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Abstract—This paper presents a quick review of reaction-
diffusion systems and the application of a discretized version of a
reaction-diffusion system to edge detection in image processing.
A reaction-diffusion system refers to a system consisting of
diffusion processes coupled with reaction processes. Several
reaction-diffusion systems exhibit pattern formation processes,
in which the systems self-organize spatio-temporal patterns of
target and spiral waves propagating in two-dimensional space. In
addition, some of the systems having strong inhibitory diffusion
self-organize stationary patterns; the Turing pattern is one
of the typical examples of the stationary patterns observed
in reaction-diffusion systems under strong inhibitory diffusion.
We have previously found that the discretized version with
strong inhibition has a mechanism detecting edges from an
image intensity distribution. The mechanism divides an image
intensity distribution into brighter or darker intensity areas
with a threshold level, and organizes pulses along edges of the
divided areas. By searching an output distribution of the version
for pulses, we can achieve edge detection. However, since the
threshold level is usually fixed at a constant value in the version,
the mechanism is not applicable to gray level images. Thus,
this paper furthermore proposes an edge detection algorithm
consisting of two pairs of the version with a variable threshold
level. We apply the edge detection algorithm and a representative
algorithm proposed by Canny to several artificial and real images
in order to confirm their performance.

Index Terms—Reaction-diffusion, pattern formation, pattern
recognition, strong inhibition, edge detection, non-linear reaction,
Turing pattern, FitzHugh-Nagumo

I. I NTRODUCTION

REACTION-DIFFUSION systems exhibit pattern for-
mation processes, in which they self-organize spatio-

temporal patterns such as target and spiral waves propagating
in space. The Belousov-Zhabotinsky reaction system [1], [2]
known as a chemical reaction system is a representative
example of the reaction-diffusion systems. Particular points
on the two-dimensional chemical reaction system behave as
non-linear oscillators of a chemical reaction. Simultaneously,
chemical substances generated by the chemical reaction dif-
fuse into neighboring regions, in which the diffused sub-
stances again trigger non-linear oscillators of the chemical
reaction. Thus, the chemical reaction system self-organizes
chemical waves propagating in space. The reaction-diffusion
systems including the Belousov-Zhabotinsky reaction system
are well studied as diffusion processes coupled with non-
linear reactions. Reaction-diffusion systems widely exist and
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self-organize spatio-temporal patterns also in other natural
systems [3].

A set of reaction-diffusion equations describes pattern for-
mation processes observed in a reaction-diffusion system.
The reaction-diffusion equations consist of diffusion equations
coupled with reaction terms describing a non-linear oscillator.
For example, Keener and Tyson proposed a pair of reaction-
diffusion equations for modeling a pattern formation process
observed in the two-dimensional Belousov-Zhabotinsky reac-
tion system [4]. The equations have two variables named ac-
tivator and inhibitor, which respectively activates and inhibits
the chemical reaction. Since the activator usually diffuses more
rapidly than or equally to the inhibitor in the reaction system,
the diffusion process of the activator drives propagation of
target and spiral waves.

The strong inhibition prevents the propagation of waves and
induces stationary patterns of periodic waves. In the Belousov-
Zhabotinsky reaction system an activator substance usually
diffuses more rapidly than an inhibitor one. Castets et al. [5]
and Kepper et al. [6] found that a chemical reaction system
exhibits rapid inhibitory diffusion in comparison to activator’s
diffusion and successfully realized stationary periodic waves in
real laboratory experiments. We also found stationary patterns
by adding the strong inhibitory diffusion to the Oregonator
model of the chemical reaction system in numerical experi-
ments [7].

Turing had predicted the existence of stationary periodic
waves induced by strong inhibitory diffusion in reaction-
diffusion systems in his theoretical paper [8]. A diffusion
process generally brings a uniform distribution of a substance.
However, Turing presented a scenario in which strong in-
hibitory diffusion causes instability on a uniform distribution
and stable stationary patterns appear. The Turing pattern refers
to stable stationary waves induced by the Turing scenario.
Gierer and Meinhardt accepted the Turing scenario and pro-
posed more realistic reaction-diffusion equations with strong
inhibitory diffusion, in order to understand biological pattern
formation processes [9]. The equations successfully realized
regeneration of a head of Hydra and grafting a head section to
another terminal section of its body in numerical experiments.
More recent evidence found in biological systems supports
the Turing scenario [10]; biologists have accepted the realistic
reaction-diffusion equations as a mathematical model of pat-
tern formation processes observed in biological systems [11].
The key point of the scenario is the strong inhibitory diffusion.

If turning our attention to pattern recognition processes
in biological visual systems, we can find several interesting
phenomena and their mathematical models. Lateral eyes of
Limulus, which is a kind of crab, exhibit the Mach bands
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effect, which is also found in the human visual system [12].
Previous physiological experiments show that the Mach bands
effect is caused by the long-range inhibition in a lateral
inhibition mechanism working on outputs of ommatidia, which
are individual visual receptor units [13]. A mathematical
model taking account of the lateral inhibition mechanism com-
pletely simulated the Mach bands effect in the lateral eyes of
Limulus [14]. These previous physiological and psychological
studies have suggested that the long range inhibition is the
key point in understanding pattern recognition processes. The
long range inhibition is also understood as the strong inhibitory
diffusion in reaction-diffusion systems.

