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Edge DetectiorAlgorithm Inspired by Pattern
Formation Processes of Reaction-Diffusion Systems
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Abstract—This paper presents a quick review of reaction- self-organize spatio-temporal patterns also in other natural
diffusion systems and the application of a discretized version of a systems [3].
reaction-diffusion system to edge detection in image processing. ~ A set of reaction-diffusion equations describes pattern for-
A reaction-diffusion system refers to a system consisting of . ) . - .
diffusion processes coupled with reaction processes. Severalmatlon proces_ses_observeq in a rgactlon_-dlffl_Jsmn sys_tem.
reaction-diffusion systems exhibit pattern formation processes, 1he reaction-diffusion equations consist of diffusion equations
in which the systems self-organize spatio-temporal patterns of coupled with reaction terms describing a non-linear oscillator.
target and spiral waves propagating in two-dimensional space. In For example, Keener and Tyson proposed a pair of reaction-
addition, some of the systems having strong inhibitory diffusion it ;sjon equations for modeling a pattern formation process
self-organize stationary patterns; the Turing pattern is one s . ; X
of the typical examples of the stationary patterns observed qbserved in the two-dlmen_3|onal Belousov-Z_habotlnsky reac-
in reaction-diffusion systems under strong inhibitory diffusion. tion system [4]. The equations have two variables named ac-
We have previously found that the discretized version with tivator and inhibitor, which respectively activates and inhibits
strong inhibition has a mechanism detecting edges from an the chemical reaction. Since the activator usually diffuses more
image intensity distribution. The mechanism divides an image rapidly than or equally to the inhibitor in the reaction system,

intensity distribution into brighter or darker intensity areas the diffusi f th tivator dri i f
with a threshold level, and organizes pulses along edges of the''€ dITTUSION Process ot the activator drives propagation o

divided areas. By searching an output distribution of the version target and spiral waves.
for pulses, we can achieve edge detection. However, since the The strong inhibition prevents the propagation of waves and

threshold level is usually fixed at a constant value in the version, induces stationary patterns of periodic waves. In the Belousov-
the mechanism is not applicable to gray level images. Thus, 7paphntinsky reaction system an activator substance usually

this paper furthermore proposes an edge detection algorithm . . L
consisting of two pairs of the version with a variable threshold diffuses more rapidly than an inhibitor one. Castets et al. [5]

level. We apply the edge detection algorithm and a representative @nd Kepper et al. [6] found that a chemical reaction system
algorithm proposed by Canny to several artificial and real images exhibits rapid inhibitory diffusion in comparison to activator’'s

in order to confirm their performance. diffusion and successfully realized stationary periodic waves in
Index Terms—Reaction-diffusion, pattern formation, pattern  real laboratory experiments. We also found stationary patterns
recognition, strong inhibition, edge detection, non-linear reaction, by adding the strong inhibitory diffusion to the Oregonator

Turing pattern, FitzHugh-Nagumo model of the chemical reaction system in numerical experi-
ments [7].
|. INTRODUCTION Turing had predicted the existence of stationary periodic

waves induced by strong inhibitory diffusion in reaction-
diffusion systems in his theoretical paper [8]. A diffusion

¢ | patt h as t t and spiral rocess generally brings a uniform distribution of a substance.
emporal patierns such as target and spira’ waves propagayiig, e er, Turing presented a scenario in which strong in-

in space. The Belousov-Zhabotinsky reaction system [1], [ﬁ bitory diffusion causes instability on a uniform distribution

known as a Chem'c’?" rez_actlo_n system is a r_epresentz_itglﬁd stable stationary patterns appear. The Turing pattern refers
example of t.h N reqctlon-dlﬁu§|on systgms. Particular POINS stable stationary waves induced by the Turing scenario.
on the two-dimensional chemical reaction system behave @ o ang Meinhard accepted the Turing scenario and pro-
non-linear oscillators of a chemical reaction. Simultaneously, ... 4 more realistic reaction-diffusion equations with strong
;:heml_c?l sub_sthaﬁcgs gene_rated _by t?f r(}:htehmlcdallcfreagtmn (fiibitory diffusion, in order to understand biological pattern
use Into neighboring regions, in whic € dnuse Su.bf'olrmation processes [9]. The equations successfully realized

stances again trigger non-linear oscillators of the cheml% eneration of a head of Hydra and grafting a head section to
reaction. Thus, the chemical reaction system self—organizaﬁ,g

) L ) o "another terminal section of its body in numerical experiments.
chemmal_wave; propagating in space. The react|qn-d|ffus| re recent evidence found in biological systems supports
systems mclugjmg the B eIQUSOV_ZhabOthky reactloq SYstqfL Turing scenario [10]; biologists have accepted the realistic
are well studied as diffusion processes coupled with no

i " Reaction-diffusi . del ist action-diffusion equations as a mathematical model of pat-
Inéar reactions. Reaction-aiffusion systems widely exist angyn formation processes observed in biological systems [11].

This research work was supported in part by a Grant-in-Aid for Scientifi-ghe key pomt of the scgnano is the strong |nh|'b.|tory diffusion.
Research (C) (No. 20500206) from the Japan Society for the Promotion of If turning our attention to pattern recognition processes

REACTION—DIFFUSION systems exhibit pattern for-
mation processes, in which they self-organize spati

Science. ) _ . in biological visual systems, we can find several interesting
A. Nomura, K. Okada and H. Miike are with the Yamaguchi University, : .

