
 

 

  
Abstract—Circuits with switched capacitors are described by a 

capacitance matrix and seeking voltage transfers then means 
calculating the ratio of algebraic supplements of this matrix. As there 
are also graph methods of circuit analysis in addition to algebraic 
methods, it is clearly possible in theory to carry out an analysis of the 
whole switched circuit in two-phase switching exclusively by the 
graph method as well. For this purpose it is possible to plot a Mason 
graph of a circuit, use transformation graphs to reduce Mason graphs 
for all the four phases of switching, and then plot a summary graph 
from the transformed graphs obtained this way. First we draw nodes 
and possible branches, obtained by transformation graphs for 
transfers of EE (even-even) and OO (odd-odd) phases. In the next 
step, branches obtained by transformation graphs for EO and OE 
phase are drawn between these nodes, while their resulting transfer is 

multiplied by 2

1
−

z  or 2

1
−

− z . This summary graph can then be 
interpreted by the Mason’s relation to provide transparent voltage 
transfers. Therefore it is not necessary to compose a sum capacitance 
matrix and to express this consequently in numbers, and so it is 
possible to reach the final result in a graphical. 
 

Keywords—Switched capacitors, two phases, transformation 
graph, Mason’s formula, voltage transfer, summary graph.  

I. INTRODUCTION 

NALYSIS of electric circuits is necessary not only for 
computing of circuit properties but also understanding 
their principles. The computer methods are a powerful 

tool for symbolic analysis of circuit parameters [7]. But it is 
advantageous to have a tool capable to clear and simply 
symbolic analysis, too. The graphs methods can be considering 
as this tools. Thanks to its clarity, the graphic method is 
extremely suitable even for understand of these networks. A 
clearly arranged set of the transformation graphs derived for 
different types of the switching circuits can be used for 
analyzing capacitor switched networks and for understand of 
course, too. The M-C signal flow graphs are used to the design 
[8] and analysis [2] continuous time circuits and periodically 
switched linear circuits, too. The transformation graphs are 
commonly used for assembly the final matrix considering all 
phases [6] to solving electronics circuits and matrix is 
calculated by algebraic minors [10]. It means this method is 
combination graph and numerical methods, booth. But solving 
is possible by graphs only in selected circuits, as is described 
follows. 

 
 
 

II.  PRINCIPLE OF THE METHODS 

A. Summary Graph Construction 

Solving circuits with switched capacitors [9] by means of 
nodal charge equation method system [3], [4], [5], leads 
generally to an equation system (1) 
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which can have the following from, for instance (2). 
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This system can also be illustrated by a graph, the construction 
of which can proceed this way: for example the last (fourth) 
equation can be considered in the following form (3). 
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while for the sake of clarity we laid 01 =OV , so the product 

0. 121 =OVC  is thus zero (and will fall out of the equation). 

This fourth equation will be rewritten so that the fourth 
variable will be expressed from it. 
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The equation can be interpreted so that the addition to the 
variable 

OV2
, multiplied by the coefficient 

22C  from the 

variable 
EV1

 has the value of 
21C  multiplied by the coefficient 

2

1
−

− z , and the addition from the variable 
EV2

 has the value of 

22C  multiplied by the coefficient 2

1−
z . Therefore the very loop 

at the node 
OV2

 has the transfer 
22C , the branch from the node 
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SV1
 to the node 

LV2
 has the transfer 21

2

1

.Cz
−

−  and finally, the 

branch from the node 
SV2
 to the node 

OV2
 has the transfer 

22
2

1

.Cz
−

. The above mentioned construction is shown by the 

graph in Fig.1. 
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Fig. 1 graph of equation C22.V2O=-z-1/2.C21.V1E.+z-1/2.C22.V2E 

B. Construction Generally 

The above mentioned construction can be used for plotting a 
summary graph of the SC circuit, which will thus be plotted by 
first drawing the nodes and possible branches, obtained by 
transformation graphs for transfers of EE (even-even) and OO 
(odd-odd) phases, as shown in Fig.2. 

