
 

 

 

 Abstract— many different methods of ECG compression 

have been suggested over the last number of decades. They are 

typically classed into to three distinct groups – Direct Data, 

Parameter Extraction and Transform methods. The metric 

most frequently used to differentiate between the accuracy of 

the different types of compression is a percentage root-mean-

square difference (PRD) calculation versus compression ratio, 

despite the accuracy of such a method having been 

acknowledged as greatly limited. In this article PRD 

calculation and an improved partial PRD difference method 

are investigated and their significant shortcomings highlighted. 

Dynamic time warping is presented as a method of quantifying 

the approximation error which may be present but goes 

undetected by the percentage PRD calculation due to 

approximation of the ECG. Dynamic time warping provides a 

significantly more accurate metric for comparing compression 

algorithms and their respective accuracies. It allows for 

detailed comparison of differing approximation methods and 

variations of the same approximation method, not possible 

using the RMS difference versus compression ratio. Its 

usefulness is fully investigated by comparing several direct 

data compression algorithms, including a novel threshold 

variation of the scan along polygonal approximation 

technique. Results provided demonstrate possible misdiagnosis 

of cardiac conditions resulting from the limitation of the RMS 

difference versus compression ratio metric and the benefits of 

the application of dynamic time warping in examining the 

accuracy of different compression techniques.  

 

Keywords— ECG Compression, Dynamic Time Warping, 

Approximation Error, Scan Along Polygonal Approximation, Error 

Threshold, Pattern Recognition, Signal Processing. 

I. INTRODUCTION 

ESPITE the rapid increase in storage capability and data 

transmission speeds, growth in the use of Holter monitors 

and remote ECG transmission [1]-[3] makes the requirement 

of ECG compression as prevalent today as it was during the 

1960’s when research into ECG compression techniques 

began. ECG compression methods are classed into three 

distinct groups - direct data compression, transforms and 

 
 

 

parameter extraction.  Direct data compression algorithms 

detect redundancies in the data by analyzing the actual samples 

of the signal. Numerous direct data compression techniques 

have been developed with increasing complexity including the 

AZTEC algorithm [4], [5] the SAPA algorithms [6] and piece-

wise approximation algorithms [7], [8]. There is a range of 

transformation and parameter extraction methods also having 

varying levels of complexity utilizing Fourier, Wavelet and 

Principal Component Analysis techniques such as [9]-[13]. 

  In general, direct methods are considered superior to 

transforms in terms of system simplicity and approximation 

error [11], although transform methods typically provide a 

higher compression ratio and are not as sensitive to original 

recording sampling frequency [14].  

  Many comparative studies of these methods and 

algorithms use a percentage root-mean-square difference 

(PRD) between the original input signal and the reconstructed 

version as a test of accuracy [15]. However the PRD provides 

very limited insight into the ability of a compression algorithm 

to preserve diagnostically significant information contained 

within the recording [14]. Indeed the final decision on the 

clinical acceptability of the approximation usually depends on 

the reconstructed signals being visually inspected by a 

cardiologist [16].  

  This article, is an extension of the early stage work 

reported in [17] and proposes that the accuracy of a 

reconstructed approximation in terms of preservation of the 

original signal morphology and the location of its fiducial 

points (p-wave onset and termination etc) can be better 

measured using a two pronged method. First of all the original 

and approximated signals are divided into ECG components 

and inter-beat durations with partial PRD’s calculated over the 

two groups separately. In theory one would wish to maximize 

the PRD of inter-beat durations and limit the PRD over the 

actual ECG components and this test gives an insight into 

where the resulting compression is obtained. Secondly, a 

signal processing pattern recognition method known as 

dynamic time warping (DTW) can be used to warp the original 

and reconstructed signals to each other and ensure the patterns 

around the fiducial points of the original signal have remained 

intact. 