While many researchers were interested in reaction-
diffusion systems, Kuhnert et al. presented an interesting
idea performing image processing with a reaction-diffusion
system [15], [16]. They utilized a light-sensitive Belousov-
Zhabotinsky reaction-diffusion system, in which we can con-
trol its chemical state and modulate its two-dimensional distri-
bution by illumination light. By projecting an image intensity
distribution onto the surface of the two-dimensional chemi-
cal reaction system, they demonstrated image pooling, edge
enhancement and segmentation on the projected distribution.
However, the demonstration including edge enhancement does
not appear stationarily, but appear transiently. More recently,
Sakurai et al. proposed a method of controlling chemical wave
propagation by utilizing illumination light and succeeded in
designing a path of the wave propagation [17]. These previous
experimental studies have completely linked reaction-diffusion
systems with image processing and computer vision research.
Adamatzky et al. named a class of nature-inspired com-
puter algorithms utilizing reaction-diffusion systems ’reaction-
diffusion algorithm’ and presented a novel architecture of
reaction-diffusion computers [18].

From an engineering point of view, the Chua’s circuit is
an interesting topic for reaction-diffusion systems [19]. An
individual Chua’s circuit behaves as a non-linear oscillator and
a resistively coupled Chua’s circuit system realizes a reaction-
diffusion system. A two-dimensional version of the Chua’s
circuit also self-organizes spatio-temporal patterns of target
and spiral waves as well as the Turing pattern [20]. Reaction-
diffusion systems are realizable on circuit systems consisting
of the Chua’s circuits and have several application areas such
as finger-print recognition.

We have proposed several reaction-diffusion algorithms for
image processing and computer vision research. A discretized
version of the FitzHugh-Nagumo reaction-diffusion equations
detects edges and segments from an image intensity distribu-
tion provided as an initial condition of the equations [21], [22],
[23]. Kurata et al. analyzed a network of discretely coupled
oscillators, each of which is described with the FitzHugh-
Nagumo ordinary differential equations, and presented a con-
dition required for stable results of edge detection and segmen-
tation [24]. Nomura et al. proposed an algorithm of detecting
a stereo disparity map from a pair of stereo images; the
stereo algorithm utilizes multiple reaction-diffusion systems
exclusively linked [25]. We have imposed strong inhibition on
these reaction-diffusion algorithms, as inspired by biological
pattern formation processes and as suggested by biological

visual systems.
The present paper proposes a reaction-diffusion algorithm

with strong inhibition for edge detection. In contrast to the
previous edge enhancement phenomenon reported by Kuh-
nert et al. [16], the proposed algorithm detects edges by
organizing not moving, but stationary pulses. Our previous
algorithm utilizing a discretized version of the FitzHugh-
Nagumo reaction-diffusion equations detects edges with a
fixed threshold level dividing an image intensity distribution
into brighter or darker intensity areas [21]. Thus, the previous
algorithm is designed not for gray level images, but for binary
images. Although our latest reaction-diffusion algorithm of
edge detection is designed for gray level images with a variable
threshold level [23], there still exists a problem of how to
eliminate false pulses, which are by-products in introducing
the variable threshold level. In order to solve the problems
in the previous reaction-diffusion algorithms, we propose an
edge detection algorithm applicable to gray level images with
the variable threshold level. By utilizing two pairs of the
FitzHugh-Nagumo reaction-diffusion equations, we design the
algorithm to eliminate the false pulses. This is the main
difference between the proposed algorithm and the latest
one [23].

The organization of this paper is as follows. Section II
presents a quick review of reaction-diffusion systems and their
reaction-diffusion equations, of which a discretized version
self-organizes stationary pulses at edge positions. Section III
presents a reaction-diffusion algorithm proposed here for edge
detection from gray level images. Section IV presents several
experimental results for artificial and real images. In particular,
the section presents quantitative evaluations on the proposed
algorithm in comparison to a previous algorithm proposed by
Canny [26]. Finally, Section V conclude this paper with a
summary of the proposed algorithm and future work required
for the reaction-diffusion algorithm of edge detection.

II. REACTION-DIFFUSION SYSTEMS

A. Diffusion equation and its application to image processing

A diffusion equation describes how much substance or
heat spatially spreads, as time proceeds. Letu(x, t) be a
distribution of substance or heat; the distributionu is defined
in spacex ∈ R

n and at timet. Then, a diffusion equation
without a source term becomes

∂tu = D∇2u, (1)

in which D is a diffusion coefficient,∂t = ∂/∂t and∇2 is
the Laplacian operator. An initial condition foru is u(x, t =
0.0) = U0(x). Hereafter, we defineD(U0;D, t) as a solution
of a diffusion equation having a diffusion coefficientD, an
initial conditionU0 and computed until timet. That is

D(U0;D, t) = u(x, t) (2)

obtained with Eq. (1) and the initial conditionU0. In other
words,D(U0;D, t) is a filter for a spatial distributionU0(x)
and its output is the distributionu(x, t). Indeed, a solution of
the diffusion Eq. (1) is a convolution of its initial condition
U0 and a Gaussian function, of which the spatial spread
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Fig. 1. Difference of two solutions obtained by a diffusion equation
∂u/∂t = ∇2u at two different time instances. Figure (a) shows the two
solutionsu(x, t = 1.0) andu(x, t = 10.0); a step-wise distributionU0(x)
was provided for the initial conditionu(x, t = 0.0) of the diffusion equation.
Figure (b) shows the difference of the two solutionsu(x, t = 1.0)−u(x, t =
10.0); a zero-crossing point in the difference is located at the edge position
of the initial conditionU0(x). The diffusion equation was discretized and
solved with a finite differenceδh in spacex.

depends on duration of diffusiont and the diffusion coefficient
D. Figure 1(a) shows two spatial distributionsD(U0;D =
1.0, t = 1.0) andD(U0;D = 1.0, t = 10.0) for a step-wise
distributionU0(x).

