
 

 

  
Abstract—This paper studies the modal insensitivity design of the 

synchronous generator in a power system using eigenstructure 
assignment. Model insensitivity means that the concerned system 
mode shape is insensitive to small variations in the system. In the 
proposed design procedure, modal insensitivity is achieved by 
assigning system eigenstructure and only algebraic computations are 
involved. Results from the study of a single-machine-infinite-bus 
system are presented. 
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I. INTRODUCTION 

igenstructure assignment refers to the design method for 
assigning the eigenstructure, i.e. eigenvalues and 

eigenvectors, of a closed-loop linear system with a constant 
gain feedback control law [1-22]. Methods of eigenstructure 
assignment have been proposed and applied to various kinds of 
control design problems. That includes some applications in 
power system control [23-44]. 

The design of linear control system is based on the linearized 
system model. However, physical system are often subject to 
operating point drift or plant parameter variations which may 
cause that the designed controller does not meet the prescribed 
performance, even result in system instability. Modal 
insensitivity means that system mode shape is insensitive to 
small variations [18-23]. Controllers designed with the concept 
of modal insensitivity will have insensitive closed-loop 
eigenvalue or eigenvectors. 

Based on eigenstructure assignment techniques, the main 
purpose of this paper is to present a modal insensitivity design 
for control of synchronous generator in a power system with a 
view to making the eigenvalues of main system oscillatory 
modes insensitive to the variation of a certain parameter. The 
point is to design an output feedback controller for assigning 
the system eigenvalues as well as for restricting some specified 
eigenvector components. The design procedure in this paper 
needs only algebraic computations and thus is easy to apply. 
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II. DESIGN METHODOLOGY 

A. Eigenstructure Assignment 
Consider a dynamic system described by (1) and (2). 
 

x Ax Bu= +                                   (1) 
y Cx=                                   (2) 

 
Assume that the system has n  states, m  inputs and r  

outputs. An output feedback control u G y GCx= =  will result 
in the closed-loop system  

 

( )x A BGC x= +                               (3) 
 

Denote the corresponding right eigenvectors of the i -th 
eigenvalue iλ  as iV  and assume the following definitions: 
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The following theorem for eigenstructure assignment has 
been established [1-22]. 
 
Theorem 1 Given a controllable and observable system 

described by (1) and (2). Let 1{ }n
i iλ =  and 1{ }n

i iv = be the 
self-conjugate sets of desired eigenvalues/eigenvectors, 
respectively. There exists an m r× real matrix G  such that 
( ) i i iA BGC V Vλ+ =  if and only if all the following conditions 
are satisfied: 
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B. Modal Insensitivity 
Consider a system with the following dynamic equations 
 

( ) ( )x A x B uα α= +                             (10) 

( )y C xα=                                            (11) 
 

Note that the matrices ( )A α  , ( )B α  and ( )C α  depend on the 
parameter α  whose original value is 0α . 

If we apply an output feedback control law 
( )u G y GC xα= =  then the closed-loop system becomes 

 

[ ]( ) ( ) ( ) ( )x A B GC x A xα α α α= + ≡             (12) 
 
We are to design an output feedback gain matrix G  such 

that 0( )A α  has the prescribed eigenvalues that are insensitive 
to small variation in α  around 0α . 

Denote the corresponding left and right eigenvectors of the 
i -th eigenvalu iλ  as iU  and iV , respectively. The variation of 

closed-loop system matrix, dA , will be 
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Then the following theorem can be obtained. 
 
Theorem 2 The necessary and sufficient conditions for iλ  and 

iU  (or iV ) to be insensitive to a small variation in α  are: 
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C. Design Procedure 
Theorem 1 and Theorem 2 form the basis of the control 

design approach in this paper. The basic idea is to fully exploit 
the flexibility offered by feedback beyond closed-loop 
eigenvalue/eigenvector, i.e. eigenstructure, assignment for 
restricting certain eigenvector elements in order to achieve 
modal insensitivity.  

The following steps summarize the design procedure for 
mode-insensitive control: 

1) Apply Theorem 1 to deriving algebraic equations with 
unknowns being the elements in the output feedback 
gain matrix. The emphasis here is placed on assigning 
eigenvalues to improve system damping. 