  For the purposes of this article the accuracy of six 

direct data compression methods shall be compared, although 
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dynamic time warping could also be applied to any 

reconstructed approximation from the transform compression 

methods. Three of the approximation algorithms suggested by 

the authors here are novel in that they combine existing fixed 

error threshold algorithms with variable error threshold 

calculation techniques. The results will demonstrate that DTW 

can be used to identify accuracy differences not only between 

completely different algorithms but also subtle variations of 

the same algorithm e.g. with fixed and variable error 

thresholds. Indeed, when selecting an approximation 

technique, the user needs to find a balance between 

compression ratio and accuracy, a process that simple PRD 

calculation makes extremely difficult. Approximations 

yielding the same total PRD value from each algorithm will be 

tested and the results compared using partial PRD’s and DTW 

to demonstrate the limitations of the PRD and the benefits of 

the new DTW approach. 

II. BACKGROUND 

To demonstrate the advantages of DTW as a measure of 

compression accuracy several compression algorithms shall be 

used to approximate the ECG recordings. The algorithms 

include the piecewise linear approximation algorithm (PLA) as 

proposed by Koski et al [7] and the scan along polygonal 

algorithm as suggested by Ishijima et al [6]. Three novel 

techniques based on a combination of the scan along polygonal 

algorithm and Furhts amplitude zone time epoc coding [4] 

algorithm with variable threshold shall also be used. 

A. The Piecewise Linear Approximation 

The PLA algorithm as reported by Koski et al [7] presents a 

method of dividing the ECG into segments without the 

necessity of defining a large number of parameters to control 

the segmentation process. Segmentation methods such as this 

are used in pulse wave recognition, signal compression and 

pre-processing for pattern recognition applications [18] as the 

fundamental principle is the same in each case.  

 The algorithm starts with the first sample S(n) in the 

signal to be approximated and windows to a higher sample 

number in the signal S(n+L) where L is the widow length in 

terms of samples. It connects the two points with a line to form 

the new approximated segment of the signal and then 

calculates the error voltage ε as the Euclidean distance 

between the approximated line and each sample of the original 

signal segment. If the error exceeds a predefined error 

threshold at a particular sample the segment is now terminated 

at this point and the process repeats. If not, as in Fig. 1, the 

algorithm would then extend the endpoint to S(n+2L) and the 

process is repeated.  

The overall result is that the approximated signal shall 

always be maintained within a predefined error threshold of 

the original signal. The sample number of the beginning, end 

and length of the segment can be recorded and used to 

reconstruct the approximation. 

B. Scan along Polygonal Approximation (SAPA) 

 Presented by Ishijima et al [6], the SAPA technique is based 

on calculating the slope from one data point (the current 

vertex) to another the current end point of the spline ± the 

threshold error. The slopes from the vertex S(n) to the next 

point S(n+1)±Vth are recorded as M1 and M2. As the end 

point of the spline is extended from one point to the next, the 

smallest slope value from the vertex to the endpoint plus Vth is 

saved as M1 and the largest slope value from the vertex to the 

endpoint minus Vth is saved as M2. At all times the following 

slope criteria must hold: 

            M1>M2          (1) 

 If for any candidate end point of the spline the criteria 

defined in (1) does not hold, as in Fig 2, the spline is 

terminated at the previous endpoint which will then act as the 

vertex of the next spline. The process is repeated on a sample 

by sample basis for the entire recording with the vertices and 

length of each spline recorded for reconstruction.  

C. Scan along Polygonal Approximation with Centre Line   

   Criterion (SAPA-2) 

An extension of the first scan along polygonal compression 

method SAPA, the SAPA-2 algorithm is an ECG compression 

technique also presented by Ishijima et al [6]. It is based on 

calculating a number of slopes from a selected vertex (start 

point of a segment S(n) in Fig 3.) to a candidate end point of 

the segment. The algorithm initially selects the next data point 

S(n+1) as the candidate endpoint and calculates a slope to 

points at a predefined threshold above and below the sample. 

It then calculates a slope from the selected vertex to the 

candidate end point forming a centre line. The next point in the 

data, S(n+2) in Fig. 3, is now selected as the new candidate 

end point and the slopes are again calculated.  