Japan. phenomena and their mathematical models. Lateral eyes of
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effect, which is also found in the human visual system [12)isual systems.
Previous physiological experiments show that the Mach bandsThe present paper proposes a reaction-diffusion algorithm
effect is caused by the long-range inhibition in a lateralith strong inhibition for edge detection. In contrast to the
inhibition mechanism working on outputs of ommatidia, whicprevious edge enhancement phenomenon reported by Kuh-
are individual visual receptor units [13]. A mathematicahert et al. [16], the proposed algorithm detects edges by
model taking account of the lateral inhibition mechanism conerganizing not moving, but stationary pulses. Our previous
pletely simulated the Mach bands effect in the lateral eyes afjorithm utilizing a discretized version of the FitzHugh-
Limulus [14]. These previous physiological and psychologicblagumo reaction-diffusion equations detects edges with a
studies have suggested that the long range inhibition is tlreed threshold level dividing an image intensity distribution
key point in understanding pattern recognition processes. Tihe brighter or darker intensity areas [21]. Thus, the previous
long range inhibition is also understood as the strong inhibitoaygorithm is designed not for gray level images, but for binary
diffusion in reaction-diffusion systems. images. Although our latest reaction-diffusion algorithm of
While many researchers were interested in reactioadge detection is designed for gray level images with a variable
diffusion systems, Kuhnert et al. presented an interestitfyyeshold level [23], there still exists a problem of how to
idea performing image processing with a reaction-diffusiogliminate false pulses, which are by-products in introducing
system [15], [16]. They utilized a light-sensitive Belousovthe variable threshold level. In order to solve the problems
Zhabotinsky reaction-diffusion system, in which we can corin the previous reaction-diffusion algorithms, we propose an
trol its chemical state and modulate its two-dimensional distedge detection algorithm applicable to gray level images with
bution by illumination light. By projecting an image intensitythe variable threshold level. By utilizing two pairs of the
distribution onto the surface of the two-dimensional chemkitzHugh-Nagumo reaction-diffusion equations, we design the
cal reaction system, they demonstrated image pooling, eddgorithm to eliminate the false pulses. This is the main
enhancement and segmentation on the projected distributidifference between the proposed algorithm and the latest
However, the demonstration including edge enhancement doeg [23].
not appear stationarily, but appear transiently. More recently, The organization of this paper is as follows. Section Il
Sakurai et al. proposed a method of controlling chemical wapeesents a quick review of reaction-diffusion systems and their
propagation by utilizing illumination light and succeeded imeaction-diffusion equations, of which a discretized version
designing a path of the wave propagation [17]. These previossif-organizes stationary pulses at edge positions. Section Il
experimental studies have completely linked reaction-diffusigmresents a reaction-diffusion algorithm proposed here for edge
systems with image processing and computer vision researgétection from gray level images. Section IV presents several
Adamatzky et al. named a class of nature-inspired cormxperimental results for artificial and real images. In particular,
puter algorithms utilizing reaction-diffusion systems 'reactiorthe section presents quantitative evaluations on the proposed
diffusion algorithm’ and presented a novel architecture @lgorithm in comparison to a previous algorithm proposed by
reaction-diffusion computers [18]. Canny [26]. Finally, Section V conclude this paper with a
From an engineering point of view, the Chua’s circuit isummary of the proposed algorithm and future work required
an interesting topic for reaction-diffusion systems [19]. Affor the reaction-diffusion algorithm of edge detection.
individual Chua’s circuit behaves as a non-linear oscillator and
a resistively coupled Chua’s circuit system realizes a reaction- Il. REACTION-DIFFUSION SYSTEMS
diffusion system. A two-dimensional version of the Chua’i
circuit also self-organizes spatio-temporal patterns of target ~ . )
and spiral waves as well as the Turing pattern [20]. Reaction-~ diffusion equation describes how much substance or
diffusion systems are realizable on circuit systems consistii§at spatially spreads, as time proceeds. Let,¢) be a
of the Chua’s circuits and have several application areas siiptribution of substance or heat; the distributions defined

Diffusion equation and its application to image processing

as finger-print recognition. in spacexz € R™ and at timet. Then, a diffusion equation
We have proposed several reaction-diffusion algorithms fgfithout a source term becomes
image processing and computer vision research. A discretized dyu = DV, 1)

version of the FitzHugh-Nagumo reaction-diffusion equations

detects edges and segments from an image intensity distritluwhich D is a diffusion coefficientp, = 9/0t and V* is
tion provided as an initial condition of the equations [21], [22fhe Laplacian operator. An initial condition far is u(z,t =
[23]. Kurata et al. analyzed a network of discretely couplédl0) = Uo(z). Hereafter, we defin®(Up; D, t) as a solution
oscillators, each of which is described with the FitzHugtef a diffusion equation having a diffusion coefficieft, an
Nagumo ordinary differential equations, and presented a cdhitial condition Uy and computed until time. That is

dition required for stable results of edge detection and segmen- . .

