

( )
qx
τ

( )
pqx
τ

( )
qe
τ

( )
px
τ

( )
pqx
τ

( )
qx
τ

( )1

qx
τ −

( )
px
τ

( )
qe
τ

ε

ε

Fig. 5 Independent quantization learning predictive coding

training signal characteristics to a predictive object. Values of

model parameters of the predictors are set as initial values

before IQLPC is performed. ECNNPs are used for the

predictors in this study.

Coding process:

1) A predictor of this process is trained by a quantization series

signal xq at τ as a teacher signal, after xq at τ-1 was input to it.

Values of model parameters of the predictor are tuned by an

error signal ε which is a difference between xq at τ and

prediction series signal xp at τ. This training is iterated to

conditions to stop it. The conditions are also used for

conditions to stop training for a predictor of the decoding

process.

2) A prediction series signal xp at τ is output from the predictor

after the training stopped.

3) A quantized prediction series signal xpq at τ is obtained by

rounding the xp.

4) A quantization error series signal eq at τ is obtained by

subtracting the xpq at τ from the xq at τ.

5) The eq at τ is coded with coder, and it is sent to a decoder of

the decoding process.

Decoding process:

1) The coded series signal which is sent from the coding

process is decoded with a decoder of this process. This

decoded series signal is the eq at τ.

2) The xq at τ is reconstructed by adding the xpq at τ to the eq at τ.

3) The xpq at τ is obtained by rounding the xp
4) The xp is output from a predictor of this process after training

for it stopped.

5) The predictor is trained by the xq at τ as a teacher signal after

xq at τ-1 was input to it. This training is iterated to conditions

to stop it. The conditions are the same as one for a predictor

of the coding process.

III. COMPUTER SIMULATIONS

A. Method

Evaluation method for generalization capability of an

ECNNP and IQLPC is explained. Learning computer

simulation for ECG signal prediction is executed using a

normal sinus rhythm ECG and the ECNNP constructed of other

ID2VNNs of several steps which doubles number of delay

elements and filter length based on specification of ID2VNNs

of two steps used for improvement of learning capability in last

study [6]. 4,000 data from start of a normal sinus rhythm ECG

signal of MIT-BIH No.16786 of Fig. 6 are used for training to

confirm its generalization capability. This ECG signal is

obtained at a sampling frequency of 128 Hz, with quantization

bit rate of 12 bit, a significant figure of four-digits, and

quantization step size of 0.005 mV.

Initially, an ID2VNN at the first step (ID2VNN1) is trained

using combinations of an input signal x(τ-1) and a teacher signal

y1
(τ) = x(τ) in the time series pattern of one dimension in space

direction, to search its better condition. Here, an ID2VNN of

the minimum root mean square error (RMSE) is chosen from

among the condition of obtaining the minimum average RMSE,

and it is set as ID2VNN1. In addition, output signal of this

ID2VNN1 is restored to the teacher signal level, and a signal

obtained from difference between the teacher signal and the

output signal, and its signal is used for a part of training signals

for an ID2VNN at the second step (ID2VNN2).

Next, an ID2VNN2 is trained using combinations of input

signals x21
(τ-1) and x(τ-1) in the time series pattern of two

dimensions in space direction and a teacher signal y2
(τ) = x21

(τ) in

the time series pattern of one dimension in space direction, to

search its better condition. A signal to which gain tuning to

adjust the maximum absolute value of error signal to 1 is

performed, are used for xA2
(τ-1) and yA2

(τ). Here, computer

simulations for the training are executed as Aein2 = A2 and a21 =

1 / 3.275. Here, an ID2VNN of the minimum RMSE is chosen

from among the condition of obtaining the minimum average

RMSE, and it is set as ID2VNN2. In addition, output signals of

the ID2VNN1 and this ID2VNN2 are restored to a teacher signal

level to the ECNNP, and an error signal obtained from their

signals and the teacher signal to the ECNNP is used for a part of

training signals for an ID2VNN at the third step (ID2VNN3).

ID2VNNs from the third step are decided one by one as well

as means of deciding ID2VNN2. The decision for NNs is

finished, when prediction error obtained from output signal of

the ECNNP obtained from sum of output signals from
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ID2VNN1 to ID2VNN at the final step which are restored to the

teacher signal level to the ECNNP and the teacher signal to the

ECNNP, frees completely. Their training are executed with

presenting a pair of input signal and a teacher signal once, after

the initial data of 2,080 unit time are input. This process is

defined as one training cycle, and this is iterated. Three times of

training to search better parameters of ID2VNNs are executed

by computer simulations, and averages of RMSEs obtained

from results by them are compared. Conditions for learning

computer simulation are shown in Table I. Initial values of the

prediction coefficients are decided by exponential smoothing,

and the other initial values are decided by pseudo-random

numbers at the training process a time. The generalization

capability is evaluated by inputting 1.875 seconds and 240 data

of unlearning signal in Fig. 8 consecutive in Fig. 6 after ECG

signal data in Fig. 6 are initially input to ECNNP obtained from

the above-mentioned search.