The smallest slope value from the vertex to the endpoint 

plus Vth is again saved as M1 and the largest slope value from 

the vertex to the endpoint minus Vth is saved as M2 as shown 

in Fig. 3. As the endpoint is incremented and the segment 

 
Fig. 2 The SAPA Algorithm 

 
Fig. 1 The PLA Algorithm 
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length increases the following criteria must always apply: 

                        MC≤M1 and MC≥M2              (2) 

If they do not the segment is terminated, at the previous 

sample (S(n+1) in Fig.3) forming the end of the current 

segment and the vertex for the next. 

D. Variable Error Threshold Approximation – The 

Amplitude Time Epoc Coding Algorithm (AZTEC) 

 The AZTEC algorithm [4] is intended for real time ECG 

data compression and typically offers a less accurate 

representation of the ECG signal than the other algorithms 

discussed. It effectively uses a sample and hold process to 

linearise the ECG by holding a sample until the approximation 

error exceeds the acceptable threshold error voltage. It 

generates a high compression ratio, low accuracy linearised 

signal as demonstrated in Fig 4 (pre-filtered). 

 Since the AZTEC algorithm typically provides a low 

accuracy approximation, it shall not be included in the analysis 

here. AZTEC does however provide a variable error threshold 

not found in the other processing techniques discussed thus 

far. For approximation one would like to use a low error 

threshold for the ECG components themselves but a larger 

error threshold for the inter-beat durations in order to remove 

high frequency random spikes and noise which possess no 

clinically significant information. The AZTEC algorithm uses 

a statistical measurement known as the third moment along 

with the signal mean and standard deviation to vary the 

acceptable error threshold whilst the input signal is being 

processed. The error threshold is calculated recursively for a 

signal X with n samples as follows: 

k-1 k
k

(k-1) X +X
Mean Value:     X  =

k
                               (3) 

2 2

k-1 k k
k

(k-1) σ + (X -X )
Standard Deviation:    σ  =

k
      (4) 

 
1 3

3 3

k-1 k k
k

(k-1) M + (X - X )
Third Moment:     M  =

k

/

     (5) 

k 1 k kCF = C  (σ + M )                                                               (6) 

 

th th-1 2 k k-1 th-1V =V - C (CF - CF )V                                              (7) 

 

 Where 1≤k≤n, CFk is the criterion function, C1 and C2 are 

pre-defined constants which can be varied to alter the variation 

of the error threshold as desired and Vth is the resulting error 

threshold.  Although the AZTEC algorithm itself is intended 

for real time low accuracy applications its method of 

calculating a variable error threshold could be applied to more 

accurate algorithms that analyze the input signal on a sample 

by sample basis such as the SAPA algorithms. 

E. Variable Threshold SAPA Algorithms – VTH-SAPA 

 If the variable threshold calculation originating from the 

AZTEC algorithm is applied to the SAPA and SAPA-2 

compression techniques it may increase the usefulness of the 

SAPA algorithms by taking advantage of the AZTEC variable 

threshold calculation and combining it with the increased 

accuracy of the SAPA method of compression. These new 

variations of the SAPA algorithms shall be known as VTH-

SAPA and VTH-SAPA-2. Fig. 5 demonstrates how the 

threshold dynamically varies with the variation of the ECG 

input signal. 

 The constants C1 and C2 control the effect that CFk has on 

the error threshold Vth but not the variation of CFk itself i.e. its 

sensitivity to picks in the signal. Although some variation of 

the voltage error threshold is visible in Fig 5 the authors 

believe a more significant variation of the threshold due to the 

P and T-wave is desirable since the goal is for the error 

threshold to be sensitive to significant variations in the signal 

i.e. the P, QRS and T-waves. To achieve this, a new constant 

C3 is introduced to the third moment equation (5) to accentuate 

the effect that the difference between the current sample Xk 

and the cumulative mean kX has on the third moment. Now the 

third moment is calculated as  

 

1 3
3 3

3 k-1 k k
k

C (k-1) M + (X - X )
 M  =

k

/

                                         (8) 

With C3=0.02 the increased sensitivity of the variable 

threshold to the presence of the P, QRS and T-waves is 

demonstrated in Fig. 6.  