tation [24]. Nomura et al. proposed an algorithm of detecting D(Uo; D, 1) = u(=,1) 2)

a stereo disparity map from a pair of stereo images; tlbtained with Eq. (1) and the initial conditiofiy. In other
stereo algorithm utilizes multiple reaction-diffusion systemwords, D(Uy; D, t) is a filter for a spatial distributiof/y(x)
exclusively linked [25]. We have imposed strong inhibition oand its output is the distribution(x, t). Indeed, a solution of
these reaction-diffusion algorithms, as inspired by biologicéte diffusion Eq. (1) is a convolution of its initial condition
pattern formation processes and as suggested by biologidgl and a Gaussian function, of which the spatial spread
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diffusion systems. Figure (a) shows two spiral cores and propagating waves
in the Belousov-Zhabotinsky reaction system [4]. Figure (b) shows signal
propagation waves overlaid with a cell density distribution organized in a
0.0 Dictyostelium discoideum [32].
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Fig. 1.  Difference of two solutions obtained by a diffusion equation D(Uy; D1,t) — D(Uy; Do, t), 0 < Dy < Ds. 4)
du/0t = V3u at two different time instances. Figure (a) shows the two

solutionsu(z, t = 1.0) andu(z,t = 10.0); a step-wise distributio/o(z) ~ Figure 1(b) shows the difference of two solutions
was provided for the initial condition(z, ¢ = 0.0) of the diffusion equation. . _ . . . ; ;
Figure (b) shows the difference of the two solutiar(x, ¢t = 1.0) —u(z,t = .D(_UO’ D, 1.0) D(Uo; D, 10.0); a ZEero-crossing po'f‘?
10.0); a zero-crossing point in the difference is located at the edge positibh indeed located at the edge position in the initial condition
of the initial conditionUy(z). The diffusion equation was discretized andl/;. Since an edge is defined as an inflection point, the
solved with a finite differencéh in spacez. Laplacian operator in the diffusion equation detects edges
contained in an initial condition as zero-crossing points.

A Gaussian filter or a diffusion equation unfortunately re-
moves precise structures in an image intensity distribution. In
order to preserve edges of meaningful precise structures such
as sharp corners, Perona and Malik [30] and Black et al. [31]

éigirlfibjtii).r?)(]a(rﬁ)p(ljo;D = 10, = 10.0) for a step-wise proposed edge detection algorithms utilizing anisotropic dif-
0=/ fusion equations.

Many image processing algorithms utilize a Gaussian filter
for reducing random noise contained in image intensity dis- ) - _
tributions. For example, Marr and Hildreth proposed an ed§e Reaction-diffusion equations
detection algorithm with a Laplacian of Gaussian filter; the A reaction-diffusion system is generally described with a set
algorithm reduces random noise with the Gaussian filter aofitime-evolving partial differential equations. Each equation
then detects edges by searching an output of the Laplaciarcofsists of a diffusion equation coupled with a reaction term.
Gaussian filter for zero-crossing points [27]. The differenddost typical form of a reaction-diffusion system is described
of excitatory and inhibitory Gaussian filters approximates theith a pair of reaction-diffusion equations having an activator
Laplacian of Gaussian filter, when the inhibitory Gaussiavariable« and an inhibitor variable), as follows:
filter spreads more than the excitatory one. Thus, they imposed )
the long-range inhibition on the edge detection algorithm. Opu = DuN7u+ f(u,v), ®)
A diffusion equation brings an alternative edge detection O = DyV?0 + g(u,v), (6)

algorithm for the difference of two Gaussian filters proposqﬂ which f(u, v) andg(u, v) are reaction terms; the variables
by Marr and Hildreth [27]. As mentioned above, a GaussiaN 4nq , are defined in’space and at timet: D. and D

filter for an image intensity distribution is equivalent 10 8o iffsion coefficients. Initial conditions far and v are
solution of a diffusion equation [28], for which the imageu(m t = 0.0) = Up(z) andu(z, t = 0.0) = Vy(x)

intensity distribution is provided as its initial condition. Thus, The Beiousov-Zhabotinsky7reacti6n exhibits non-linear re-
the difference of the two Gaussian filters is equivalent to trbection on chemical substances; the Oregonator model de-
difference of two solutions obtained at two different time.;hoq the non-linear reaction. Since the chemical substances

mstances with a smgle dn‘fuspn equa.t|on.[29], or t_o thﬁwduce chemical reaction and simultaneously diffuse, the
difference of two solutions obtained at a time instance with twQ, . i1 (eaction system on two-dimensional space self-

diffusion equa_\ti_ons having two diffe_ren_t diffusion Coeﬁ_iCient%rganizes spatio-temporal patterns of such as propagating
OT strong inhibition and_ we_ak excitation [21]. That IS, th‘?arget and spiral waves. Keener and Tyson proposed a model
difference of two Gaussian filters becomes an alternative folfp .- tion_diffusion equations with the Oregonator model [4].
such as Figure 2(a) shows a spatial pattern numerically simulated
with the reaction-diffusion equations proposed by Keener and
D(Up; D, t1) — D(Up; D, ta), 0 < t1 < ta, (3) Tyson.
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Fig. 3. Phase plot of the FitzHugh-Nagumo ordinary differential equationig. 4. One-dimensional result for a discretized version of the FitzHugh-
du/dt = f(u,v) = [u(u—a)(1—u)—v]|/e and dv/d = g(u,v) = u—bv. Nagumoreaction-diffusion equations. A finite difference in spacés 5h.