Many image processing algorithms utilize a Gaussian filter
for reducing random noise contained in image intensity dis-
tributions. For example, Marr and Hildreth proposed an edge
detection algorithm with a Laplacian of Gaussian filter; the
algorithm reduces random noise with the Gaussian filter and
then detects edges by searching an output of the Laplacian of
Gaussian filter for zero-crossing points [27]. The difference
of excitatory and inhibitory Gaussian filters approximates the
Laplacian of Gaussian filter, when the inhibitory Gaussian
filter spreads more than the excitatory one. Thus, they imposed
the long-range inhibition on the edge detection algorithm.

A diffusion equation brings an alternative edge detection
algorithm for the difference of two Gaussian filters proposed
by Marr and Hildreth [27]. As mentioned above, a Gaussian
filter for an image intensity distribution is equivalent to a
solution of a diffusion equation [28], for which the image
intensity distribution is provided as its initial condition. Thus,
the difference of the two Gaussian filters is equivalent to the
difference of two solutions obtained at two different time
instances with a single diffusion equation [29], or to the
difference of two solutions obtained at a time instance with two
diffusion equations having two different diffusion coefficients
of strong inhibition and weak excitation [21]. That is, the
difference of two Gaussian filters becomes an alternative form
such as

D(U0;D, t1)−D(U0;D, t2), 0 < t1 < t2, (3)

(a) (b)

Fig. 2. Numerical simulation of spatial patterns observed in reaction-
diffusion systems. Figure (a) shows two spiral cores and propagating waves
in the Belousov-Zhabotinsky reaction system [4]. Figure (b) shows signal
propagation waves overlaid with a cell density distribution organized in a
Dictyostelium discoideum [32].

or
D(U0;D1, t)−D(U0;D2, t), 0 < D1 < D2. (4)

Figure 1(b) shows the difference of two solutions
D(U0;D, 1.0) − D(U0;D, 10.0); a zero-crossing point
is indeed located at the edge position in the initial condition
U0. Since an edge is defined as an inflection point, the
Laplacian operator in the diffusion equation detects edges
contained in an initial condition as zero-crossing points.

A Gaussian filter or a diffusion equation unfortunately re-
moves precise structures in an image intensity distribution. In
order to preserve edges of meaningful precise structures such
as sharp corners, Perona and Malik [30] and Black et al. [31]
proposed edge detection algorithms utilizing anisotropic dif-
fusion equations.

B. Reaction-diffusion equations

A reaction-diffusion system is generally described with a set
of time-evolving partial differential equations. Each equation
consists of a diffusion equation coupled with a reaction term.
Most typical form of a reaction-diffusion system is described
with a pair of reaction-diffusion equations having an activator
variableu and an inhibitor variablev, as follows:

∂tu = Du∇
2u+ f(u, v), (5)

∂tv = Dv∇
2v + g(u, v), (6)

in which f(u, v) andg(u, v) are reaction terms; the variables
u and v are defined in spacex and at timet; Du and Dv

are diffusion coefficients. Initial conditions foru and v are
u(x, t = 0.0) = U0(x) andv(x, t = 0.0) = V0(x).

The Belousov-Zhabotinsky reaction exhibits non-linear re-
action on chemical substances; the Oregonator model de-
scribes the non-linear reaction. Since the chemical substances
induce chemical reaction and simultaneously diffuse, the
chemical reaction system on two-dimensional space self-
organizes spatio-temporal patterns of such as propagating
target and spiral waves. Keener and Tyson proposed a model
of reaction-diffusion equations with the Oregonator model [4].
Figure 2(a) shows a spatial pattern numerically simulated
with the reaction-diffusion equations proposed by Keener and
Tyson.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 5, 2011 107



dv/dt=g(u,v)=0 du/dt=f(u,v)=0
-0.2

0.0

0.2

0.4

-0.5 0.0 0.5 1.0

u

v

a 1.0

I

II
III

IV

Excited state

Resting state

Fig. 3. Phase plot of the FitzHugh-Nagumo ordinary differential equations:
du/dt= f(u, v) = [u(u−a)(1−u)−v]/ε and dv/dt = g(u, v) = u−bv.
The intersection of du/dt= 0 depicted by a solid line and dv/dt= 0
depicted by a dotted line is a stable steady state for the equations. An excited
state refers to an area having a large value ofu, and a resting state refers
to the intersection and its neighboring area. Under a positive small constant
0 < ε ≪ 1, depending on du/dtand dv/dt, a solution(u, v) traces the
trajectories denoted by arrows as time proceeds. The signs of du/dtand
dv/dt are as follows: du/dt >0 and dv/dt >0 in the area I, du/dt <0
and dv/dt >0 in the area II, du/dt <0 and dv/dt <0 in the area III, and
du/dt > 0 and dv/dt <0 in the area IV.

There is another interesting reaction-diffusion system in a
biological system, the Dictyostelium discoideum, which is a
kind of amoeba. A signal propagation process observed in
the system is also described with a set of reaction-diffusion
equations. However, an interesting point in the system is that
a cell density distribution dynamically modulates a reaction
term in the equations. The system also self-organizes spatio-
temporal patterns, such as, target and spiral waves; at the same
time, their propagation speed, shape and oscillation period
change dynamically. The dynamical changes are explained
with the reaction term depending on the cell density distri-
bution [32]. That is, the reaction termf(· · ·) depends not
only on the two variablesu and v, but also on a variable
of cell density, of which a distribution dynamically changes
during cell movement. Figure 2(b) shows a numerical result
of a cell density distribution and a signal distribution in two-
dimensional space.

The system of the FitzHugh-Nagumo reaction-diffusion
equations is one of the most popular reaction-diffusion sys-
tems. The FitzHugh-Nagumo reaction-diffusion equations sim-
ulate an active pulse transmission process along a nerve
axon [33], [34]. The equations have reaction termsf(u, v)
andg(u, v), as follows:

f(u, v) = [u(u− a)(1− u)− v]/ε, (7)
g(u, v) = u− bv, (8)

in which a and b are constants andε is a positive small
constant(0 < ε ≪ 1).