 
Fig. 3 The SAPA-2 Algorithm 

 

 
Fig. 4 The AZTEC Algorithm 

 
Fig. 5 Variable Voltage Threshold (C1 =1 and C2 = 4) 
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 This final modified variable threshold calculation shall be 

applied to the SAPA-2 algorithm, and shall be known as the 

MOD-VTH-SAPA-2 algorithm. 

F. Percentage RMS Difference Calculation 

The error introduced by compression of ECG data is 

frequently measured using the percentage root-mean-square 

difference [19]. Even though it is acknowledged by most of the 

authors who use it as not guaranteeing the preservation of 

clinical information [14], it is still used as a measure of 

accuracy in most of the compression articles referenced here.  

      

n
2

i=1

n
2

i=1

X(i)-A(i)

PRD= x100

X(i)

                    (9)   

Where X(i) and A(i) are samples of the original and 

approximated signals respectively. 

 

G. Dynamic Time Warping  

Dynamic Time warping is a process whereby two signals are 

time aligned with one another through expansion or 

compression of sample points. Dynamic time warping comes 

in many forms where the criteria for matching the two signals 

optimally may involve matching the slopes of the underlying 

segments as in [18] or calculating a distance matrix between 

each point in the two signals. By matching an unknown ECG 

signal to a signal with known characteristics it is possible to 

identify similar characteristics in the unknown signal [20]-

[22].  

 The implementation of the algorithm used by the authors 

is most similar to that suggested by Theodoridis [23] and 

Huang et al [20]. Consider the two input signals, the known 

signal s1 of length n and unknown signal s2 of length m. From 

the input signals two matrices are created, S1 an mxn matrix 

which contains the known signal repeated on each row and S2 

an mxn matrix which contains the unknown signal repeated in 

each column. A distance matrix D can now be calculated as a 

single dimension Euclidean distance: 

                      
2D(a,b)=[S1(a,b)-S2(a,b)]
                       (10) 

Were 1≤a ≤m and 1≤b≤n. 

 The next step calculates a cumulative distance or ―cost‖ 

matrix C, which measures the minimum cost of matching each 

sample in the two signals. The cost matrix C is created by 

starting at location (1,1) of matrix D and calculating the 

cumulative distance of row one and column one of the matrix 

D storing the results in the corresponding location of a new 

cumulative distance matrix C (an mxn matrix also). The 

remaining cumulative values to be stored in the cost matrix are 

calculated by following the recursive equation: 

                 
d(a,b-1)

C(a,b) = d(a,b)+min d(a-1,b-1)

d(a-1,b)

                      (11) 

Were 1≤a≤m and 1≤b≤a. 

 The final stage in the process involves starting at location 

C(m,n) of the cumulative distance matrix and moving to the 

smallest ―cost‖ value stored in any one of  the adjoining 

locations. One can traverse all the way back to (1,1) of the 

matrix C, recording the path used which results in the 

minimum accumulated difference. Two new sample sets are 

then created called S1W and S2W representing the x co-

ordinates of the path for S1W and y co-ordinates for S2W. Fig. 

7 demonstrates the optimal path calculation process. These 

two new signals are called the warped signals and are the same 

length as each other. The optimal path traced through the 

minimum cost of adjoining cells may dictate that certain 

samples of each signal may be repeated (―padding‖ as in Fig 

7.) to optimally match a corresponding point in the other signal 

during the warping process. 

 Fig. 8 demonstrates the results of dynamic time warping 

of an ECG signal and its approximation.  

 
Fig. 7 Warping Process 

 
Fig. 6 Modified Variable Voltage Threshold 

Fig. 8 Warped Original and Approximated Signals 
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If the same signal is used as both inputs to the warping 

algorithm no padding is required as the two signals will match 

perfectly. Similarly, if a high-accuracy, low-compression-ratio 

approximation of an ECG signal is matched to the original 

signal the warping algorithm will match the fiducial points of 

the approximated signal to the corresponding points in the 

original signal. However if the accuracy of the approximation 

is reduced it will begin to distort or alter the profile of the 

original signal and the dynamic time warping algorithm will 

then match the fiducial points from the approximation to other 

points in the original signal. In other words, the shape of the 

signal has been significantly distorted to the point where the 

sample annotated as the fiducial point in the original signal 

now corresponds to another point in the approximation i.e. it 

has been moved and an error in location has been introduced. 

