
 

 

  
Abstract—The heart auscultation is the main investigation 

approach used to evaluate the possibility of a diseases. In order to 
improve the automatic diagnosis capabilities of auscultations, signal 
processing algorithms are developed. A basic task for the diseases 
diagnosis from the phonocardiogram is to detect the exact timing 
location of the events presents in the cardiac cycle, especially in 
pathological cases. In this paper is presented a new technique for 
segmentation and identification of cardiac sounds able to operate 
even in the case of cardiac anomalies, and without any additional 
reference signal such as electrocardiogram signal. A framework to 
arrhythmias detection based on the heart rate variability, is presented. 
The advantage in term of low computational burden inherited from 
the characteristics of fuzzy logic has been tested with a set of normal 
and abnormal heart sounds achieving satisfactory results. 
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I. INTRODUCTION 
N today medical prevention, the early diagnosis of cardiac 
diseases is one of the most important topics. 

The recent availability of intelligent electronic systems, 
supporting the automatic detection of cardiac pathologies, 
represents indeed a very useful way to shorten and make more 
reliable diagnostic procedures. There are many methods to 
extract information about pathologies.  

The visual analysis of heart beats can give evidence of 
particular anomalies. Techniques like the Magnetic Resonance 
Imaging, the Cardiac Computed Tomography or the 
Echocardiogram allow to give an image of the heart and 
cardiac valves activities [1]-[6] showing many detailed 
information on possible symptom of diseases. Though very 
exhaustive, such techniques require sophisticated, expensive 
and cumbersome equipment. Therefore, these analyses can be 
performed in medical facilities only by trained specialist 
technicians.                                                                                                           
Moreover, results are not immediate and therefore these 
exams do not fit both for domestic and emergency context.   
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Other techniques [7]-[8] rely on the "electrical 
characterization" of the heart. The analysis of the 
electrocardiogram (ECG) signal requires not expensive 
equipment to be performed and test results are instantaneously 
available, making such a medical procedure the first choice 
for screening examinations. 

An alternative approach is based on direct auscultation of 
heart sounds by means of stethoscopes. Phonocardiogram 
(PCG) requires very affordable equipment and skills common 
to all physicians. Such a technique is almost cost free and 
gives immediate results, even though not completely 
exhaustive. Its main drawback is that diagnoses are based on 
the experience and abilities of the physician, making the result 
not objective. 

The availability of electronic stethoscopes [9]-[15] opens 
the way to an automatic analysis of cardiac sounds, which 
may overcome the limitation of the subjective diagnosis. An 
effective automated diagnosis can be based upon the 
extraction of features from the heart sound and upon their 
correlation to specific pathologies. Several approaches were 
described in literature. 

In [16], combined analyses in the time domain and in the 
frequency domain are performed by evaluating how the 
energy distribution of the signal over frequency bands 
changes in time: pathological sounds can be distinguished 
from normal sounds. In [17] the authors propose an artificial 
neural network able to classify some types of murmurs. An 
analysis based on wavelet decomposition of the signal is 
proposed in [18]. The choice of a particular mother wavelet 
allows investigating mitral insufficiency from PCG. A third 
order statistical analysis is proposed in [19] as useful method 
to extract information from the acquired heart sounds. An 
algorithm for the non linear modeling of the cardiovascular 
apparatus, which generates cardiac sounds, starting from the 
time series data acquired with PCG is presented in [20]. 
Model parameters are tuned with an improved genetic 
algorithm and murmurs can be identified within the heart beat. 

The most part of researches are addressed to discriminate 
only specific pathologies. So, general rules to diagnose 
anomalies from the sound analysis are not given, as well as 
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none objective parameters to support an automatic diagnosis 
are clearly put into evidence. 