The intersection of du/dt= 0 depicted by a solid line and dv/d& 0  An initial condition for u(z,t = 0.0) = Up(z) is a step-wise distribution;
depicted by a dotted line is a stable steady state for the equations. An excieadnitial condition forv(z, ¢ = 0.0) is 0.0 in the whole space. A pulse was
state refers to an area having a large valuewpiind a resting state refers organized in the center of the space, as shown(in, t = 10.0).

to the intersection and its neighboring area. Under a positive small constant

0 < ¢ < 1, depending on du/déand dv/d¢ a solution (u,v) traces the

trajectories denoted by arrows as time proceeds. The signs of danit

dvédé a/rgtasofdki\évsi du/?lt ?/?td <gv/d§ d>0/ c'iftl thg _af?ha I, dU/ﬁlt <0d stable steady state. An excited state refers to an area having
an v >0 In the area Il, du an v <0 In the area lll, an . : P H
du/dt >0 and du/dt <0 in the area IV. a Igrge v_aIue ofu; a resting s.tate. refers to the origin and its
neighboring area, as shown in Fig. 3.
In the reaction terms of Egs. (7) and (8), the parameter
. ) ) . o _a works as a threshold level for an initial condition. Let us
There is another interesting reaction-diffusion system in @ nsider an initial condition of the solutigi, v) = (a+6,0).
biological system, the Dictyostelium discoideum, which is g 5 <  the solution(u, v) enters an excited state; df< 0
kind of amoeba. A signal propagation process observed jiNmmediately enters a resting state. Thus, the system of the
the system is also described with a set of react|on—d|ffu3|Q;pdinary differential equations du/d¢ f(u,v) and dv/dt=
equations. However, an interesting point in the system is that, ) has the function of dividing its initial condition into
a cell density distribution dynamically modulates a reactiofy different states: the excited state and the resting state.
term in the equations. The system also self-organizes spatigyis prings the primitive idea of detecting edges with the fixed
temporal patterns, such as, target and spiral waves; at the sgm€shold levek for an image intensity distribution.
time, their propagation speed, shape and oscillation period

change dynamically. The dynamical changes are explaingd A discretized version of a reaction-diffusion system and its
with the reaction term depending on the cell density distriyymerical computation

bution [32]. That is, the reaction term(- --) depends not For a stable stationary solution of edges, the reaction-

only on the two variables; and v, but also on a variable diffusion system must be sparsely discretized under the strong

of cell density, of which a distribution dynamically changels hibition D,, < D, [22], [24]. Although the earliest work

during cell movement. Figure 2(b) shows a numerical res%one by Kuhnert et al. shows impressive results of edge

of a cell density distribution and a signal distribution in two- . . . . .
. : detection and segmentation with a real chemical reaction sys-
dimensional space.

The system of the FitzHugh-Nagumo reaction-diffusiotem [16], it does not provide stable results, which are necessary

equations is one of the most popular reaction-diffusion s Po_ra realistic algorithm of image processing. In comparison to
N hop ﬁﬁat, Ebihara et al. [22] and Kurata et al. [24] have found that

tems. The F|t_zHugh-Nagumo re_ac'F|on-d|ffu3|on equations SIMe discretized version of the reaction-diffusion system under
ulate an active pulse transmission process along a nepye

axon [33], [34]. The equations have reaction terif(s,v) deetesétrigzga:]ndhf:l?rz]egtrg;i%sn stable stationary results of edge
andg(u,v), as follows: 9 )

The strong inhibitionD,, < D, required for our previous
flu,v) = [u(u—a)(l —u) —v]/e, (7) reaction-diffusion algorithm of edge detection is somewhat
g(u,v) = u — bu, ) similar to the Turing scenario [8], [9], to the long-range inhibi-
tion causing the Mach bands effect [14] and to the long-range
in which a and b are constants and is a positive small inhibition of the difference of two Gaussian filters [27]. Thus,
constant(0 < ¢ < 1). these similarities furthermore inspire us to develop reaction-
In order to understand the reaction ternféu,v) and diffusion algorithms. It would be interesting, if reaction-
g(u,v) of Egs. (7) and (8), we show examples of solutiodiffusion systems modeling pattern formation processes, in
trajectories computed for the ordinary differential equatiormarticular, biological pattern formation processes in the Turing
du/dt = f(u,v) and dv/dt= g(u,v) in Fig. 3. Since the scenario are also helpful in modeling visual functions required
intersection of du/dit= 0 and dv/dt= 0 is a stable steady in pattern recognition processes. In addition, the discreteness
state, a solutiorfu, v) finally converges to the state from anyis also interesting from a biological point of view.
initial point. Even if the solution once has a large value of Figure 4 shows an example of an edge detection result in
u, it traces a global trajectory and finally converges to thene-dimensional space € R'. A discretized version of the
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FitzHugh-Nagumo reaction-difsion equations self-organizessolving a set of linear equations described by Eq. (11) with

a pulse at an edge position in a step-wise distribution providéd. (12). Thus, by iteratively computim‘zf’;rl from uf] we

as an initial conditionUy(x). An initial condition for 1, is can obtain a time-evolving solutiofu, v). The Gauss-Seidel

Vo = 0.0 in its whole space. The pulse appears after finischeme [35], for example, provides a solution for a set of

duration of time. By searching a distribution offor a pulse, linear equations.

we can find an edge position for the distribution of the initial Chen and Wang also proposed a segmentation algorithm

condition Uj. utilizing the locally excitatory globally inhibitory oscilla-
The following describes discretization of a reactiontor network named LEGION, which spatially couples the

diffusion equation and a numerical computation scheme FitzHugh-Nagumo ordinary differential equations controlled

two-dimensional space = (z,y) € R? Space variables by a global inhibitor [36].