III. COMPRESSION ACCURACY USING PARTIAL PRD 

 In simplistic terms a compression algorithm should remove 

as much inter-beat noise as possible since it provides no 

clinically significant information whilst preserving the actual 

waves of the ECG as accurately as possible. A method of 

measuring this would be to calculate PRD values across the 

wave components of the ECG and then the inter-beat durations 

separately using annotations to divide the signals 

appropriately. The algorithm which minimises the PRD for the 

ECG components (P-onset to T-termination), whilst providing 

a higher PRD for inter-beat durations (T-termination to next P-

onset) can therefore be regarded as the more accurate. In the 

absence of a set of annotations the user can segment the signal 

by visual inspection. Although this does not guarantee that the 

―beat‖ and ―inter-beat‖ durations are exactly as described it 

should still offer a good approximation for the segmentation of 

the signal under analysis.  

  The application of partial PRD calculation shall be 

demonstrated using two test signals chosen from the QT 

Database of fully annotated ECG recordings available on the 

MIT-Physiobank website [24]. The two signals were originally 

contained in the Normal Sinus Rhythm Database as detailed by 

Laguna et al [25]. It is intended to demonstrate how two 

approximations can yield the same total PRD value but 

significantly different partial PRD results. Approximations 

using the PLA and each variation of the SAPA-2 algorithms 

were generated for several signals that yielded the same total 

PRD value. Each original signal and its corresponding 

approximation were then segregated into accumulated ECG 

―beat‖ and ―inter-beat‖ durations. The waveforms shown in 

Fig. 9 are created by connecting the signals at annotated 

points. 

 Partial PRD calculations are calculated between each ―beat‖ 

component of the original and approximated signal and each 

―inter-beat‖ component of the original and approximated 

signals separately. The data shown in Tables 1 and 2 

demonstrate how approximations which yield the same total 

PRD value can in fact provide significantly different partial 

PRD results.  

 As can be seen from Tables 1 and 2 above despite each 

algorithm producing the same total PRD, they actually 

preserve the ECG beats and compress outlying inter-beat noise 

to quite different extents. The partial PRD can be used to 

observe not only how different approximation methods i.e. the 

Table 1: Test Signal # 16272 

Total 
PRD % 

PLA Beat 
PRD % 

PLA Inter-
Beat PRD % 

SAPA-2 
Beat PRD% 

SAPA-2 Inter-
Beat PRD % 

VTH-SAPA-2 
Beat PRD % 

VTH-SAPA-2 
Inter-Beat PRD% 

MOD-VTH-
SAPA-2 Beat 

PRD % 

MOD-VTH- 
SAPA-2 Inter- Beat 

 PRD % 

0.5 0.30 4.60 0.14 5.10 0.18 5.6 0.16 5.7 

1.0 0.70 10.5 0.47 13.6 0.47 13.5 0.49 13.1 

5.0 3.50 55.0 4.28 40.0 4.19 40.4 4.21 40.1 

7.0 4.39 83.4 6.30 45.0 6.42 45.7 6.22 44.3 

10.0 6.25 98.0 9.30 58.0 9.23 58.6 9.38 53.8 

         

Table 2: Test Signal # 16539 

Total 
PRD % 

PLA Beat 
PRD % 

PLA Inter-
Beat PRD % 

SAPA-2 
Beat PRD% 

SAPA-2 Inter-
Beat PRD % 

VTH-SAPA-2 
Beat PRD % 

VTH-SAPA-2 
Inter-Beat PRD% 

MOD-VTH-
SAPA-2 Beat 

PRD % 

MOD-VTH- 
SAPA-2 Inter- Beat 

 PRD % 

0.5 0.40 5.56 0.28 8.19 0.28 7.65 0.28 7.68 

1.0 0.85 11.2 0.74 12.5 0.76 12.7 0.69 12.7 

5.0 3.91 49.8 4.57 40.6 4.81 41.4 4.55 45.3 

7.0 5.32 73.8 6.44 50.2 6.33 49.9 6.18 53.6 

10.0 8.32 87.3 9.10 67.8 9.06 71.1 9.09 65.9 

 
Fig. 9 Partial ECG signals 
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PLA and SAPA algorithms preserve the signal but also to 

make observations with regard to variations of the same 

approximation technique (SAPA-2 in this case). 