1E 2E 1O

EE OO

2O

 
Fig. 2. the first step of the construction: EE and OO transfers 
 

In the next step, branches obtained by transformation graphs 
for EO and OE phase are drawn between these nodes, while 

their resulting transfer is multiplied by 2

1
−

− z  or 2

1
−

z . For this 
reason e.g. the resulting graph with an EO phase, including its 
branch between nodes 1 and 2 with the transfer 

1C , will be 

represented by a branch going from the node E1  to the node 

O2  in the summary graph and having the transfer 1
2

1

.Cz
−

− . In 

the same way the resulting graph in the OE phase including its 
own loop at node 2 with the transfer 2C will be represented by 

a branch going from the node O2  to the node E2  in the 

summary graph and having the transfer 2
2

1

.Cz
−

, as shown in 

Fig.3.  
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Fig. 3 the second step of the construction: EO and OE transfers 
 

Thereby obtained summary graph is then evaluated by 
means of the Mason’s rule for the T  transfer of the graph 
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T  [2]. Therefore it is not necessary to 

compose a sum capacitance matrix and to express this 
consequently in numbers, and so it is possible to reach the 
final result in a graphical way.  

C. Evaluation of the Transformation Graph 

Evaluation of the transformation graph in OE and EO 
phases can proceded this way: In an equation system (1), we 
laid 0=OV , so the product is (5). 
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Equation 
EOEO VCzQ ..2

1−
−=  can be interpreted so that the 

addition to the variable 
OQ  from the variable 

EV . The 

capacity is given by the relation α..
~

. QV aCaC=  therefore for 
this situation is 

EVV = , and 
OQQ =  , and the transfer of the 

voltage branch is E and transfer of the charge is O. Therefore 

the loop from the node C  to the node C
~

 has the transfer of the 
voltage , and return to the node C  has the transfer of the 
charge  . Described construction is shown in Fig.4 for 
phase OE and for EO phase, too. 
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Fig. 4 the construction of the T-graph for OE and EO 

III.  EXAMPLE OF THE SOLVING 

The above described way of a graph evaluation will be 
illustrated by the following example. A circuit with a switched 
capacitor has got the schematic wiring diagram shown in 
Fig.5. 

C2
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O

+

_
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E

 
Fig. 5 schematic diagram from the example 
 

The circuit has four nodes; therefore the starting graph of 
the circuit in Fig.6 has also four nodes. The 

1C  capacitor is 
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connected to the second node, the 
2C capacitor then between 

the third and fourth nodes, which in the simplified starting 
graph in Fig. 5 is marked by noting 

1C  above the second node 

and 
2C  between the third and fourth nodes. In the even-

numbered EE phase nodes 1 and 2 will be connected by 
closing the switch, which is demonstrated in the graph by their 
transformation – uniting into a single node 1E.=2E. The 
capacity in this resulting node is given generally by the 

relation α..
~

. QV aCaC= , where C
~

 is the capacity of the 

original node, Va , Qa  are then the branches of the 
transformation graph with the transfers of voltage  and 
of charge . Thus the resulting capacity here will be 

1C . 
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Fig.6 the transformations graphs for EE, OO, EO and OE phases 
 

The operational amplifier is connected to the third node by 
its inverting input and into the fourth node by its output, and 
consequently the branch with the charge transfer of the 
transformation graph goes from the node 3, the branch with the 
voltage transfer of the transformation graph enters the node 4. 
Following this transformation graph, the capacity 

2C  

connected between nodes 3 and 4 then transforms into the 
resulting capacity of the amount 

2C− , as the capacitor 
2C is 

connected to the node 3 by one of its ends, therefore the 

inherent look at this node has the transfer 
2C  and is 

transformed according to the equation α..
~

. QV aCaC= . The 
branch between the nodes 3 and 4 with the transfer 

2C  is 

transformed to the inherent loop with the transfer 
2C− , 

because in the relation α..
~

. QV aCaC=  is now 1−=α , as the 
branch of the original graph converts to the inherent loop in 
the resulting transformed graph. In the odd phase OO by  
closing the switch the nodes 2 and 3 will be connected, which 
will demonstrate in the graph by their transformation – uniting 
into a single node 2O.=3O., and this resulting node is at the 
same time the input node of the operational amplifier. 