This work is focused on the segmentation of cardiac 
sounds, which is presented as the key point to perform a 
pathology-independent analysis. This paper presents also 
some preliminary results on automatic diagnosis of heart 
diseases. The paper is organized as follows: Section 2 
describes main heart sounds and their generation mechanisms; 
Section 3 discusses the extraction of analytical parameters 
from the signal and the segmentation algorithm; Section 4 
reports some experimental results obtained through software 
implementing the described procedures. 

II. HEART  SOUND  DESCRIPTION 
The difficulty to perform an accurate pathology detection 

based on the PCG is due to complexity of the cardiac signal 
and to the acoustic phenomena occurring during the heart 
activity. The following notes do not represent a complete and 
extended medical discussion about this issue, whose 
deepening is well beyond the scope of this paper, but they 
want describe how the sounds are related to their physical 
causes. 

Human  heart can be modeled as a four chambers pump 
with two superior atria that collect blood from veins and two 
inferior ventricles which pump blood into arteries [21]. Its 
right side (called right heart) is connected to the pulmonary 
circuit, while the left side (left heart) is connected to the 
systemic circuit. Two sets of valves prevent the blood from 
flowing backwards. They are classified as atria-ventricular 
valves (atria-ventricular and tricuspid) that regulate the blood 
flow between atria and ventricles, and semi-lunar valves 
(aortic and pulmonary) that separate the left heart from the 
aorta and the pulmonary artery. 

Cardiac sounds are generated by a plurality of complex 
mechanisms. In particular, they include: 

•    sounds (or tones): short lived burst of vibratory energy 
caused by contractions of cardiac valves and by the 
cardiac action potential;  

•    murmurs: that are caused by turbulences and ebbs of 
blood through atria and ventricular valves, usually due 
to inborn or acquired impediments. 

More in detail, two more intense sounds are audible in all 
subjects (Fig. 1). The first tone (S1) is generated by the 
deceleration of blood due to closure of atria-ventricular valves 
when ventricular blood pressure exceeds the atria one during 
heart contraction (systole). S1 has four different components 
coming one after the other: 

•    low frequency vibrations originated by muscular 
contraction of the left ventricle; 

•     high frequency vibration at the closure of mitral valves 
(M1); 

•    high frequency vibration due to tricuspid valve closure 
(T1); 

•    a low frequency and low intensity vibration caused by 
the ejection of blood. 

 

 
                      Fig. 1  A normal PCG trace. 
 
The second tone (S2) is generated by the decontraction of 

the heart (diastole), which closes the semi-lunar valves. S2 is 
constituted by two components, aortic (A2) and pulmonary 
(P2), both lasting less than 50 ms and with almost the same 
frequency content, but different amplitude (due to pressure 
differences between aorta and pulmonary artery). 

An additional tone (S3) is generated if ventricular pressure 
results lower than the atria during the diastole, so that mitral 
valve opens causing the rapid flowing of blood from it. S3 is 
usually considered normal in pre-pubescent and pubescent 
subjects, while it is considered pathological in adults.  

At last, a fourth tone (S4) can be heard at the end of 
diastole if atria contractions make the blood to flow into 
relaxed ventricles. This tone is considered pathological. 

Blood has a laminar flow through the heart, but some 
cardiac diseases can cause turbulences with associated 
vibrations called murmurs. Frequency spectrum of murmurs is 
usually within the range from 10 Hz to 1500 Hz. They are 
described and catalogued on the base of their intensity, 
duration or their placing within the cardiac cycle. Making 
reference to this last criterion, a common classification 
differentiates among systolic, diastolic and continuous 
murmurs. Within each class, there are further and more 
specific distinctions among murmurs occurring at the 
beginning, during or at the end of each phase.  

III. METHODS  FOR  AUTOMATIC  ANALYSIS 

A. Sound  Quality Requirements 
The possibility to indentify pathologies depends on the 

quality of the sound which can be reduced by high levels of 
external noise. Electronic stethoscopes with high rejection to 
environmental noise [9]-[15] should be employed to maximize 
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the reliability of diagnoses. Software filtering algorithms can 
be also applied to further enhance signal to noise ratio. 