 Observe from Table 1 that for low total PRD values of 0.5-

1.0% the SAPA-2 algorithm results in a lower beat PRD and a 

higher inter-beat PRD value than the PLA algorithm as 

required. However as the total PRD increases beyond 1% the 

PLA algorithm results in lower beat PRD values than any of 

the SAPA-2 algorithms. The conclusion can be drawn that for 

the #16272 signal the algorithm chosen for approximation 

depends on the overall amount of compression required.  

 Partial PRD’s can also identify the subtle performance 

changes introduced by adding the variable error threshold and 

its modified version to the SAPA-2 algorithm. From Table 2 

for example, it can be seen that the VTH-SAPA-2 algorithm 

provides similar inter-beat PRD values and lower beat PRD 

values than its original SAPA-2 and MOD-VTH-SAPA-2 

forms for most of the total PRD percentages. 

 Using just the total PRD calculation each of the 

approximations detailed in Tables 1 and 2 would have been 

regarded as having provided the same level of accuracy. It was 

shown how using partial PRD’s further insight into 

approximation can be gained. The issue remains however that 

a low partial or total PRD value means that both of the signals 

had similar amplitude profiles overall but that does not ensure 

that the area around the fiducial points has not been distorted 

by the approximation. To identify that possible distortion 

DTW shall be applied. 

IV.  DYNAMIC TIME WARPING TO TEST COMPRESSION 

ACCURACY 

 When annotating an ECG signal, a cardiologist will annotate 

the onset and termination of each component based on the 

shape and profile of the signal as observed simultaneously in 

one or many of the ECG recording leads. In order to achieve a 

genuine measure of what effect each algorithm has on the 

fiducial points and the ECG morphology around the fiducial 

points; dynamic time warping can be applied.  

  The dynamic time warping algorithm shall seek to match 

the two test signals and their approximations using the PLA, 

SAPA, SAPA-2 algorithms and variable error threshold 

algorithms VTH-SAPA, VTH-SAPA2 and MOD-VTH-

SAPA2. After the two signals have been warped, the location 

of the fiducial points from the original signal should ideally 

match with the corresponding sample number in the 

approximated signal, provided no significant altering of the 

signal morphology has occurred. The warping algorithm by its 

very nature will match the fiducial point in the approximation 

and the profile surrounding it optimally to the same section 

within the original signal. 

 If the warping algorithm matches the approximated fiducial 

point to a different point in the original signal then the 

morphology has been altered by the approximation such that 

the locations of the fiducial points originally identified by the 

cardiologist have now been changed.  

  All ten of the Normal Sinus Rhythm signals available in 

the QT database were used to test the dynamic time warping 

algorithm. Five approximations yielding the same total PRD 

value for each algorithm and test signal were created and 

warped to the original signal. The mean error between the 

location of the original fiducial point and the optimum match 

in the approximated signal was calculated and along with the 

standard deviations of cardiologist annotation are shown in 

Table 3. Also provided in Table 3 is an estimate of the average 

compression ratio provided by each algorithm for each total 

PRD value. These compression ratios are calculated as the 

original number of sample points divided by the number of 

sample points retained for reconstruction after approximation.  

A. Avoiding the Distortion of the Clinically Significant 

Fiducial Points 

 The results in Table 3 (next page) demonstrate that the 

algorithms have different mean error figures with regard to 

each fiducial point despite all approximation methods yielding 

the same total PRD calculation. To quantify the possible 

consequences of this section (f) in Table 3 is a measure of the 

acceptable standard deviation in the annotation of the same 

ECG recording by different cardiologists as reported by Jané 

et al [26]. 

 Using the PRD versus compression ratio decision method 

all algorithms would have been classed as having maintained 

the same level of accuracy for a total PRD of 3.5% with the 

PLA providing a higher average CR of 7.92 than any of the 

other algorithms (see section (g)). The PLA algorithm would 

be chosen as the optimum algorithm as it yields a higher CR. 