(z,y) and a time variable are discretized with finite dif-

ferencesdh in space andi in time, as follows:
P IIl. REACTION-DIFFUSIONALGORITHM FOR EDGE

i =[z/0h],7 = |y/0h] andk = [t/dt], DETECTION

in which i, and k are the index number of discretely As described in the above section II-C, a single pair of the
expressed space and time, grddenotes the floor function. discretized version of the FitzHugh-Nagumo reaction-diffusion
Then, for example, the relation between the varialfle, y,t) Egs. (5)~8) has a function of detecting edges for a binary

and its discrete expressimfj becomes image. The version firstly divides an initial conditiéf into
X o a brighter or darker level with a threshold level Then, the
u; j = u(idh, joh, kdt). (9  version self-organizes a pulse at the boundary between the

The next equationdu, A,,u andA,,u respectively describe tWO levels. Thus, when utilizing the single pair with the fixed
the discretized versions @fu/dt, 92u/822 and§2u/dy?, as parameter, we cannot expect edge detection for a gray level

follows: image. Figures 5(a) and 5(b) show a situation in which the
ka1 & discretized version organized one pulse at one of the two edge
Ay = M’ positions for a step-wise distribution having three different
kﬁt ft1 fi1 levels. In the situation,_ we fi_xed the threshold leueht a =
Au = TuiJrl,j - 27%,;‘ T Uy 0.05 between the two intensity levels: the darkest ¢big =
o Sh2 0.00) and the middle oné¢U, = 0.10).
ufyy ;= 2uf +ul We confirm how a single pair of a discretized version of
+ (1=7) Sh2 ’ the FitzHugh-Nagumo reaction-diffusion equations having the
uhtl gy ktl 4 Rt parameter. = a(x) [23] works for an initial conditiorl, of a
Ayyu = r R 5;7; b= step-wise distribution. In contrast to the fixed parametexe
uk - uk 1k consider a spatial distribution(xz). When a(x) = Uy(x),
+ (1= )t 5};’; Lizl (10) the system does not organize any pulseuifx,t). When
. ] o ) we provide a distribution diffused fromy(x) to a(x), we
in which r is fixed at r = 05 (the Crank-Nicolson spiain pulses. The diffused distribution intersects its original

scheme [35]). With Egs. (9) and (10), the reaction-diffusiogisiripution U, at its inflection point, as shown in Fig. 1(a).
equation of Eg. (5) becomes a discretized version of a linégjce the parameter works as a threshold level for an initial

equation: condition, the difference between the diffused distribution
—Cru;“_ﬂl _ Cruffﬁj +(1+ 4CT)uf_j1 a(x) = D(UO;D_,_T) an_d the original ond/, causes a pulse
B S P SR (11) at the e(_jge pOS|_t|0n. FlgL_Jres 5_(c) and 5(d) shol\ly two examples
rlit1,j "L+ ) of the situation in one-dimensional spacec R"; a weakly

in which C,. = rD,,6t/6h?; bﬁj is diffused distribution or a strongly diffused one was provided

X . . . for a(xz). The single pair organizes pulses not only at the
bij = Crui;_y + Crui_y j + (1 —4C)ug true edge positions, but also false pulses in neighboring area
+Cluf+17j +Cluﬁj+1 +6tf(u§j,vfj), (12) of the true pulses. Spacing between the true pulse and its

paired false pulse depends on how much the distribution
a(x) is diffused fromUy(x), that is, on the parametet®

) . ! : and T in D(Uy; D,T). This is clearly recognizable by the
0,1,---,[—1landj=0,1,--,J—1,inwhichIxJ (pixels) comparison of the two examples shown in Figs. 5(c) and
denolt(.as an image size of th? space. If the Neumann boun. ,éf). This is because the system organizes pulses at both
condition governs the four sides of the rectangular space, t4Sds of an area satisfying the conditiél(z) > a(z); the

expressed for the variable as stronger the diffusion becomes, the larger the area becomes.

in which C; = (1 — r)D,6t/5h?. In image processing, we
usually consider a discrete rectangular space denoted=by

Uf._1 = Ufm Uf,J_1 = uf,J,i =0,1,---,1—1, We need to eliminate the false pulses standing at the false edge
k ok ko ositions from the distribution(x, t) of the reaction-diffusion
u71,j :uo,jvul—l,j :uLjv] :0,17"'»J_ 1. (13) Equations. ( )
For given initial conditiongu;5°, v}5°) = (U, ,;, Vo, ;) and  Here, we propose a reaction-diffusion algorithm detecting

the boundary conditions of Eq. (13), we compmiégl by edges from a gray level image. The algorithm consists of
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I5h Fig. 6.  Temporal developments of activator variables during an edge
100 200 300 400 500 detection proces for a step-wise distribution. Figures (a), (b), (c) and

(d) show one-dimensional distributions afy and »; at time instances:

Fig. 5. One-dimensional results obtained by a single pair of a discretizeg= 0-1,0.2,0.3,10.0 as well as their initial conditionsio(z,t = 0.0) =
version of the FitzHugh-Nagumo reaction-diffusion equations, for which %1(z;t = 0.0) = Uo(x). Parameter settings utilized here weft, =

step-wise distribution having three different levels was provided as its initi&l0s Dy = 5;071’ = 1~_075_: 1.0 x 1073,6h = 0.5,6t = 1.0 x 10~ *.

condition u(z,t = 0.0) = Up(z). An initial condition for v(z,t = 0.0) One-dimensional distributions afy and a1 were ap = D(Up; 10.0,1.0)

was zero. Figure (a) shows the step-wise distribuian(z) indicated by a@ndai =D(Uo;50.0,1.0).