It is good practice to evaluate sound quality when an 
electronic stethoscope is employed. A simple procedure 
consists in analyzing incoming data, isolated in long-time 
frame of 5-10 seconds, searching for some information. If the 
stethoscope head is not in contact with the patient body, no 
sound is detected and so, no analysis is required for this 
frame. No further examinations are required also when the 
stethoscope head rubs against the patient’s skin for a long time 
and the subsequent noise masks the signal.   

Even short-time spikes (e.g. 1000/fs samples) can reduce the 
quality of sounds. In this case, the problem can be fixed by 
pre-processing data with interpolation algorithms. 

Some parameters are typically used to investigate the 
quality of the signal: Root Mean Square (RMS), Volume 
Dynamic Ratio (VDR), Zero Crossing Rate (ZCR) and Silence 
Ratio (SR). Their expression are reported in (1)-(4), taking 
into account that x(n) denotes the nth sample of the input data, 
w(n) is a window of N samples and xj is the jth frame. 
Hamming window is a common choice.   
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 RMS provides information about the energy of the signal, 

while ZCR gives the rate at which the signal crosses the null 
value and so it is linked to the energy distribution through 
frequencies. SR is calculated through SF that represents the 
number of frames with root mean square value less than 10% 
of the max(RMS). All the conditions above described are 
reported in Table I. 

 
Table I. low sound quality conditions and solutions. 

Source Solution 
background noise HW and SW S/N enhancement 

no event/long-time spikes Ignore time frame 
short-time spikes Interpolation algorithm 

 
B. Signal  Segmentation 
Segmentation (or end-point detection) of the cardiac audio 

signal, i.e. the subdivision of the entire signal into single beat 
periods with the identification of S1 and S2, is the first 
fundamental step towards the automatic diagnosis of the heart 
sounds [22]-[24].  

Defining a general procedure to perform heart cycle 

isolation is not a trivial task. In fact, sounds with 
heterogeneous characteristics have to be faced. Fig. 2 shows 
some relevant cases: a murmur, a third tone and a tone-
masking phenomenon.  

S1 and S2 locations are not easy to find, because of the 
additive noise introduced by pathologies alter the normal  
sound morphology. 

 
Fig. 2  Three different types of heart pathologies:                         

pan-systolic murmur, third tone, and aortic insufficiency. 
 
Several methods have been proposed to segment normal 

heart sounds or specific pathology sounds. A peak 
identification is employed in [25] to tell apart S1/S2 from 
other peaks and murmurs. Then, period identification is 
performed counting the occurrences of systole/diastole 
alternation. The algorithm supposes systolic period to be 
shorter than diastolic period. [26] adopts a segmentation 
method based on the multi-band wavelet energy approach. 
Also this method relies on the same relationship between 
systolic and diastolic periods as the previous one. 

In the presented approach, RMS is the basic feature used in 
signal segmentation. Some authors [27] prefer to employ 
normalized average Shannon energy, because it enhances the 
frequency range where normal sounds (S1 and S2) are 
located. As a general consideration, complex methods require 
more computational power and are not always deployable on 
real-time processors. This is also the reason why authors 
chose to focus on a so simple index. 

At first, it is necessary to erase sounds due to anomalies and 
pathologies, which can mask the actual tones. A sixth order 
low pass Butterworth filter with poles at 100 Hz is applied to 
the signal. The effect of the filter applied to signals reported in 
Fig. 2 is shown in Fig. 3. Pathologies which result in a 
continuous sound, like patent ductus arteriosus, are already 
flagged as anomalies during the evaluation of signal quality, 
since characteristics of their RMS are quite similar to those of 
a persistent rub of the stethoscope head against the patient’s 
body.  
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Fig. 33  Pan-systolic murmur, third tone, and aortic 

insufficiency after filtering. 
 