Next, evaluation method for IQLPC is explained. There are

training cycle, output error, etc., and combinations of them in

conditions to stop training for ECNNPs. The training cycle is

TABLE I

CONDITIONS FOR LEARNING COMPUTER SIMULATIONS

Items Steps The 1st From

the 2nd

Learning rule

Learning rule

for Volterra

Neuron Network

Initial

values

Connection weights −0.1 – 0.1

Thresholds −0.1 – 0.1

Prediction coefficients
σ1 0.7 × 0.3p

σ2 0.7 × 0.3p× 0.7 × 0.3q

Number of elements in middle layer 4 10

Filter length 137 127

Number of taps 283

Learning

reinforcements

Gradient-based

method

Range 10−6 – 1

Interval 10 times

Momentum 0

Output coefficient 1

Number of training cycles 1,000

Processing times 3

used for the condition in this study. An ECNNP using

ID2VNNs of two steps is trained using combinations of an

input signal x(τ-1) and a teacher signal y(τ) = x(τ) in the time series

pattern of one dimension in space direction. An ECG signal

used for computer simulations is shown in Fig. 7 and 8. This

also is a normal sinus rhythm ECG signal of MIT-BIH

No.16786. This quantization step size is the same as one of

IQLPC. Values of model parameters of an ID2VNN1 and an

ID2VNN2 have been obtained beforehand using ECG in Fig. 7

as a training signal by last study [6]. Specifications of these

ID2VNNs are shown in Table II. Signal data of the ECG from

top to 300 are used for initial input to the ID2VNNs. And, the

ID2VNNs are trained using the ECG signal from 0 to 15

seconds.

Initially, Training cycles for the ID2VNN2 are from zero to

five every datum concerning ID2VNN1 of the training cycles

which is obtained the minimum absolute values of the

maximum prediction error amplitude. A learning reinforcement

coefficient of the ID2VNN2 is the same as one when it is

decided. These trainings are executed one time under each

condition.

Here, the means to reduce values of an error series signal is

proposed. It is to apply which an absolute value of difference of

two values with the same sign is smaller than one of two values

with different sign. This means is applied to the ECNNP.

Concretely, signs of a teacher signal and an output of NN at

each step in the ECNNP are made the same. Prediction error of

the ECNNP is reduced with this means. This is shown in (19)

and (20).

TABLE II

SPECIFICATION OF INPUT-DELAY SECOND-ORDER VOLTERRA NEURON

NETWORKS IN THE ERROR-CONVERGENCE NEURON NETWORK PREDICTOR

Items Steps The 1st The 2nd

Number of elements in middle layer 4 10

Filter length 69 64

Number of taps 142 142

V
o
lt

ag
e 

[m
V

]

Fig. 6 Electrocardiogram signal for the training to confirm the generalization capability
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Fig. 7 Electrocardiogram signal for the training to evaluate independent quantization learning predictive coding

Fig. 8 Electrocardiogram signal to decide conditions to stop training for input-delay second-order Volterra neuron networks in the

error-convergence neuron network predictor

( )( ) ( )( )
( ) ( ) ( )

1

sgn sgni i i i

i i i

y b z b

y y z

τ τ

τ τ τ
+

 + = +

 = −

( )1 i n≤ ≤ (19)

( )( ) ( )( )
( ) ( ) ( )

1

sgn sgn

2

i i i i

i i i i

y b z b

y y z b

τ τ

τ τ τ
+

 + ≠ +

 = + +

( )1 i n≤ ≤ (20)

where bi is a bias of the teacher signal and an output signal of

NN at the ith step in the ECNNP. This means is applied to only

ID2VNN2, and the bias is zero in computer simulations.

At last, a bias is added to the quantization error series signal

obtained under the best condition to eliminate minus sign of its

quantization level, and it is more compressed by CAB which is

a compressed archive format. Here, only size of the processed

quantization error series signal is evaluated. Data sizes of their

programs and parameters of ID2VNNs are negligible, if data

size of a quantization original series signal is very large,

because its percentage of total data size is small. Compression

ratio is used for the evaluation for compression. The

compression ratio is shown in (21).