a solid line and its diffused distributions @ (Uy; 50.0,1.0) indicated by a

dotted broken line an@®(Up; 10.0, 1.0) indicated by a dotted line. Figure (b)

shows a result obtained by the discretized version with the fixed valie

0.05. Figure (c) shows a result obtained by the discretized version with the

variable a(z) = D(Uy;10.0,1.0). Figure (d) shows a result obtained by

tf;e(t?)isiﬂ)étizeg ée)rsion \/I\{ghl.theyg_fiahm(v) = D(Uo;)50-0a1-021- In sal_ch In the proposed algorithm, the teru;©(—0iu;) in

o} , (c) an , a solid line indicates(z,t = 10.0) and a dotted line i : : .

indicatesv(z, ¢t = 10.0). Parameter settings utilized here wére- 1.0, = _Eq‘ (14) ellmln_ate_-s fa_llse pU|SeS organlzed{m After prepar

1.0 x 1073, Dy = 1.0, Dy, = 5.0,6h = 0.5, = 1.0 x 104 ing the two distributionsag and a; according to Eq. (17),
att = 0.0 the algorithm initiates computation of discretized

versions of Eqgs. (14)(6) for an initial condition(Uy, V}).

two pairs of a discretized version of the FitzHugh-Nagum@igure 6 shows an example of how the proposed algorithm
reaction-diffusion equations having variabtegz, t), v (x,t) WOrks for a step-wise distribution having three different levels
and a source term, as follows: ‘ ) in a one-dimensional space. Firstly, the two sets of the solu-

tions (ug, v9) and(us, v1) move towards an excited state of the
dyuo = Dy V?uo + f(uo, vo,ao) + 01 ©(—dyur), (14)  FitzHugh-Nagumo equations in the areampf< U, ¢ = 0, 1.
Syuy = DyV3u; + flur,v1,a1), (15) Next, the two solutions except the true edge positions and false
Bve = DyV2v, + glue, ve), (16) ?dge |Iaositri]onsI rebtulrn t_o a restikr:g S'Fatle:_fro?rg 'ihe ex<_:ite|d sfate
see also the global trajectory show in Fig. 3). In particular, let
ac = D(Uo; Do, T); Day < Day 17 us focus on the solutiofwy,v;) in the area between the true
in which the function©(s) gives 1, ifs > 0, and otherwise edge position and the false edge position. When the solution
0; ¢ = 0,1 is an index number of the two pairs. Although(uy,v1) returns to the resting state, its temporal chafige
f(,-,-) andg(-,-,-) are the same as Egs. (7) and (8)(x) becomes negative in the area. Since the false pulsg iis
is variable in space:. The diffusion coefficientd,, and D, located between the true edge position and the false edge
must satisfy the conditio®,, < D,,, which is the same as thatposition inu; [see also Figs. 5(c) and 5(d)], the false pulse
imposed on the previous reaction-diffusion algorithms [21ih o is affected by the negative external stimuldg:; in
[22], [23], [24]. The algorithm takes a gray level image as afq. (14). As the result, the false pulse is eliminatedijnthe
initial condition U, provided for bothu, and u; an initial true pulses inug and u; and the false pulse im; survive,
condition V; for both vy andv; is zero. Equation (17) statesas shown in Fig. 6(d). Thus, after the discretized version
that the spatial distributions., c = 0, 1 take diffusedl,, and converges, the algorithm detects edges by searchinépr
a1 must be diffused more thady. pulses. Finally, an edge map1(t) at timet is obtained, as
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TABLE |
follows: Quantitative evaluations of edge detection algorithms. The error measure
M(t) = {z|u(x,t) > 0}, (18)  E: (%) denotes a percentage of undetected edges over the number of the
true edgeg M| [see Eq. (19)]. The error measuf®, (%) denotes a
in which 6 is a threshold level for judgment of an excited statgercentage of incorrectly detected edges over the number of detected edges
e fi [M,| [see Eqg. (20)]. Evaluated algorithms are the reaction-diffusion
or not, and is flxed_ at 0'5', . Igorithm previously proposed with a fixed parametgRDA-fixed), that
We conclude this section by summarizing the prOpose‘;aoposed in the present paper with a variab{e:) (RDA-variable), and an
reaction-diffusion algorithm for edge detection. The algorithmedge detection algorithm proposed by Canny [26] (Canny). The result for
; ; . the algorithm RDA-fixed was obtained for an artificial binary image
consists of the fO||0W|ng steps: . o . [Fig. 7(a)], the results for the algorithm RDA-variable and Canny were
Step 1: LetB(x) be a gray level image, which is normalizedobtained for an artificial gray level image [Fig. 7(b)]. Refer to Fig. 7(c) for

as0 < B(zx) < 1/4. the ground-truth data of edges.
Step 2: Prepare initial conditions x) = B(zx) and
P vo(a:r;:o @) @) Algorithm Mo | [Me] | B (%) | [Mo] | Eo (%)
Step 3: Prepare distributions ofig(xz) and a;(x) with RDAfixed | Fig. 7(d) 30.62 ) 13825 10.39
Eq. (17). RDA-variable | Fig. 7(e) | 20,732 | 23.07 | 16,877 | 11.44
Canny Fig. 7(f) 8.20 | 21,069 | 8.08

Step 4: lteratively compute the discretized version of
Egs. (14)~(16) under the strong inhibitidn, < D,,.
R_efer_to Sect|o_n 1I-C for discretization of the react|onés shown in the cells B3, C2 and D1. In our supplementary