Then, the algorithm seeks for points of the RMS satisfying 
the condition: 

)max(RMSRMS ⋅> γ              (5) 
where γ is a pre-fixed threshold. Short time spikes of the 
original signal have smaller energy if compared to that of 
actual tones. A right choice of γ allows to reject these 
contributions.  

Time intervals ΔTi,i+1 between two adjacent points over 
threshold γ·max(RMS), are calculated. If the condition: 

δ>Δ +1,iiT                   (6) 

is satisfied, both peaks are kept. On the contrary, the smallest 
one is discarded. This step allows to reject adjacent  peaks 
inherent to the same tone. In (6), δ is a fixed time interval 
chosen considering that the human heart beat can have 
frequency in the range 40 beats/min – 200 beats/min.  

Once tones are isolated, they can be identified. There are 
three possible cases: 
1. presence of S1 and S2 only 
2. presence of S1, S2 and a further tone 
3. presence of S1, S2 and two other tones 

An algorithm has been designed in order to parse the signal. 
Fig. 4 shows a flow chart of the segmentation process. For 
each tern of tones (i, i+1, i+2) the relative distances ΔTi,i+1 and 
ΔTi+1,i+2 are calculated. In the following, the hypothesis that 
systolic period is shorter than the diastolic one is assumed 
[25]-[27]. 
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Fig. 4  Flow chart of end-point detection algorithm. 
 

If the condition: 

2,11, +++ Δ=Δ⋅ iiii TTε               (7) 

with 1 < ε < 2 is fulfilled, it means that the tone i is a S1, i+1 
is S2 and i+2 is S1, otherwise i is a S2, i+1 is S1 and i+2 is 
S2. For each i, spanning from 1 to n – 2, where n is the 
number of peaks, this calculation is performed and results are 
stored into a matrix n × n – 2. Matrix elements outside the 
principal diagonal are set to null value. 
 

 
 

Fig.5  Labeling process applied to a normal sound and to a 
sound with a third tone.  

If each column contains the same values (excluding null 
values), each peak can be identified properly (Fig. 5a). 
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Otherwise, if this proportion is not always respected, as in the 
case of  Fig. 5b, it is not possible to label peaks. A more 
general procedure, involving groups of four peaks have to be 
adopted in this case.  
 

C. Diagnosis  of  a  Simple  Pathology 
This paper presents only the automatic detection of 

murmurs. With this term, authors mean components with 
lower energy (i.e. RMS) and higher frequency (i.e. ZCR) than 
a normal tone, as previously shown in Fig. 2, and located 
between tones.  

Fig. 6 shows an example of cardiac sound with evidence of 
such a pathology together with its RMS and ZCR. An 
algorithm which correlates these parameters to diagnose 
murmurs was designed and implemented.  

 

 
Fig. 6  Cardiac signal with systolic murmur and its 

associated RMS and ZCR. 
 

In particular, a portion of the signal is flagged as murmur if: 
)max(RMSRMS ⋅< ς              (8) 

)max(ZCRZCR ⋅>η               (9) 
Segmentation allows the simple distinction between systolic 

and diastolic murmurs. A more complete tool, based on an 
inferential fuzzy engine, is under development. 

 

IV. EXPERIMENTAL  RESULTS 
The previously described algorithms are implemented into a 

software tool, whose graphical interface is shown in Fig. 7.             
It allows to load files containing cardiac sound acquired with 
any electronic stethoscope (.wav). The signal is displayed 
together with the calculated parameters, for a visual 
comparison. All calculated data can be saved into binary files 
for further processing. 

A set of 48 cardiac signals with different pathologies, 
chosen among those disposable in [28]-[34], was analyzed and 
segmented. The success rate in the identification is 89.5%. 
These tests were performed with: γ= 0.2,  δ= 0.15 s,  ε= 1.3. 

 

 
Fig. 7  Main window of the analysis software. 