2) Utilize Theorem 2 to solve the algebraic equations 
derived in Step 1 for finding the exact solution of the 
output feedback gain matrix. The resultant closed-loop 
eigenvalues will have the property of being 
insensitive. 

3) Verify the control design by calculating the eigenvalue 
sensitivity and closed-loop system eigenvalues. 

Note that the design procedure needs only algebraic 
manipulations and exact solution can be obtained without 
any kind of iteration. 

 
 

III. STUDY SYSTEM 
The system considered in this work is a synchronous 

generator connected to a large power system whose linearized 
model is shown in Fig.1. This linear model has been 
extensively studied in the literature of power system control. 
The dynamic characteristics of the system are expressed in 
terms of the six constants 1 6K K− . The studied system can 
then be represented by the state space form in (1) and (2). 

 
 

 
 

Fig. 1 Linearized model of single-machine-infinite-bus 
 
 

The definitions for each variable are 

where [ ]T
qx e ω δ′= Δ Δ Δ , [ ]T

FD mu e T= Δ Δ and 

[ ]Ty ω δ= Δ Δ are the state, control and output vectors, 
respectively.  

qe′ Voltage proportional to direct axis flux linkage 

ω  Rotor speed 

δ  Torque angle 

FDe Generator field voltage 

mT Mechanical torque 
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The matrices , ,  and A B C in (1) and (2) are 
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Note that the system parameter 2K  is the change in electrical 

torque for small change in the d-axis flux linkage at constant 
rotor angle as described in (19) 

 

2

0

e

q

T
K

e δ δ

Δ
=

′Δ
=

                          (19) 

 

If the field flux linkage is constant, then qe ′  will be constant 

and 2 0,K = and the model is reduced to the classical model. 
The effect of 2K  variation on the electromechanical mode 
eigenvalues can be investigated by computing the sensitivity of 
any eigenvalue of interest λ  with respect to the parameter 2K , 
i.e. 2Re( ) / Kλ∂ ∂ . The task here is to design a controller to 
make the electromechanical mode eigenvalues to be insensitive 
to 2K . 

 
 

IV. EXAMPLE 
Consider the linearized model of a synchronous generator 

connected to a large power system as shown in Fig.1. The 
parameters tabulated in Table 1 are taken for this study. 

 
TABLE I 

PARAMETERS FOR STUDY SYSTEM 

1 1.0755K =  2 1.2578K =  3 0.3072K =

4 1.7124K =  5 0.0409K = −  6 0.4971K =

5.9doτ ′ =  4.74M =  0D =  

 
Then the numerical values for matrices A  and B  of the 
system model in (16) and (17) are obtained as 
 

0.5517 0 0.2909
0.2654 0 0.2269

0 377 0
A

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

                      (20) 

0.1695 0
0 0.211
0 0

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                     (21) 

 
   The open-loop eigenvalues and left/right eigenvectors for the 
study system are calculated as (22) and (23), respectively. 
 

1

2
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   The pair of eigenvalues 2 3,λ λ , often referred to as the 
electromechanical mode, is the eigenvalues associated with 
generator rotor oscillation. It is the primary objective of this 
study to design an output feedback controller to enhance the 
damping of the electromechanical mode. We can analyze the 
effect of 2K  variation on the electromechanical mode 
eigenvalues by computing the following sensitivity:  
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From (24), it is obvious that the electromechanical mode 
eigenvalues are much affected by 2K . It is desirable that the 
assigned closed-loop eigenvalues be insensitive to 2K . 

Now the closed-loop eigenvalues are chosen to be 
 

1

2

3

0.5517,
1.0 9.2434,
1.0 9.2434

j
j

λ
λ
λ

= −
= − +
= − −

                               (25) 

 
and the open-loop left and right eigenvectors are calculated as 
(26), respectively. 
 