In the remaining phases EO and OE, we start, according to 

the equation α..
~

. QV aCaC= , along the branch with the 

voltage transfer Va from the resulting node to the original 
node and we enter back to the resulting node along the branch 
with the charge transfer Qa . The transformation graphs for all 

the four cases are in Fig.6.  
The summary graph obtained from the partial transformed 

graphs from the Fig.6 by the above mentioned procedure is 
then shown in Fig.7. First the results of the transformed graphs 
for EE and OO phases are plotted (in case of this example 
only) as nodes. 

C1 - C2

-z-1/2.(-C1)

z-1/2.(-C2)
1E.=2E. 3E.=4E. 3O.=4O.

z-1/2.(-C2)

- C2

 
Fig.7 the summary graph of the SC circuit from Fig.5 
 

In the next step, the results of the transformed graph for the 

EO and OE phases multiplied by 2

1
−

− z  or 2

1
−

z  are then drawn 
between these nodes as branches, i.e. the branch with the 

transfer ).( 1
2

1

Cz −−
−

 between the nodes 1E.=2E. , and 

3O.=4O., and the branches with the transfers )( 2
2

1

Cz −
−

 

between the nodes 3E.=4E., and 3O.=4O. 
By evaluating this summary graph, which is done by 

substitution into the Mason’s formula 
∑
∑
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we get the following final results this way . 
From the graph it is obvious that the entry node is: 1E or the 

first node in the even phase, therefore there will only be 
transfers from the even phase of the first node. It is further 
evident from the graph that the exit (i.e. fourth) node exists 
here both in the even phase as: 4E(4E.=3E.) and in the odd 
phase as: 4O(4O.=3O.). It is thus possible to express in 
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numbers the two following transfers: 
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and for the second one  
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IV. SOLVING BY A MATRIX METHOD 

A. Solving by Reduced Nodal Method 

To compare the solution of a circuit with switched 
capacitors by the above mentioned purely graph method, we 
will present a calculation of the same circuit by the usually 
used method of nodal charge equations using matrix calculus 
in the conclusion. In doing so, this solution will be done in just 
as detailed steps as the graph method so that we can compare 
both methods. The circuit in Fig.5 has four nodes, so the 
partial capacitance matrix CO will be of the fourth.  
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An ideal operational amplifier, connected by its input into 
the node 3 and by its output into the node 4, when applying a 
modification of the node voltage method (so called reduced 
nodal method [1], [2]), modifies this matrix, so the matrix will 
get the shape (9).  
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The final capacitance matrix (10) of the circuit will be 
composed of four of those sub-matrices (9), while the sub-
matrix lying in the adjacent diagonal of the main matrix will be 

multiplied by 2

1−
− z . 
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In the next step this matrix will be reduced due to closing 
the switches in the following way : 

Closing the switch in the even phase will be manifested by 
connecting nodes 1 and 2 in the even phase, and thus by 
uniting the voltages 

EV1
 and 

EV2
, which means that the matrix 

columns 1E and 2E can be summarized, and by summarizing 
charges, which means that the matrix rows 1E and 2E can be 
summarized. The switch in the odd phase connects the node 2 
to the node 3, which is, though, the entry node of an ideal 
operational amplifier, which has however zero voltage due to 
the infinite voltage gain of the ideal operational amplifier, 
which is manifested  by the possibility to leave out the 2O 
column from the matrix. The capacitance matrix will thus be of 
the three grade, and will have the following form (11). 
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As the circuit is stirred only in the even phase, the only non-
zero input charge is the charge 

EQ1
, so only two transfers can 

be calculated, namely 
E

E

V

V

1

4  and 
E

O

V

V

1

4  , which can be expressed 

by applying the algebraic complements theory like this 
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and for the second one  
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B. Solving by Modified Nodal Method 

This solution will be done in just as detailed steps as the 
graph method so that we can compare both methods, too. 

The circuit in Fig.5 has four nodes, so the partial 
capacitance matrix CO will be of the fourth.  

CO=
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An ideal operational amplifier, connected by its input into 
the node 3 and by its output into the node 4, modifies this 
matrix, so the matrix will get the shape (15). 

V. SOLVING CIRCUITS CONSIDERING OPERATIONAL 

AMPLIFIER WITH DIFFRACTION OF ITS FREQUENCY 

CHARACTERISTICS OF AMPLIFICATION 

A. Construction of the Transformation Graph with the 
Break Point Frequencies 

Nevertheless, the voltage amplification decrease itself is 
caused by the input resistances 11h  and the capacity between 

the base and the collector of transistors 
BCC  which the 

operational amplifier is made up of and which create the 
integrated RC cells. 