In order to understand the reaction termsf(u, v) and
g(u, v) of Eqs. (7) and (8), we show examples of solution
trajectories computed for the ordinary differential equations
du/dt = f(u, v) and dv/dt= g(u, v) in Fig. 3. Since the
intersection of du/dt= 0 and dv/dt= 0 is a stable steady
state, a solution(u, v) finally converges to the state from any
initial point. Even if the solution once has a large value of
u, it traces a global trajectory and finally converges to the
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Fig. 4. One-dimensional result for a discretized version of the FitzHugh-
Nagumoreaction-diffusion equations. A finite difference in spacex is δh.
An initial condition for u(x, t = 0.0) = U0(x) is a step-wise distribution;
an initial condition forv(x, t = 0.0) is 0.0 in the whole space. A pulse was
organized in the center of the space, as shown inu(x, t = 10.0).

stable steady state. An excited state refers to an area having
a large value ofu; a resting state refers to the origin and its
neighboring area, as shown in Fig. 3.

In the reaction terms of Eqs. (7) and (8), the parameter
a works as a threshold level for an initial condition. Let us
consider an initial condition of the solution(u, v) = (a+δ, 0).
If δ > 0, the solution(u, v) enters an excited state; ifδ < 0,
it immediately enters a resting state. Thus, the system of the
ordinary differential equations du/dt= f(u, v) and dv/dt=
g(u, v) has the function of dividing its initial condition into
two different states: the excited state and the resting state.
This brings the primitive idea of detecting edges with the fixed
threshold levela for an image intensity distribution.

C. A discretized version of a reaction-diffusion system and its
numerical computation

For a stable stationary solution of edges, the reaction-
diffusion system must be sparsely discretized under the strong
inhibition Du ≪ Dv [22], [24]. Although the earliest work
done by Kuhnert et al. shows impressive results of edge
detection and segmentation with a real chemical reaction sys-
tem [16], it does not provide stable results, which are necessary
for a realistic algorithm of image processing. In comparison to
that, Ebihara et al. [22] and Kurata et al. [24] have found that
the discretized version of the reaction-diffusion system under
the strong inhibition brings stable stationary results of edge
detection and segmentation.

The strong inhibitionDu ≪ Dv required for our previous
reaction-diffusion algorithm of edge detection is somewhat
similar to the Turing scenario [8], [9], to the long-range inhibi-
tion causing the Mach bands effect [14] and to the long-range
inhibition of the difference of two Gaussian filters [27]. Thus,
these similarities furthermore inspire us to develop reaction-
diffusion algorithms. It would be interesting, if reaction-
diffusion systems modeling pattern formation processes, in
particular, biological pattern formation processes in the Turing
scenario are also helpful in modeling visual functions required
in pattern recognition processes. In addition, the discreteness
is also interesting from a biological point of view.

Figure 4 shows an example of an edge detection result in
one-dimensional spacex ∈ R

1. A discretized version of the
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FitzHugh-Nagumo reaction-diffusion equations self-organizes
a pulse at an edge position in a step-wise distribution provided
as an initial conditionU0(x). An initial condition for V0 is
V0 = 0.0 in its whole space. The pulse appears after finite
duration of time. By searching a distribution ofu for a pulse,
we can find an edge position for the distribution of the initial
conditionU0.

The following describes discretization of a reaction-
diffusion equation and a numerical computation scheme in
two-dimensional spacex = (x, y) ∈ R

2. Space variables
(x, y) and a time variablet are discretized with finite dif-
ferences:δh in space andδt in time, as follows:

i = [x/δh], j = [y/δh] andk = [t/δt],

in which i, j and k are the index number of discretely
expressed space and time, and[·] denotes the floor function.
Then, for example, the relation between the variableu(x, y, t)
and its discrete expressionuk

i,j becomes

uk
i,j = u(iδh, jδh, kδt). (9)

The next equations∆tu, ∆xxu and∆yyu respectively describe
the discretized versions of∂u/∂t, ∂2u/∂x2 and∂2u/∂y2, as
follows:

∆tu =
uk+1

i,j − uk
i,j

δt
,

∆xxu = r
uk+1

i+1,j − 2uk+1

i,j + uk+1

i−1,j

δh2

+ (1− r)
uk
i+1,j − 2uk

i,j + uk
i−1,j

δh2
,

∆yyu = r
uk+1

i,j+1
− 2uk+1

i,j + uk+1

i,j−1

δh2

+ (1− r)
uk
i,j+1 − 2uk

i,j + uk
i,j−1

δh2
, (10)

in which r is fixed at r = 0.5 (the Crank-Nicolson
scheme [35]). With Eqs. (9) and (10), the reaction-diffusion
equation of Eq. (5) becomes a discretized version of a linear
equation:

−Cru
k+1

i,j−1
− Cru

k+1

i−1,j + (1 + 4Cr)u
k+1

i,j

−Cru
k+1

i+1,j − Cru
k+1

i,j+1
= bki,j , (11)

in which Cr = rDuδt/δh
2; bki,j is

bki,j = C1u
k
i,j−1 + C1u

k
i−1,j + (1− 4C1)u

k
i,j

+C1u
k
i+1,j + C1u

k
i,j+1 + δtf(uk

i,j , v
k
i,j), (12)

in which C1 = (1 − r)Duδt/δh
2. In image processing, we

usually consider a discrete rectangular space denoted byi =
0, 1, · · · , I−1 andj = 0, 1, · · · , J−1, in which I×J (pixels)
denotes an image size of the space. If the Neumann boundary
condition governs the four sides of the rectangular space, it is
expressed for the variableu as

uk
i,−1 = uk

i,0, u
k
i,J−1 = uk

i,J , i = 0, 1, · · · , I − 1,

uk
−1,j = uk

0,j , u
k
I−1,j = uk

I,j , j = 0, 1, · · · , J − 1. (13)

For given initial conditions(uk=0
i,j , vk=0

i,j ) = (U0i,j , V0i,j ) and
the boundary conditions of Eq. (13), we computeuk=1

i,j by

solving a set of linear equations described by Eq. (11) with
Eq. (12). Thus, by iteratively computinguk+1

i,j from uk
i,j , we

can obtain a time-evolving solution(u, v). The Gauss-Seidel
scheme [35], for example, provides a solution for a set of
linear equations.