St 5.d(|:ffu5|ont equatlo;s. ) with Eq. (18). aft experiments, whichis not shown in the present paper, the

ep .englngpf:J gu;rt]ioi gl?timzm( ) wi a- (18), after algorithm successfully detected edges in the cells A3, B4, C1
’ and D2 from its black-and-white inverted binary image. This
is also additional evidence with which we can explain the
reason why the tiny black regions are undetected and the tiny
This section presents experimental results of edge detectighite regions are detected. In order to improve the previous
with the proposed reaction-diffusion algorithm and a repreigorithm for tiny black regions, we need to utilize both an
sentative algorithm proposed by Canny [26] for comparisogriginal binary image and its black-and-white inverted binary

Performance of the algorithms for artificial images is evaluatqqq},age_

with the ground-truth data of edges. Then, there is demon-Next, let us focus on edge detection results obtained with

stration on how the algorithms work for real images. Upoghe proposed reaction-diffusion algorithm and the Canny al-

these results, we discuss the characteristics of the propogegithm [26]. Figures 7(e) and 7(f) show the results. In the
algorithm, in comparison to the Canny algorithm. Finally, therge|is A3, B4, C1 and D2, the proposed algorithm also failed
is confirmation on the convergence of the proposed algorithgh detect edges in relatively dark tiny regions, such as small

for the artificial and real images. letters; this is the similar situation to the results of Fig. 7(d).

Figure 7 shows results of edge detection for artificigyhen comparing the result of the proposed algorithm with that
images. In order to confirm the basic performance of thg the Canny algorithm, we can state that the Canny algorithm
previous reaction-diffusion algorithm having a fixed parametggovided almost correct results of edge detection. However,

a, we applied the algorithm to a binary image of Fig. 7(a). Igyhen focusing on several details in the edge detection results,

addition, we applied the proposed reaction-diffusion algorithije can find some artifacts in the result of the Canny algorithm,

and the Canny algorithm to a gray level image of Fig. 7(bjy particular, at cross sections and at corners. For example,

Figure 7(c) shows the ground-truth data of edges containedsi& shown in the cells of D3, on the one hand, the proposed

the binary and gray level images. algorithm detected correctly at corners of the triangle; on the

Let us focus on the edge detection result obtained with tiéher hand, the Canny algorithm detected slightly rounded
previous reaction-diffusion algorithm having a fixed parametggges at the corners.

valuea [see Fig. 7(d)]. Although the algorithm detected edges |n order to confirm overall performance of the edge detec-

almost correctly for the binary image shown in Fig. 7(a), fion algorithms, we evaluated the results shown in Figs. 7(d),

failed to detect edgeS of tlny letters contained in the Cerﬁe) and 7(f) by Comparing each of obtained edge maps with

A3, B4, C1 and D2 in Fig. 7(d). In particular, the algorithmthe ground-truth data of Fig. 7(c). The next error measiites

completely failed to detect edges of letters contained in th@d £, evaluate quantitative performance of an edge detection
cell B4. In the fails of the cells A3, B4, C1 and D2, we caygorithm, as follows:

find a common situation; white background regions surround

IV. EXPERIMENTAL RESULTS ANDDISCUSSION

tiny black regions of letters. We can also find the situation E, = L\/\/lt NM,| x 100 (%), (19)
partly in the cell D4; white regions surround corners of small M;“'
black squares regularly placed and the algorithm failed to Ey = ——|M,NM;| x100 (%), (20)
detect edges at the corners. The white regions cause reaction- (Mo,

diffusion waves, which slightly propagate into the tiny blackn which M, is the ground-truth data of an edge map and
regions and diffuse. Thus, the tiny black regions are removed, is an obtained edge mapM;| is the number of the true

out and no waves indicating edges survived. In comparisedges inM; and |M,| is the number of detected edges in
to the situation, the algorithm successfully detected edges.ef,. Thus, Eq. (19) denotes the percentage of the number of
tiny white regions surrounded by black regions, for examplandetected edges over the number of the true edges; Eq. (20)
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Fig. 7. Edge detection results for artificial images. Figures (a)(Bpghow a binary image and a gray level image with a siz&06fx 500 (pixels). Figure (c)

shows the ground-truth data of edges contained in (a) and (b); black dots and lines indicate the edges. Figure (d) shows an edge detection result obtainec
for the binary image (a) with the previous edge detection algorithm, which utilizes a single pair of a discretized version of the FitzHugh-Nagumo reaction-
diffusion equations [21], [22], [24]. The parameter settings wBrg = 1.0, D, = 5.0,a = 0.05,b = 1.0, = 1.0 x 1073,5h = 0.5,5t = 1.0 x 10~*.

Figure (e) shows an edge detection result obtained for the gray level image (b) with the proposed reaction-diffusion algorithm. The parameter settings were
Dy =1.0,Dy =5.0,b=1.0,e = 1.0 x 1073, Dg, = 10.0, Do, = 50.0,7 = 1.0,6h = 0.5,5t = 1.0 x 10~*. Figure (f) shows an edge detection result

obtained for the gray level image (b) with the Canny algorithm [26]. The parameter settingsrwei@80, the lower threshold level=0.05 and the higher
threshold level=0.15. The images and the results have 16 cells, each of which is hamed with a row number: 1, 2, 3, 4 and a column letter: A, B, C, D. For
example, the left top cell is named Al. Refer to Table | for quantitative evaluations of the results (d), (e) and (f).