The ratio of the output to input voltage of the integrated cell 
is (14). 

1

1
1

1

1

2

+
=

+
=

CRj
Cj

R

Cj

V

V

ω
ω

ω      (14) 

For the threshold frequency 
Mω  it holds that 
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ω , which implies 
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ωω = . By introducing this frequency the relation for 

the ratio of the output and input voltages will get the shape 
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If both the break point frequencies on amplification are 
considered, the second frequency 

2ω , coming after the 

frequency 
Tω  (when 1

1

2 =
V

V ), is expressed by another 

integrated cell, for whose output to input voltage ratio it holds 

that 
s+2

2

ω
ω , which together with the first frequency gives the 

resulting relation (16). 
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These relations are then used as transfers of voltage of the 
branches of the transformation graph, where amplification 
occurs, for example the graph of an operational amplifier 
considering two break point frequencies for an inverting input 
in the node 1

~
 and an output in the node 2

~
 is in Fig. 8a, and 

the graph of a differential operational amplifier concerning a 
single break point frequency on the amplification 
characteristics in an open feedback loop in the Fig.8b. 
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Fig. 8 transformation graphs concerning break point frequencies on 
the amplification characteristic 
 

Since an operational amplifier in a switched circuit processes 
high frequencies, the frequency characteristics of its 
amplification is taken into account by considering either one 

frequency 
sA

A
A

T

T

+
=

ω
ω.0  or both frequencies 

ssA

A
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T

++
=

2

20 .
.

ω
ω

ω
ω  of its diffraction, when 

0A  is the 

maximum value of amplification in an open loop of feedback. 

B. Example 

The described way of calculation will be illustrated by an 
example of solution of a circuit with a switched capacitor 
whose schematic wiring diagram is shown in Fig.5. 

The circuit in Fig.5 has four nodes; therefore the starting 
graph of the circuit in Fig. 9 has four nodes, too. 

The operational amplifier is connected to the third node by 
its inverting input and into the fourth node by its output, and 
consequently the branch with the charge transfer of the 
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transformation graph goes from the node 3, the branch with the 
voltage transfer of the transformation graph enters the node 4 
and the branch with the voltage transfer expressing the final 

amplification of the operational amplifier by the value 
A

1  

enters the node 3. 
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Fig.9 the transformations graphs for EE, OO, EO and OE phases 
 

Following this transformation graph, the capacity 
2C  

connected between nodes 3 and 4 then transforms into the 

resulting capacity of the amount 
22.

1
CC

A
− , as the capacitor 

2C  is connected to the node 3 by one of its ends,  therefore the 

inherent look at this node has the transfer 2C  and is 

transformed according to the equation α..
~

. QV aCaC= , to the 

inherent loop 
2.

1
C

A
, where 

A
aV 1= . 

The branch between the nodes 3 and 4 with the transfer 2C  

is transformed to the inherent loop with the transfer 2C− , 

because in the relation α..
~

. QV aCaC=  is now 1−=α , as the 
branch of the original graph converts to the inherent loop in 
the resulting transformed graph. In the odd phase OO by  
closing the switch the nodes 2 and 3 will be connected, which 

will demonstrate in the graph by their transformation – uniting 
into a single node 2O.=3O., and this resulting node is at the 
same time the input node of the operational amplifier. 
Therefore a branch with the charge transfer Qa  of the 
transformation graph of the operational amplifier issues from 
this node. 

In the remaining phases EO and OE, we start, according to 

the equation α..
~

. QV aCaC= , along the branch with the voltage 

transfer Va  from the resulting node to the original node and 
we enter back to the resulting node along the branch with the 

charge transfer Qa . The transformation graphs for all the four 
cases are in Fig. 5. 

The summary graph obtained from the partial transformed 
graphs from the Fig. 5 by the above mentioned procedure is 
then shown in Fig. 10. First the results of the transformed 
graphs for EE and OO phases are plotted (in case of this 
example only) as nodes. 