 
 The murmurs diagnosis algorithm was tested as well. In the 

case the pathology was actually present, its identification rate 
is 93.3%. In the case there was not any murmur, right 
diagnosis was reached in the 82.1% of cases. Tests were 
performed with ζ = 0.5 and η = 0.5. 

 

V. METHODS  FOR  ARRHYTHMIAS  CLASSIFICATION 
Arrhythmia is a term that indicates any cardiac rhythm that 

deviates from normal sinus rhythm.                                 
This disease may be due to a disturbance in impulse 

formation or conduction but it is not always an irregular heart 
activity. In fact respiratory sinus arrhythmia is a natural 
periodic variation corresponding to respiratory activity.  

Arrhythmia may occur with premature or retarded beats or 
a regular sequence of beats at a reduced (bradycardia) or 
accelerated (tachycardia) frequency. Their impulse formation 
can be sinus or ectopic (premature beat that is perpetuated in 
time), the rhythm regular or irregular and the heart rate fast, 
normal, or slow. 

Then the detection of abnormal cardiac rhythms and 
automatic discrimination from the normal heart activity 
became an important task for clinical reasons.  

 

A. Time  Domain  Analysis 
One of the advantages of the method proposed in this work 

is that the simple use of heart rate features can lead to the 
identification of arrhythmic cardiac  recordings and the 
procedure does not depends on the type of arrhythmia. 
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One of the most markers of individual’s health condition 
noted by specialists for assessing the heart activity and 
discrimination of cardiac abnormalities is the  Heart Rate 
Variability (HRV), that represents the automatic activity and 
its influence on the cardiovascular system. With HRV we 
refers to the beat-to-beat heart rate alterations that symbolizes 
the amount of fluctuation around the mean value of the 
rhythm. Usually the variability of heart rate can be estimated 
by calculating an index using statistical operations on the              
RR-intervals, or by spectral analysis on an array of                          
RR-intervals, where RR-intervals are typical values of an 
ECG analysis (Fig. 8).  

 

 
 

Fig. 8  A sketch of ECG signal. 
 

These values can be used in an investigation based on PCG 
too. In fact, the ECG heart rate is measured only by observing 
the duration of time intervals respect R waves (corresponding 
to ventricular depolarization) subsequent. This distances 
within the PCG are nothing but various cardiac cycles 
bounded by adjacent first tones and obtained using the heart 
sound segmentation algorithm previously described. Therefore 
we will refer to the various indices calculated  with the typical 
ECG nomenclature. 

There are two types of statistical indexes of heart rate 
variability that can be calculated. The indices beat-to-beat 
(short-term variability) representing fast variations of heart 
rate and the indices of long-term variability  relative to slower 
fluctuations. Both these parameters are calculated from                
RR-intervals that fall in a narrow time window. 

Variation in heart rate may be evaluated by various 
methods. Maybe the simplest to perform are time domain 
analysis (the type adopted in this work) on the segmented 
dataset. Time domain analysis results in markers obtained 
from the tachogram. With these methods both the 
instantaneous heart rate at any point in time and the 
differences between successive normal intervals are 
determined. 

From the original RR-intervals standard parameters are 
calculated: 

 
•    Mean of all RR-intervals in each segment. 
•    The standard deviation of all normal to normal                     

RR-intervals (SDNN), i.e. the square root of variance. 
This is the simplest feature that can be extracted from 
the tachogram, however it should be noted that total 
variance of HRV increases with the length of analyzed 
recordings. Thus in practice it is inappropriate to 
compare SDNN measures obtained from recordings of 
different durations. 

•    The standard deviation of successive differences 
between adjacent normal to normal RR-intervals 
(SDSD). 

•    The root mean square of successive differences of all 
normal to normal RR-intervals (RMSSD). 

•    The percentage of intervals presenting time duration 
difference between adjacent normal to normal                  
RR-intervals greater than 50 ms (pNN50). 