 However it can be observed that for a total PRD of 3.5% the 

SAPA-2 algorithm preserves the P-onset with a mean and 

standard deviation error of 10.8±6.0ms from its original 

location while the PLA preserves it to within 21.2±16.2ms. 

The acceptable standard deviation (mean unattainable) 

between expert annotators in the location of a P-onset point in 

an ECG recording is ±10.2ms. The SAPA-2 algorithm 

preserves the location of the P-onset to within a lower mean 

than the PLA and also has a lower standard deviation than the 

cardiologists while the PLA algorithm does not. Due to its 

higher compression ratio the PLA algorithm has in fact altered 

the location of the fiducial point beyond the range of 

acceptability that applies to its annotation by different 

cardiologists, altering the clinically significant information. 

The PRD measure fails to detect this. 

B. Establishing the effects of variable error threshold 

 As discussed in Section II the SAPA and SAPA-2 

algorithms were altered by the authors to include a variable 

error threshold calculation. This variable error threshold 

dynamically changes as each sample of the signal is processed. 

During periods of low activity (i.e. between beats) the 

threshold will increase to attempt to remove as much inter-beat 

noise as possible and during high amplitude or sustained ECG 

activity (i.e. the QRS and T-waves) the threshold will reduce 

to attempt to preserve the morphologies as accurately as 

possible as demonstrated in Fig. 6. The differing behaviour of 

the fixed and variable versions of the algorithms is again 

impossible to identify from the total PRD calculation. Using 

the total PRD versus compression ratio selection criteria it 

would be concluded that the SAPA-2 algorithm is a better  
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choice of approximation than its variable threshold forms since 

it provides a higher C.R. for total PRD of 0.5-2.5%. 

 However when one examines the mean and standard 

deviation DTW error results it can be observed that the SAPA-

2 algorithm typically preserves the P-wave more accurately 

whilst the MOD-VTH-SAPA-2 preserves the T-wave 

termination more accurately. Which algorithm the user would 

choose based on these results would be application specific but 

using DTW the user is now aware of the advantages and 

disadvantages of using the modified variable threshold version 

of the SAPA-2 algorithm. 

V. CONCLUSION 

 Percentage RMS difference calculation has been used as a 

measure of approximation accuracy for decades primarily 

because it is a convenient calculation to perform. PRD versus 

compression ratios are typically used to differentiate between 

the accuracy of different compression algorithms.  

 A new method of applying the PRD algorithm is suggested 

which involves calculating PRD’s over the constituent 

components of the ECG signal and inter-beat durations 

separately. Using partial PRD calculations it was possible to 

identify how approximations which yielded the same total 

PRD calculations can in fact have partial PRD results which 

differ significantly. Using partial PRD one can also observe 

the differences between the fixed and variable error threshold 

algorithms presented in this article. If a higher inter-beat PRD 

is observed it implies that more insignificant inter-beat noise 

was compressed. By the same token, a lower PRD value 

observed over the actual ECG components would imply that 

the algorithm preserves the morphology of the original signal 

more than one with a higher PRD value. However, neither the 

total or partial PRD values provide a very reliable test of the 

preservation of the original morphology as proven by the 

results of time warping. 

 Dynamic time warping is offered as a method of measuring 

distortion of the original signal due to approximation. By 

warping the original and approximated signals to each other 

the resulting alteration of the morphology and the fiducial 

points can be estimated. One would expect the approximation 

to preserve the location of the fiducial points to within the 

standard deviation of expert cardiologist’s opinion in order to 

be acceptable. As an example a case is presented where two 

different approximation algorithms yielding the same total 

PRD values were compared in terms of CR and preservation of 

the fiducial points. It was shown how one algorithm, the PLA, 

distorted the P-onset location on average more than the 

standard deviation of cardiologist’s annotations while all of the 

other five approximation algorithms did not. Yet with a higher 

 Table 3:  Mean± Standard Deviation of Fiducial Error Due to Approximation and Mean Compression Ratio (CR) 
 (a) P-Onset (b) P-Termination 

Total 
PRD % 

PLA 
(ms) 