C1 1/A.C2- C2
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z-1/2.(1/A.C2-C2)

1/A.(C1+C2)- C2

 
Fig.10 the summary graph of the SC circuit from Fig.5 for real 
operational amplifier 
 

In the next step, the results of the transformed graph for the 

EO and OE phases multiplied by 2

1
−

− z  or 2

1
−

z  are then drawn 
between these nodes as branches, i.e. the branch with the 

transfer ).( 1
2

1

Cz −−
−

 between the nodes 1E.=2E. and 3O.=4O. 

and the branches with the transfers )
1

.( 22
2

1

CC
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z −
−

 between 

the nodes 3E.=4E. and 3O.=4O. 
By evaluating this summary graph which is done by 

substitution into the Mason’s  formula 
∑
∑

−
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=
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.
KK

ii

VSV

p
T  

we get the following final results this way: 
From the graph it is obvious that the entry node is: 1E or the 

first node in the even phase, therefore there will only be 
transfers from the even phase of the first node. It is further 
evident from the graph that the exit (i.e. fourth) node exists 
here both in the even phase as: 4E (4E.=3E.) and in the odd 
phase as: 4O (4O.=3O.). It is thus possible to express in 

numbers the two following transfers 
E

E

V

V

1

4  and 
E

O

V

V

1

4 , for which 

it holds that: 
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where 
IJV  is the voltage and V  or )(KV  is transfer of the loop, 

by canceling out and removing the complex fractions 
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By substituting 
sA

A
A

T

T

+
=

ω
ω.0  or 

ssA

A
A

T

T

++
=

2

20 .
.

ω
ω

ω
ω  we 

can calculate the frequency dependence. 

VI. SOLVING BY A MATRIX METHOD  

To compare the solution of a circuit with switched 
capacitors by the above mentioned purely graph method, we 
will present a calculation of the same circuit by the usually 
used method of nodal charge equations using matrix calculus 
in the conclusion. In doing so, this solution will be done in just 
as detailed steps as the graph method so that we can compare 
both methods. 

The circuit in Fig. 5 has four nodes, so the partial 
capacitance matrix CO will be of the fourth grade and after 
recording by an algorithm analogous to the node voltage 
method it will have the following form (19). 

CO = 
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An operational amplifier, connected by its input into the 

node 3 and by its output into the node 4, when applying a 
modification of the node voltage method (so called forbidden 
line method), modifies this matrix so that it replaces its line 
with the index corresponding to the index of the exit node of 
the operational amplifier (here the fourth line) by its coupling 
equation 

34 .VAV = , rewritten to the shape 0.1. 43 =− VVA , so 

the matrix will get the shape (20). 

CO = 
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The capacitance matrix of the circuit will be composed of 
four of those sub-matrices, while the sub-matrix lying in the 
adjacent diagonal of the main matrix will be multiplied by 

2

1−
− z , which means that all elements of these sub-matrices 

will be multiplied by 2

1−
− z . The capacitance matrix will thus 

be of the eighth grade and will have the following form (21). 
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                     (21) 
 

In the next step this matrix will be reduced due to closing 
the switches in the following way: 

Closing the switch in the even phase will be manifested by 
connecting nodes 1 and 2 in the even phase, and thus by 
uniting the voltages 

EV1
 and 

EV2
, which means that the matrix 

columns 1E and 2E can be summarized, and by summarizing 
charges, which means that the matrix rows 1E and 2E can be 
summarized. 

The switch in the odd phase connects the node 2 to the node 
3, which is, though, the entry node of an ideal operational 
amplifier, which has however zero voltage due to the infinite 
voltage gain of the ideal operational amplifier, which is 
manifested  by the possibility to leave out the 2O column from 
the matrix. 

In the odd phase the circuit is also disconnected by the 
switch from the entry node 1 and that will be shown in the 
matrix by the possibility to leave out both the row and the 
column 1O. 

After the above described reductions, the resulting matrix C 
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will get the following form (22). 
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As the circuit is stirred only in the even phase, the only non-
zero input charge is the charge 

EQ1
, so only two transfers can 

be calculated, namely 
E

E

V

V
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4  and 
E
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4  , which can be expressed 

by applying the algebraic complements theory like this 
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after numeration by an expansion along the item of the last row 
and quite an elaborate simplification the result will be 
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and for the second one 
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after numeration by an expansion along the item of the last row 
and quite an elaborate simplification the result will be 
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i.e. identical with the result obtained by the transformation 
graph method, but rather more difficult. 