 
Beyond these, more complex statistical time domain indices 

could be considered particularly  those calculated  from a 
series of cycle intervals recorded over longer periods 
suggesting  the presence of very slow rhythms with a period 
greater than one hour too. 

 

B. Fuzzy  Inference  Model  Description 
When a clinical situation is very complicated, i.e. there are 

many variables and diagnostic rules, the fuzzy approach is 
particularly useful. It is easy to check and  to modify adding 
or deleting every fuzzy variable for obtain the better 
automated analysis.  

The fuzzy logic approach makes possible to integrate the 
notion of membership degree, which represents the amount of 
membership of an object to specific classes. In the fuzzy 
representation of any real phenomena the transition from one 
class is not done abruptly at a precise value but smoothly over 
an interval. The main idea in fuzzy classifiers is the possibility 
of belonging to more than one class at the same time which is 
not possible in hard classifiers. 

Fig. 9 shows schematic of the fuzzy classifier developed 
with Fuzzy Inference System (FIS) in Matlab’s editor. It is 
based on Mamdani’s method and inputs to the system are the 
features discussed in previously section.  

 

 
Fig. 9  FIS Editor of the fuzzy model. 
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For each one, the knowledge of the expert is expressed in 

natural way using linguistic variables represented by fuzzy 
sets. 

These sets are modeled by a number of membership 
functions (MF) mapping input space to resulting membership 
value. Each input feature is represented by linguistic values 
which distributions are defined by triangular membership 
functions (Fig. 10). That type of functions has the advantage 
of making calculations faster but could be adopted more 
complex functions for better distribution of input values.  

 

 
Fig. 10  MF of input variable mean cardiac frequency. 

 
In order to pass arguments to fuzzy system data clustering 

for all crisp inputs is performed. This is achieved building  
histograms of the values of each  feature for the various 
arrhythmias considered, so giving clusters of data whose 
ranges are the input arguments for the membership function 
curves.  

At this point the knowledge base is formed with a set of         
‘’If-Then’’ statements called fuzzy rules which performs a 
combination of different fuzzy sets in order to direct the fuzzy 
system and through which output is inferred. The defined 
fuzzy rule base is formed by nine rules and therefore is not 
complete because with five input features a higher number of 
combinations that can be made. That does not mean that the 
model is poorly representative since many feature 
combinations do not necessarily represent a real case. These 
rules has been obtained manually with the help of cardiology 
expert.  

Crisp values returned from fuzzy system in defuzzification 
procedure based on centroid calculation indicate degree of 
association with the different basic arrhythmias catalogued, 
that consist on tachycardia and bradycardia with various 
degree of seriousness and normal rhythm. 

 Fig. 11 shows trapezoidal shaped membership function 
used relatively to output. 

 

 
Fig. 11  Output membership function. 

 
 

VI. CONCLUSION 
A general algorithm for the segmentation of cardiac sounds 

is presented in the paper. It performs the extraction of features 
of the signal and allows the identification of heart tones. The 
segmentation process takes into consideration the root mean 
square values of the signal and it is based on physiological 
considerations about the positioning of the different tones 
within the cardiac cycle. The robustness of the algorithm 
versus possible short-time spikes and high frequency noises 
and sounds has been verified. A method for the diagnosis of 
murmurs has been implemented and experimental results 
confirm the pertinence of the proposed methods. 

The information provided by the end-point detection 
algorithm successively used to feed an inferential fuzzy 
system addressed to arrhythmias detection and classification. 

Mainly difficulty during design was due to the intuitive 
nature of the human way of thinking which cannot be easily 
transformed in a numerical method. Besides, the available 
amount of data was not large enough to allow the use of 
automated techniques for computing the membership 
functions as well as the selection of a combination of fuzzy 
rules yielding the best classification results. Consequently we 
relied only on the knowledge of the cardiologist to build the 
fuzzy model. As a future improvement, tuning of the 
membership function is likely to better the system 
performances. 
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