Chen and Wang also proposed a segmentation algorithm
utilizing the locally excitatory globally inhibitory oscilla-
tor network named LEGION, which spatially couples the
FitzHugh-Nagumo ordinary differential equations controlled
by a global inhibitor [36].

III. R EACTION-DIFFUSION ALGORITHM FOR EDGE
DETECTION

As described in the above section II-C, a single pair of the
discretized version of the FitzHugh-Nagumo reaction-diffusion
Eqs. (5)∼(8) has a function of detecting edges for a binary
image. The version firstly divides an initial conditionU0 into
a brighter or darker level with a threshold levela. Then, the
version self-organizes a pulse at the boundary between the
two levels. Thus, when utilizing the single pair with the fixed
parametera, we cannot expect edge detection for a gray level
image. Figures 5(a) and 5(b) show a situation in which the
discretized version organized one pulse at one of the two edge
positions for a step-wise distribution having three different
levels. In the situation, we fixed the threshold levela at a =
0.05 between the two intensity levels: the darkest one(U0 =
0.00) and the middle one(U0 = 0.10).

We confirm how a single pair of a discretized version of
the FitzHugh-Nagumo reaction-diffusion equations having the
parametera = a(x) [23] works for an initial conditionU0 of a
step-wise distribution. In contrast to the fixed parametera, we
consider a spatial distributiona(x). When a(x) = U0(x),
the system does not organize any pulse inu(x, t). When
we provide a distribution diffused fromU0(x) to a(x), we
obtain pulses. The diffused distribution intersects its original
distributionU0 at its inflection point, as shown in Fig. 1(a).
Since the parametera works as a threshold level for an initial
condition, the difference between the diffused distribution
a(x) = D(U0;D,T ) and the original oneU0 causes a pulse
at the edge position. Figures 5(c) and 5(d) show two examples
of the situation in one-dimensional spacex ∈ R

1; a weakly
diffused distribution or a strongly diffused one was provided
for a(x). The single pair organizes pulses not only at the
true edge positions, but also false pulses in neighboring area
of the true pulses. Spacing between the true pulse and its
paired false pulse depends on how much the distribution
a(x) is diffused fromU0(x), that is, on the parametersD
and T in D(U0;D,T ). This is clearly recognizable by the
comparison of the two examples shown in Figs. 5(c) and
5(d). This is because the system organizes pulses at both
ends of an area satisfying the conditionU0(x) > a(x); the
stronger the diffusion becomes, the larger the area becomes.
We need to eliminate the false pulses standing at the false edge
positions from the distributionu(x, t) of the reaction-diffusion
equations.

Here, we propose a reaction-diffusion algorithm detecting
edges from a gray level image. The algorithm consists of
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Fig. 5. One-dimensional results obtained by a single pair of a discretized
version of the FitzHugh-Nagumo reaction-diffusion equations, for which a
step-wise distribution having three different levels was provided as its initial
condition u(x, t = 0.0) = U0(x). An initial condition for v(x, t = 0.0)
was zero. Figure (a) shows the step-wise distributionU0(x) indicated by
a solid line and its diffused distributions ofD(U0; 50.0, 1.0) indicated by a
dotted broken line andD(U0; 10.0, 1.0) indicated by a dotted line. Figure (b)
shows a result obtained by the discretized version with the fixed valuea =
0.05. Figure (c) shows a result obtained by the discretized version with the
variable a(x) = D(U0; 10.0, 1.0). Figure (d) shows a result obtained by
the discretized version with the variablea(x) = D(U0; 50.0, 1.0). In each
of (b), (c) and (d), a solid line indicatesu(x, t = 10.0) and a dotted line
indicatesv(x, t = 10.0). Parameter settings utilized here wereb = 1.0, ε =
1.0× 10−3, Du = 1.0, Dv = 5.0, δh = 0.5, δt = 1.0× 10−4.

two pairs of a discretized version of the FitzHugh-Nagumo
reaction-diffusion equations having variablesuc(x, t), vc(x, t)
and a source term, as follows:

∂tu0 = Du∇
2u0 + f(u0, v0, a0) + ∂tu1Θ(−∂tu1), (14)

∂tu1 = Du∇
2u1 + f(u1, v1, a1), (15)

∂tvc = Dv∇
2vc + g(uc, vc), (16)

ac = D(U0;Dac
, T ), Da0

< Da1
, (17)

in which the functionΘ(s) gives 1, if s ≥ 0, and otherwise
0; c = 0, 1 is an index number of the two pairs. Although
f(·, ·, ·) and g(·, ·, ·) are the same as Eqs. (7) and (8),ac(x)
is variable in spacex. The diffusion coefficientsDu andDv

must satisfy the conditionDu ≪ Dv, which is the same as that
imposed on the previous reaction-diffusion algorithms [21],
[22], [23], [24]. The algorithm takes a gray level image as an
initial condition U0 provided for bothu0 and u1; an initial
conditionV0 for both v0 andv1 is zero. Equation (17) states
that the spatial distributionsac, c = 0, 1 take diffusedU0, and
a1 must be diffused more thana0.
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Fig. 6. Temporal developments of activator variables during an edge
detection process for a step-wise distribution. Figures (a), (b), (c) and
(d) show one-dimensional distributions ofu0 and u1 at time instances:
t = 0.1, 0.2, 0.3, 10.0 as well as their initial conditionsu0(x, t = 0.0) =
u1(x, t = 0.0) = U0(x). Parameter settings utilized here wereDu =
1.0, Dv = 5.0, b = 1.0, ε = 1.0 × 10−3, δh = 0.5, δt = 1.0 × 10−4.
One-dimensional distributions ofa0 and a1 were a0 = D(U0; 10.0, 1.0)
anda1 = D(U0; 50.0, 1.0).