By substituting 
sA

A
A

T

T

+
=

ω
ω.0  or 

ssA

A
A

T

T

++
=

2

20 .
.

ω
ω

ω
ω  the 

frequency dependence can be calculated again. 

VII.  CONCLUSION 

While in case of using the graph method a graph was 
indicated, a transformation graph was plotted and from its 
results a summary graph was drawn and evaluated by the 
Mason’s rule, after which the result was obtained by an easy 
simplification, in case of solving by the matrix calculus the 
procedure was much more complicated. First a partial 
capacitance matrix had to be composed, in the next step it was 
modified by an operational amplifier. From four matrices 
obtained by this a capacitance matrix was constructed and was 
reduced by the activity of switches; from the reduced matrix 
three algebraic complements were made up and they had to be 
expressed by means of an expansion because they were of a 
higher grade than 3. After an elaborate simplification in four 
steps, the same result was reached. In case of using the graph 
method a graph was solving, but modified nodal method is 
rather difficult.  

ACKNOWLEDGMENT 

This work was supported by the Department of Electronics 
and Informatics of the College of Polytechnics, Jihlava, Czech 
Republic. 

REFERENCES   

[1] Biolek, D., Solving Electronic Circuits. BEN Publisher Prague, 2004 
(in Czech). 

[2] Biolek, D., Biolkova, V. „Analysis of Circuits Containing Active 
Elements by using Modified T-graphs.“ Contribution to the book 
"Advances in Systems Science: Measurement, Circuits and Control", 
WSEAS Press, Electrical and Computer Engineering Series, 2001. pp. 
279-283. ISBN 960-8052-39-4. 

[3] Biolek, D., Biolkova, V., “Flow Graphs Suitable for Teaching Circuit 
Analysis.“ in Proceedings of the 4th WSEAS International Conference 
on Applications of Electrical Engineering – AAE´05, Praque, Czech 
Republic, March 13-15, 2005. 

[4] Biolek, D., Biolkova, V., „Flow Graphs for Analysis (not only) Current-
Mode Analogue Blocks.“ Contribution to the book "Recent Advances in 
Circuits, Systems and Signal Processing", WSEAS Press, Electrical and 
Computer Engineering Series, 2002. Editors N. E. Mastorakis and G. 
Antoniou, pp. 151-156. ISBN 960-8052-64-5. 

[5] Čajka, J., Kvasil, J. Theory of Linear Networks. SNTL/ALFA, 1979 (in 
Czech). 

[6] Dostal, T. The Analysis of the Active Components Containing Switched 
Capacitors by Nodal Voltage Method. Electronics horizont, 1984, 45, 
no.1, pp.21-26. (in Czech) 

[7] Hospodka, J., Bicak, J. „Application for Symbolic Analysis of Linear 
Circuits Including Switched Circuits” in Proceedings of the 6th WSEAS 
International Conference, System Science and Simulation in 
Engineering, Venice, Italy, November 21-23, 2007, pp. 254-258. 

[8] Jerabek, J., Schottner, R., Vrba, K., „Full Differential Universal Filter 
with Current Active Elements.“ in Proceedings of the 4th WSEAS 
International Conference Circuits, Systém and Sigals (CCS´10), Corfu 
Island, Greece, July 22-25, 2010 

[9] Kliros, G.S., Andreatos, A. S. “Using Transistor Roles in Teaching 
CMOS Integrated Circuits”. Proceedings of the 3rd WSEAS/IASME 
International Conference on ENGINEERING EDUCATION, 
Vouliagmeni, Greece, July 11-13, 2006, pp.171-176. 

[10] Vlach, J., Singhal, K., Computer Methods for Circuit Analysis and 
Design.. Van Nostrand Reinhold, New York, 1994.  

 
Bohumil Brtnik  was born in Jihlava, 1959. He received the MSc. degree in 
communication engineering and electronic at the BUT of Brno, 
Czechoslovakia, in 1983. He joined the Department of the Electronics and 
Informatics of the College of Polytechnics Jihlava as Assistant Professor. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 5, 2011 278