denotes the percentage of the number of incorrectly detecthd two algorithms, we can recognize a significant difference.
edges over the number of detected edges. In both measureBhe Canny algorithm detected continuous edges, which are
smaller valueE, or E, with a larger numbefM,| or |M,| due to the final step merging small edges or disjointed edges
indicates better performance. Table | shows the results of thethe algorithm. In comparison, the edge maps obtained with
guantitative evaluation. The Canny algorithm almost correcttile proposed algorithm contain small uncertain edges like
detected edges contained in the ground-truth data of the edagedomly distributed noise. In the reaction-diffusion algorithm,
map (£ = 8.20%); edges detected by the algorithm are almoste also need to employ such an algorithm merging neighbor-
correct (F, = 8.08%). In comparison, however edges deing disjointed edges, if we impose a continuity condition on
tected by the reaction-diffusion algorithms are almost correg¢tected edges.
(E, = 10.39% on RDA-fixed andE, = 11.44% on RDA-  Let us focus on the image of Fig. 8(d), which has highly
variable), there were many undetected edges ££30.62% defocused objects in the background and their shadow on the
on RDA-fixed andE; = 23.07% on RDA-variable). We wall, in addition to the focused object of a videocamera. It is
believe that the problem of many undetected edges shouldtagieved that the human visual system integrates monocular
partly solvable with further development done for the reactiogontour information into the stereo depth perception [38].
diffusion algorithm with a black-and-white inverted image. In this context, we believe that defocused edges are also
Furthermore, we tested the algorithms for real gray leviElpful to stereo disparity detection. Thus, we need to evaluate
images. Figure 8 shows results of edge detection with the pemge strength indicating how rapidly an intensity distribution
posed reaction-diffusion algorithm and the Canny algorithrahanges across an edge [39], for more psychologically plausi-
From comparison between each of the results obtained witle visual information processing. This is an interesting topic
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Iy

Fig. 8. Edge detection results for real images. The real images a&td@$ [579 x 441 (pixels)], (b) Tire [612x 512 (pixels)], (c) Pillow [552 x 468
(pixels)] and (d) Videocamera [57% 435 (pixels)]. Figures (e)~(h) show edge detection results obtained with the proposed reaction-diffusion algorithm. The
parameter settings wet@,, = 1.0, D, = 5.0, Dy, = 10.0, Do; = 50.0,b = 1.0, = 1.0 x 1073, 6h = 0.5, 5t = 1.0 x 10~*. Figures (i)~(l) show edge
detection results obtained with the Canny algorithm [26]. The parameter settingsoweré.20, the lower threshold level=0.20 and the higher threshold
level=0.60. The real images are provided on the website "Edge Detector Comparison” (http://marathon.csee.usf.edu/dégetédgentml) by Heath et

al. [37].

] lized above. The algorithm iteratively solves linear equations
derived at every time instance from time-evolving partial
Artificial image —— -} differential Egs. (14), (15) and (16) having variables and
sairs v,. If the temporal change$u./dt, ¢ = 0,1 converge to zero
as time proceeds, we can state that the algorithm converges.

Tire -——-

Pillow -——-

102 Videocamera -—-— Thus, during the edge detection processes reported above we
o measured temporal changesmofix(|0u./0t|) for any  and

¢ = 0,1. Figure 9 shows the temporal changes measured
106 for the images. The results of the changes show that the
108 proposed algorithm indeed converges. We utilized the Gauss-
ol Seidel scheme for solving the linear equations derived at every

time instance. The scheme is an iterative method and judges
1012 — o a0 e Y its convergence with a small value, which wa® x 1016
in the present experiments. In addition, the finite difference

Fig. 9. Convergence of the proposed reaction-diffusion algorittempbral in time wasdt = 1.0 x 10~%. Thus, the temporal change

changes ofmaxg,.—0,1(|0u./0t|) measured for an artificial image shown : s
in Fig. 7(b) and for real images: Stairs, Tire, Pillow and Videocamera shoﬁHanvCZOvl(|?gC/at|) ShOUId a(?hleve the minimum at the
in Figs. 8(a)~d). order of 10~"2. According to Fig. 9, we can state that the

proposed algorithm completely converged for the real images
at aroundt = 9. Although the algorithm did not achieve
the minimum value for the artificial image, it was indeed
and future research work required for the reaction-diffusiazonverging.
algorithm of edge detection.

Finally, we confirmed convergence of the proposed reaction-
diffusion algorithm for the artificial and real images uti-
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V. CONCLUSION recognized the following future research work. That is, we
. ) ) . __need to evaluate edge strength as well as to detect edge
This paper presented a quick review of reaction-diffusiogysitions. Real images have areas of highly defocused objects
systems exhibiting pattern formation processes and propogetheir background or foreground. The defocused objects
a reaction-diffusion algorithm detecting edges from gray levghye diffused edges or weak edges, across which image inten-
images. Pattern formation processes are found in several @’W distributions change gradually. We believe that the edge
ural systems including biological and chemical systems. OBgength information is helpful for a stereo vision system and
of the typical chemical systems is the Belousov-Zhabotinsig¢her visual functions. Thus, we need to develop the reaction-
reaction system [1], [2], which is described with two diffusionyiffusion algorithm for detecting edges and their strength, for
processes coupled with non-linear chemical reaction termgich we have already tested a novel idea with multiple pairs
that is, reaction-diffusion equations having activator and i 5 discretized version of reaction-diffusion equations [40].
hibitor variables [4]. Another one is the biological systemipjs s the future research work required for the reaction-
Dictyostelium discoideum, of which the pattern formationitfysion algorithm of edge detection.
process of signaling waves is also described with reaction-
diffusion equations [32]. The interesting point in the bio-
logical system is that a reaction term of the equations is REFERENCES
dynamically modulated by a cell density distribution. These
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