1.5378 0 0
0.4741 0.3428 11.1387 17.0896 0.3895 0.3184 ,
0.4741 0.3428 11.1387 17.0896 0.3895 0.3184

TU j j j
j j j

⎡ ⎤
⎢ ⎥= − − − −⎢ ⎥
⎢ ⎥+ − + +⎣ ⎦

0.6503 0 0
0.0011 0.0156 0.0191 0.0156 0.0191
0.7597 0.8375 0.5459 0.8375 0.5459

V j j
j j

⎡ ⎤
⎢ ⎥= − + − −⎢ ⎥
⎢ ⎥− + −⎣ ⎦

        (26) 

 
 
   Note that a real part of –1.0 for electromechanical mode 
eigenvalues will give satisfactory dynamic behavior and the 
oscillation frequency is kept to remain unaltered. It is required 
that the assigned closed-loop eigenvalues be insensitive to 
parameter 2K . 
   Since the system output variables are ωΔ  and δΔ  we can 
express the output feedback control law as 
 

1 11 12 1

2 21 22 2

u g g y
u g g y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                         (27) 

 
For the system specification mentioned above, the output 

feedback gain matrix G  are obtained as 
 

11 12

21 22

0 1.7121
9.4787 0.0113

g g
G

g g
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
           (28) 

 
and the closed-loop system matrix A  is 
 

( )
0.5517 0 0
0.2654 2 0.2293

0 377 0
A A BGC

−⎡ ⎤
⎢ ⎥= + = − − −⎢ ⎥
⎢ ⎥⎣ ⎦

         (29) 

 
For the purpose of verification, the eigenvalues of the 

closed-loop system matrix A  are calculated and found to be 
exactly as those in (25). Moreover, the sensitivity for each of 
the closed-loop system eigenvalues with respect to 2K  is 
computed as (30) 

 

31 2

2 2 2

0
K K K

λλ λ ∂∂ ∂
= = =

∂ ∂ ∂                       (30) 

 
The eigenvalues in (25) with the values of sensitivity in (30) 

reveal that, with the designed output feedback controller, 
system damping has been greatly improved and the closed-loop 
system eigenvalues remain unaffected under the variations in 
parameter 2K . 

Simulation results are shown from Fig 2 to Fig 6. The control 
of the synchronous generator in a power system using modal 
insensitivity design is thus verified. Fig 2 and Fig 3 show the 
sensitivity of the open-loop system and closed-loop system 
eigenvalues under the variations in parameter 2K , respectively. 
As compared to those in Fig 2 and Fig 3, the results in Fig 4 
show that the proposed controller has improved on the 
sensitivity.  

Dynamic responses of generator angle and speed for the 
open-loop system and closed-loop system under the variations 
in parameter 2K  are shown in Fig 5 and Fig 6, respectively. 

 
 

V. CONCLUSION 
The use of modal insensitivity design for synchronous 

generator stabilization control in a power system has been 
presented in this paper. The design method is based on the 
concepts of eigenstructure assignment and sensitivity analysis. 
Only algebraic computations are needed and exact solution can 
be obtained without iteration. From the presented simulation 
results, it is found that the system damping has been greatly 
improved with the assigned eigenvalues, which are also made 
insensitive to the variations of the investigated parameter.  
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(a) eigenvalue 1λ  

 
(b) eigenvalue 2λ  

 
(c) eigenvalue 3λ  

 
Fig. 2 The sensitivity of the open-loop system eigenvalues under the 

variations in parameter 2K  
 

 

 
(a) eigenvalue 1λ  

 
(b) eigenvalue 2λ  

 
(c) eigenvalue 3λ  

 
Fig. 3 The sensitivity of the closed-loop system eigenvalues under the 

variations in parameter 2K  
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(a) eigenvalue 1λ  

 

 
(b) eigenvalue 2λ  

 

 
(c) eigenvalue 3λ  

 
Fig. 4 Comparison of the sensitivity for the open-loop system and 
closed-loop system eigenvalues under the variations in parameter 2K  
 

 

 
(a) Open-loop 

 

 
(b) Closed-loop 

 
Fig. 5 Dynamic responses of generator speed for the open-loop system 

and closed-loop system under the variations in parameter 2K  
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(a) Open-loop 

 

 
(b) Closed-loop 

 
Fig. 6 Dynamic responses of generator angle for the open-loop system 

and closed-loop system under the variations in parameter 2K  
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