In the proposed algorithm, the term∂tu1Θ(−∂tu1) in
Eq. (14) eliminates false pulses organized inu0. After prepar-
ing the two distributionsa0 and a1 according to Eq. (17),
at t = 0.0 the algorithm initiates computation of discretized
versions of Eqs. (14)∼(16) for an initial condition(U0, V0).
Figure 6 shows an example of how the proposed algorithm
works for a step-wise distribution having three different levels
in a one-dimensional space. Firstly, the two sets of the solu-
tions(u0, v0) and(u1, v1) move towards an excited state of the
FitzHugh-Nagumo equations in the area ofac < U0, c = 0, 1.
Next, the two solutions except the true edge positions and false
edge positions return to a resting state from the excited state
(see also the global trajectory show in Fig. 3). In particular, let
us focus on the solution(u1, v1) in the area between the true
edge position and the false edge position. When the solution
(u1, v1) returns to the resting state, its temporal change∂tu1

becomes negative in the area. Since the false pulse inu0 is
located between the true edge position and the false edge
position in u1 [see also Figs. 5(c) and 5(d)], the false pulse
in u0 is affected by the negative external stimulus∂tu1 in
Eq. (14). As the result, the false pulse is eliminated inu0; the
true pulses inu0 and u1 and the false pulse inu1 survive,
as shown in Fig. 6(d). Thus, after the discretized version
converges, the algorithm detects edges by searchingu0 for
pulses. Finally, an edge mapM(t) at time t is obtained, as
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follows:
M(t) = {x|u(x, t) > θ}, (18)

in which θ is a threshold level for judgment of an excited state
or not, and is fixed at 0.5.

We conclude this section by summarizing the proposed
reaction-diffusion algorithm for edge detection. The algorithm
consists of the following steps:
Step 1: LetB(x) be a gray level image, which is normalized

as0 ≤ B(x) ≤ 1/4.
Step 2: Prepare initial conditions asU0(x) = B(x) and

V0(x) = 0.
Step 3: Prepare distributions ofa0(x) and a1(x) with

Eq. (17).
Step 4: Iteratively compute the discretized version of

Eqs. (14)∼(16) under the strong inhibitionDu ≪ Dv.
Refer to Section II-C for discretization of the reaction-
diffusion equations.

Step 5: Compute an edge mapM(t) with Eq. (18), after
enough duration of time.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents experimental results of edge detection
with the proposed reaction-diffusion algorithm and a repre-
sentative algorithm proposed by Canny [26] for comparison.
Performance of the algorithms for artificial images is evaluated
with the ground-truth data of edges. Then, there is demon-
stration on how the algorithms work for real images. Upon
these results, we discuss the characteristics of the proposed
algorithm, in comparison to the Canny algorithm. Finally, there
is confirmation on the convergence of the proposed algorithm
for the artificial and real images.

Figure 7 shows results of edge detection for artificial
images. In order to confirm the basic performance of the
previous reaction-diffusion algorithm having a fixed parameter
a, we applied the algorithm to a binary image of Fig. 7(a). In
addition, we applied the proposed reaction-diffusion algorithm
and the Canny algorithm to a gray level image of Fig. 7(b).
Figure 7(c) shows the ground-truth data of edges contained in
the binary and gray level images.

Let us focus on the edge detection result obtained with the
previous reaction-diffusion algorithm having a fixed parameter
valuea [see Fig. 7(d)]. Although the algorithm detected edges
almost correctly for the binary image shown in Fig. 7(a), it
failed to detect edges of tiny letters contained in the cells
A3, B4, C1 and D2 in Fig. 7(d). In particular, the algorithm
completely failed to detect edges of letters contained in the
cell B4. In the fails of the cells A3, B4, C1 and D2, we can
find a common situation; white background regions surround
tiny black regions of letters. We can also find the situation
partly in the cell D4; white regions surround corners of small
black squares regularly placed and the algorithm failed to
detect edges at the corners. The white regions cause reaction-
diffusion waves, which slightly propagate into the tiny black
regions and diffuse. Thus, the tiny black regions are removed
out and no waves indicating edges survived. In comparison
to the situation, the algorithm successfully detected edges of
tiny white regions surrounded by black regions, for example,

TABLE I
Quantitative evaluations of edge detection algorithms. The error measure
Et (%) denotes a percentage of undetected edges over the number of the

true edges|Mt| [see Eq. (19)]. The error measureEo (%) denotes a
percentage of incorrectly detected edges over the number of detected edges

|Mo| [see Eq. (20)]. Evaluated algorithms are the reaction-diffusion
algorithm previously proposed with a fixed parametera (RDA-fixed), that

proposed in the present paper with a variablea(x) (RDA-variable), and an
edge detection algorithm proposed by Canny [26] (Canny). The result for

the algorithm RDA-fixed was obtained for an artificial binary image
[Fig. 7(a)], the results for the algorithm RDA-variable and Canny were

obtained for an artificial gray level image [Fig. 7(b)]. Refer to Fig. 7(c) for
the ground-truth data of edges.