Compression ratio

Data size of a quantization original series signal  
       = 

Data size of a coded series signal

(21)

B. Results

Initially, results for generalization capability of the ECNNP

are shown. Output error of the ECNNP free when an ID2VNN

at the fourth step was decided when NNs of the ECNNP was

decided from the first step one by one with training ID2VNN,

and complete learning was achieved. Error signals for

ID2VNNs at steps from the second to the fourth in the ECNNP

are shown in Fig. 9. From these figures, amplitudes of the error

signals becoming small can be confirmed as the number of NN

steps increases, and output error of the ECNNP converging is

shown. Averages of RMSEs to learning reinforcements of

ID2VNNs at steps from the first to the fourth are shown in
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TABLE III

AVERAGES OF ABSOLUTE VALUES OF PREDICTION ERROR TO INPUT-DELAY

SECOND-ORDER VOLTERRA NEURON NETWORK AT EACH STEP IN

ERROR-CONVERGENCE NEURON NETWORK PREDICTOR BY INPUTTING

UNLEARNING SIGNAL DATA

Number of Stetps

Items of data
1 2 3 4

Averages of Absolute Values of

Prediction Error [mV]
0.2915 0.2880 0.2871 0.2870

Percentage [%] 100 98.79 98.49 98.46

V
o
lt

ag
e 

[m
V

]

(a) The second step
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(b) The fourth step

Fig. 9 Training error signal for input-delay second-order Volterra

neuron networks from the second step to the fourth step

TABLE IV

RESULTS OF COMPRESSIONS

Compression

method

Items of data
None IQLPC

Average bit rate 12.0 7.00

Bytes of series signal data 11,520 6,720

Compression ratio 1.00 1.71

Compression

method

Items of data

CAB IQLPC + CAB

Average bit rate 6.95 5.95

Bytes of series signal data 6,676 5,712

Compression ratio 1.73 2.02

Fig. 10 Averages of root mean square errors input-delay second-order

Volterra neuron networks from the first step to the fourth step to

learning reinforcements
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Number of training cycles

10
-10

10-8

10-6

10-4

10-2

1
The 1

st
step

The 2nd step

The 3rd step

The 4
th

step

Fig. 11 Averages of average evaluation values a unit time to the

number of training cycles of input-delay second-order Volterra

neuron networks achieved the minimum average value of root mean

square errors from the first step to the fourth step
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Fig. 12 An output signal of the error-convergence neuron network

predictor after the training
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Fig. 14 Prediction error series signals by independent quantization

learning predictive coding

Fig. 10. Also from this figure, the minimum average of RMSEs

at each step decreasing in exponential by about 1/10 a step can

be confirmed as the number of NN steps increases, and the

output error of the ECNNP converging is shown. Averages of

average evaluation value a unit time datum to the number of

training cycles of ID2VNN that achieved the minimum average

of RMSEs concerning ID2VNNs at steps from the first to the

fourth, are shown in Fig. 11. From this figure, an error of

ID2VNN at up step when their training were finished, is

succeeded as an error when ID2VNN at down step beginning to

train, and their training progressing well can be confirmed as

the number of NN steps increases. An output signal of ECNNP

after the training is shown in Fig. 12. This is completely

corresponding to the teacher signal. From the above-mentioned

result, a complete learning being able to be obtained by

increasing the number of NN steps even the training for the

ECNNP of only 1,000 cycles, is shown.

Next, results of generalization output of ECNNP obtained by

inputting unlearning data to the ECNNP after the training are

shown in Table III. From this table, an average of absolute

values of prediction errors after 1.875 second decreases as the

number of NN steps increases, that is, improvement of its

generalization capability can be confirmed. Therefore, the

effectiveness of the compensating effect of the error with NNs
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Fig. 13 Absolute values of the maximum prediction error amplitude to

conditions of the number of training cycles for input-delay

second-order Volterra neuron networks in the error-convergence

neuron network predictor

at down step in the ECNNP when its generalization was used

can be confirmed. Next, results for IQLPC are shown. Fig. 13

shows absolute values of the maximum prediction error

amplitude to conditions of the number of training cycles for the

ID2VNN1 and the ID2VNN2. The following can be confirmed

from this figure. The absolute value of the maximum prediction

error amplitude of the ID2VNN1 is the smallest when the

number of training cycles is zero. Moreover, when this

ID2VNN1 is used, the absolute value of the maximum

prediction error amplitude of the ID2VNN2 is the smallest

when the number of training cycles is two.

Fig. 14 shows a result of giving the means to reduce values of

an error series signal to the ID2VNN2 obtained from the best

combinations of these the number of training cycles. The

following can be confirmed from this figure. The absolute

value of the maximum prediction error amplitude of the

ID2VNN2, that is, the absolute value of the maximum

prediction error amplitude of the ECNNP is 3.29 × 10-1 mV. It

is reduced by 13.2% than before applying the means. The

prediction error is large at the beginning. It increases again in

the middle of the prediction, though it gradually becomes small

with the time passage.