Algorithm Mo |Mt| Et (%) |Mo| Eo (%)
RDA-fixed Fig. 7(d) 30.62 13,825 10.39
RDA-variable Fig. 7(e) 20,732 23.07 16,877 11.44
Canny Fig. 7(f) 8.20 21,069 8.08

as shown in the cells B3, C2 and D1. In our supplementary
experiments, whichis not shown in the present paper, the
algorithm successfully detected edges in the cells A3, B4, C1
and D2 from its black-and-white inverted binary image. This
is also additional evidence with which we can explain the
reason why the tiny black regions are undetected and the tiny
white regions are detected. In order to improve the previous
algorithm for tiny black regions, we need to utilize both an
original binary image and its black-and-white inverted binary
image.

Next, let us focus on edge detection results obtained with
the proposed reaction-diffusion algorithm and the Canny al-
gorithm [26]. Figures 7(e) and 7(f) show the results. In the
cells A3, B4, C1 and D2, the proposed algorithm also failed
to detect edges in relatively dark tiny regions, such as small
letters; this is the similar situation to the results of Fig. 7(d).
When comparing the result of the proposed algorithm with that
of the Canny algorithm, we can state that the Canny algorithm
provided almost correct results of edge detection. However,
when focusing on several details in the edge detection results,
we can find some artifacts in the result of the Canny algorithm,
in particular, at cross sections and at corners. For example,
as shown in the cells of D3, on the one hand, the proposed
algorithm detected correctly at corners of the triangle; on the
other hand, the Canny algorithm detected slightly rounded
edges at the corners.

In order to confirm overall performance of the edge detec-
tion algorithms, we evaluated the results shown in Figs. 7(d),
7(e) and 7(f) by comparing each of obtained edge maps with
the ground-truth data of Fig. 7(c). The next error measuresEt

andEo evaluate quantitative performance of an edge detection
algorithm, as follows:

Et =
1

|Mt|
|Mt ∩Mo| × 100 (%), (19)

Eo =
1

|Mo|
|Mo ∩Mt| × 100 (%), (20)

in which Mt is the ground-truth data of an edge map and
Mo is an obtained edge map;|Mt| is the number of the true
edges inMt and |Mo| is the number of detected edges in
Mo. Thus, Eq. (19) denotes the percentage of the number of
undetected edges over the number of the true edges; Eq. (20)
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Fig. 7. Edge detection results for artificial images. Figures (a) and(b) show a binary image and a gray level image with a size of500×500 (pixels). Figure (c)
shows the ground-truth data of edges contained in (a) and (b); black dots and lines indicate the edges. Figure (d) shows an edge detection result obtained
for the binary image (a) with the previous edge detection algorithm, which utilizes a single pair of a discretized version of the FitzHugh-Nagumo reaction-
diffusion equations [21], [22], [24]. The parameter settings wereDu = 1.0, Dv = 5.0, a = 0.05, b = 1.0, ε = 1.0 × 10−3, δh = 0.5, δt = 1.0 × 10−4.
Figure (e) shows an edge detection result obtained for the gray level image (b) with the proposed reaction-diffusion algorithm. The parameter settings were
Du = 1.0, Dv = 5.0, b = 1.0, ε = 1.0× 10−3, Da0

= 10.0, Da1
= 50.0, T = 1.0, δh = 0.5, δt = 1.0× 10−4. Figure (f) shows an edge detection result

obtained for the gray level image (b) with the Canny algorithm [26]. The parameter settings wereσ = 0.80, the lower threshold level=0.05 and the higher
threshold level=0.15. The images and the results have 16 cells, each of which is named with a row number: 1, 2, 3, 4 and a column letter: A, B, C, D. For
example, the left top cell is named A1. Refer to Table I for quantitative evaluations of the results (d), (e) and (f).

denotes the percentage of the number of incorrectly detected
edges over the number of detected edges. In both measures, a
smaller valueEt or Eo with a larger number|Mt| or |Mo|
indicates better performance. Table I shows the results of the
quantitative evaluation. The Canny algorithm almost correctly
detected edges contained in the ground-truth data of the edge
map (Et = 8.20%); edges detected by the algorithm are almost
correct (Eo = 8.08%). In comparison, however edges de-
tected by the reaction-diffusion algorithms are almost correct
(Eo = 10.39% on RDA-fixed andEo = 11.44% on RDA-
variable), there were many undetected edges (Et = 30.62%
on RDA-fixed andEt = 23.07% on RDA-variable). We
believe that the problem of many undetected edges should be
partly solvable with further development done for the reaction-
diffusion algorithm with a black-and-white inverted image.

Furthermore, we tested the algorithms for real gray level
images. Figure 8 shows results of edge detection with the pro-
posed reaction-diffusion algorithm and the Canny algorithm.
From comparison between each of the results obtained with

the two algorithms, we can recognize a significant difference.
The Canny algorithm detected continuous edges, which are
due to the final step merging small edges or disjointed edges
in the algorithm. In comparison, the edge maps obtained with
the proposed algorithm contain small uncertain edges like
randomly distributed noise. In the reaction-diffusion algorithm,
we also need to employ such an algorithm merging neighbor-
ing disjointed edges, if we impose a continuity condition on
detected edges.

Let us focus on the image of Fig. 8(d), which has highly
defocused objects in the background and their shadow on the
wall, in addition to the focused object of a videocamera. It is
believed that the human visual system integrates monocular
contour information into the stereo depth perception [38].
In this context, we believe that defocused edges are also
helpful to stereo disparity detection. Thus, we need to evaluate
edge strength indicating how rapidly an intensity distribution
changes across an edge [39], for more psychologically plausi-
ble visual information processing. This is an interesting topic
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Fig. 8. Edge detection results for real images. The real images are (a)Stairs [579× 441 (pixels)], (b) Tire [512× 512 (pixels)], (c) Pillow [552× 468
(pixels)] and (d) Videocamera [577× 435 (pixels)]. Figures (e)∼(h) show edge detection results obtained with the proposed reaction-diffusion algorithm. The
parameter settings wereDu = 1.0, Dv = 5.0, Da0

= 10.0, Da1
= 50.0, b = 1.0, ε = 1.0× 10−3, δh = 0.5, δt = 1.0× 10−4. Figures (i)∼(l) show edge

detection results obtained with the Canny algorithm [26]. The parameter settings wereσ = 1.20, the lower threshold level=0.20 and the higher threshold
level=0.60. The real images are provided on the website ”Edge Detector Comparison” (http://marathon.csee.usf.edu/edge/edgedetection.html) by Heath et
al. [37].
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Fig. 9. Convergence of the proposed reaction-diffusion algorithm. Temporal
changes ofmaxx,c=0,1(|∂uc/∂t|) measured for an artificial image shown
in Fig. 7(b) and for real images: Stairs, Tire, Pillow and Videocamera shown
in Figs. 8(a)∼(d).

and future research work required for the reaction-diffusion
algorithm of edge detection.

Finally, we confirmed convergence of the proposed reaction-
diffusion algorithm for the artificial and real images uti-

lized above. The algorithm iteratively solves linear equations
derived at every time instance from time-evolving partial
differential Eqs. (14), (15) and (16) having variablesuc and
vc. If the temporal changes∂uc/∂t, c = 0, 1 converge to zero
as time proceeds, we can state that the algorithm converges.
Thus, during the edge detection processes reported above we
measured temporal changes ofmax(|∂uc/∂t|) for anyx and
c = 0, 1. Figure 9 shows the temporal changes measured
for the images. The results of the changes show that the
proposed algorithm indeed converges. We utilized the Gauss-
Seidel scheme for solving the linear equations derived at every
time instance. The scheme is an iterative method and judges
its convergence with a small value, which was1.0 × 10−16

in the present experiments. In addition, the finite difference
in time was δt = 1.0 × 10−4. Thus, the temporal change
maxx,c=0,1(|∂uc/∂t|) should achieve the minimum at the
order of 10−12. According to Fig. 9, we can state that the
proposed algorithm completely converged for the real images
at aroundt = 9. Although the algorithm did not achieve
the minimum value for the artificial image, it was indeed
converging.
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V. CONCLUSION

This paper presented a quick review of reaction-diffusion
systems exhibiting pattern formation processes and proposed
a reaction-diffusion algorithm detecting edges from gray level
images. Pattern formation processes are found in several nat-
ural systems including biological and chemical systems. One
of the typical chemical systems is the Belousov-Zhabotinsky
reaction system [1], [2], which is described with two diffusion
processes coupled with non-linear chemical reaction terms,
that is, reaction-diffusion equations having activator and in-
hibitor variables [4]. Another one is the biological system:
Dictyostelium discoideum, of which the pattern formation
process of signaling waves is also described with reaction-
diffusion equations [32]. The interesting point in the bio-
logical system is that a reaction term of the equations is
dynamically modulated by a cell density distribution. These
two previous reaction-diffusion systems highly inspired us to
model visual functions and to develop computer algorithms
utilizing reaction-diffusion equations for image processing and
computer vision research.

We have two previous reaction-diffusion algorithms de-
signed for edge detection. However, one of the previous
algorithms utilizes a single pair of a discretized version of
the FitzHugh-Nagumo reaction-diffusion equations; it is not
applicable to gray level images [21], [22], [24]. The other
previous algorithm utilizes multiple pairs; each pair is coupled
with an additional diffusion equation [23]. Thus, it needs much
computation time for solving the multiple pairs for a gray level
image. The algorithm proposed here utilizes two pairs; each
pair has a parameter of a threshold level, which is not fixed
at a constant value, but modulated with a diffused gray level
image. The proposed algorithm utilizing the two pairs requires
less computation time, in comparison to the previous algorithm
utilizing the multiple pairs. The idea of coupling the two pairs
originated in the mechanism of the dynamical modulation by
the cell density distribution in the biological system [32].
On the reaction-diffusion algorithms including the proposed
one and the previous ones, we imposed the strong inhibition
inspired by stationary pattern formation processes observed in
chemical and biological systems; this is the original point in
our algorithms.

We tested performance of the reaction-diffusion algorithms
and the Canny algorithm [26] by applying them to artificial
and real images. As the result, we confirmed that the proposed
algorithm is indeed applicable to gray level images. However,
the proposed algorithm did not achieve the performance of
the Canny algorithm, which is known as one of representative
edge detection algorithms. By comparing the edge detection
results obtained with the two algorithms, we qualitatively
confirmed that the proposed algorithm can detect edges around
sharp corners, for example, around corners of a triangle, more
correctly in comparison with the Canny algorithm. This is a
feature point in the proposed reaction-diffusion algorithm. We
believe that the strong inhibition is particularly important at
the corners. The Canny algorithm is better than the proposed
algorithm in overall quantitative performance measures.

From edge detection results obtained for a real image, we

recognized the following future research work. That is, we
need to evaluate edge strength as well as to detect edge
positions. Real images have areas of highly defocused objects
in their background or foreground. The defocused objects
have diffused edges or weak edges, across which image inten-
sity distributions change gradually. We believe that the edge
strength information is helpful for a stereo vision system and
other visual functions. Thus, we need to develop the reaction-
diffusion algorithm for detecting edges and their strength, for
which we have already tested a novel idea with multiple pairs
of a discretized version of reaction-diffusion equations [40].
This is the future research work required for the reaction-
diffusion algorithm of edge detection.
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