The comparative results of the compression ratio by each

compression method are shown in Table IV. The following can

be confirmed from this table. IQLPC and CAB have an almost

equal compression capability. The method of giving double

compression by IQLPC and CAB is the highest compression

ratio. It shows that the original data size can be compressed less

than 50 %. Moreover, the compression ratio of this method is

improved more than only CAB by 16.8 %.

II.DISCUSSION

Initially, the generalization capability of the ECNNP is

discussed. Complete learning of the ECNNP being able to be

achieved is proved by increasing the number of NN steps, even

if the number of training cycles is a few. This can be caught in

case of the results which effects of increasing its output

accuracy and training speed can be expected enough by

increasing the number of NN steps also concerning ECNNP as

described in last paper [11]. Increasing learning accuracy to

teacher signal of NN interferes to its generalization capability
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in a typical theory concerning the generalization capability.

However it not necessarily happening is shown in this result.

This cause is that the effectiveness of the compensating effect

of error with NNs at down step exists when also generalizing,

as well as when learning. The compensating effect of error

when also generalizing can be obtained, when an average

function concerning relations of input signals and teacher

signals which are obtained by training and functions

concerning relations of input signals and output signals, are

similar. That is, the effectiveness having been obtained is

considered from results of simulations to confirm the

generalization capability, because the above-mentioned

condition to obtain the compensating effect of error is include

in the unlearning signal of 1.875 seconds just behind the

learning signal, for this normal sinus rhythm ECG. In addition,

the improvement of the generalization capability can be

expected by devising the ECNNP, the NN, and the input output

signal, etc.

Next, IQLPC is discussed. Lossless compression to the

original series signal obtained with the same quantization step

size as the quantization of IQLPC of a compression ratio that

was higher than one of CAB, could be achieved with changing

predictive coding to IQLPC, using an ECNNP for its predictor,

introducing the means of reducing values of an error series

signal, and double compression using CAB. However, examine

it more is the stop conditions of training for the ECNNP. The

number of training cycles, prediction error, those combinations,

and the condition corresponding to the error signal for training,

etc. are thought as a stop condition of training. In this study,

being able to improve the generalization capability of the

ECNNP is considered with examining a condition that the data

compression ratio becomes the largest in the various stop

conditions of training, because it is a confirmation of only the

number of training cycles. Moreover, using the combination of

IQLPC and other methods of data compression, etc. are

considered as a method to more improve the data compression

ratio. For example, they are designs of the original compression

method matched to prediction error signal feature and the

means that changes its compression order. These should also

confirm the effectiveness of data compression.

Finally, the application of means to reduce values of an error

series signal is discussed. There is a possibility of improving

training speed by applying the means to an output of NNs in

training. Moreover, if a sign output NN is prepared, and the

sign of a teacher signal to an output NN is trained to it, there is a

possibility that the accuracy of the generalization output of an

output NN can be improved by giving the sign of an output

signal of the output NN with the sign output NN.

III. CONCLUSION

Results of confirmation concerning the compensating effect

of error with NNs at down step in an ECNNP by using

unlearning normal sinus rhythm ECG signal composed of 240

data of 1.875 seconds, its effectiveness could be confirm as

well as when concerning the learning capability, because

absolute averages of its prediction error decreased with

increasing the number of NN steps, and improvement of the

generalization capability was shown, for generalization

capability of the ECNNP constructed of ID2VNNs of four steps

after the complete learning concerning normal sinus rhythm

ECG signal prediction by 1,000 cycles of training. This result

can be considered that increasing learning accuracy to teacher

signal of NN interfering to its generalization capability in a

typical theory concerning the generalization capability not

necessarily happening is shown.

Next, Results of examining typical predictive coding as a

method with which prediction accuracy can be improved, even

if generalization capability of an ECNNP is poor, 1) IQLPC to

reduce prediction error as training a predictor, 2) means of

matching the sign of an output signal of an NN to the sign of

teacher signal to it and reducing error, and 3) double

compression by IQLPC and CAB, were designed. A Result of

compressing 7,680 data of an unlearning normal sinus rhythm

ECG signal of 60 s, using the ECNNP constructed of ID2VNNs

of two steps for the predictor of IQLPC, as their computer

simulations, IQLPC was shown to obtain the same degree of

compression ratio as CAB. In addition, compression ratio 2.02

was obtained with double compression using IQLPC and CAB.

This double compression improved more than only CAB by

16.8 %.

Future works are the improvement of the generalization

capability of the ECNNP, the examinations of the training stop

condition of the ECNNP which compression ratio can be the

largest and the method to improve compression ratio, and the

verification of applications of the means to reduce error.
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