SAPA 
(ms) 

VTH-
SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
-SAPA-2 

(ms) 

PLA 
(ms) 

SAPA 
(ms) 

VTH-
SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
SAPA-2 

(ms) 

0.01 0.0±0.0 0.0±0.1 0.1±0.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

0.5 2.5±2.2 1.6±1.7 1.7±1.7 0.9±1.6 0.9±1.8 1.2±2.1 0.2±0.2 0.4±0.3 0.3±0.3 0.0±0.1 0.0±0.1 0.0±0.1 

1.5 4.1±2.3 3.4±2.4 3.2±2.3 2.7±3.6 2.8±3.8 3.0±3.8 0.7±0.5 0.4±0.4 0.4±0.4 0.5±0.9 0.5±0.9 0.4±0.8 

2.5 12.0±7.5 15±9.8 15.8±10.6 7.8±5.0 7.6±4.6 7.4±4.3 1.4±1.5 1.5±1.3 1.6±1.6 1.4±1.4 1.4±1.4 1.3±1.4 

3.5 21.2±16.2 34±18.4 39.0±24.9 10.8±6.0 12.0±6.6 10.7±6.3 3.1±2.8 4.0±3.1 4.1±3.1 1.8±1.6 1.8±1.7 1.9±1.9 

              
 (c) QRS-Onset (d) QRS-Termination 

Total 
PRD % 

PLA 
(ms) 

SAPA 
(ms) 

VTH-
SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
-SAPA-2 

(ms) 

PLA 
(ms) 

SAPA 
(ms) 

VTH-
SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
-SAPA-2 

(ms) 

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

0.5 0.8±1.6 0.9±1.2 1.0±1.3 0.0±0.1 0.0±0.1 0.0±0.1 0.0±0.1 0.0±0.1 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 

1.5 1.8±1.9 2.1±1.4 2.0±1.3 0.4±0.6 0.4±0.7 0.4±0.7 0.1±0.3 0.1±0.2 0.2±0.5 0.0±0.0 0.0±0.0 0.0±0.0 

2.5 4.1±2.6 4.5±3.0 4.4±2.8 0.9±1.1 1.2±1.0 1.3±1.1 0.5±1.1 0.2±0.3 0.2±0.3 0.1±0.2 0.1±0.2 0.1±0.2 

3.5 8.4±5.7 7.1±6.2 6.3±4.3 2.5±1.7 2.3±1.7 2.8±1.7 0.6±1.1 0.7±1.4 0.7±1.4 0.7±1.7 0.8±1.8 0.7±1.5 

              
 (e) T-Termination 

Total 
PRD % 

PLA 
(ms) 

SAPA 
(ms) 

VTH-
SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
-SAPA-2 

(ms) 

 (f)   Standard Deviation in Cardiologist 
Annotations 

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0  P-onset (ms) ±10.2 

0.5 0.2±0.3 0.1±0.2 0.2±0.3 0.4±0.9 0.3±0.8 0.3±0.7  P-termination (ms) ±12.7 

1.5 0.5±0.6 0.5±0.5 0.5±0.5 0.4±0.6 0.4±0.6 0.4±0.5  QRS-onset (ms) ±6.5 

2.5 1.7±2.3 1.6.±1.5 1.5±1.3 1.6±2.6 1.6±2.6 1.6±2.4  QRS-termination(ms) ±11.6 

3.5 3.2±3.4 4.4±3.4 4.2±3.2 3.9±3.9 3.8±3.1 3.8±3.7  T-termination (ms) ±30.6 

 
 

        

 (g) Mean Compression Ratio (C.R.)  

PRD % PLA 
(ms) 

SAPA 
(ms) 

VTH-SAPA 
(ms) 

SAPA-2 
(ms) 

VTH-
SAPA-2 

(ms) 

MOD-VTH 
-SAPA-2 

(ms) 

 

0.01 1.193 1.195 1.172 1.002 1.002 1.003  

0.5 2.629 2.351 2.354 1.204 1.204 1.200  

1.5 4.863 4.287 4.231 1.806 1.803 1.798  

2.5 6.657 5.778 5.741 2.347 2.340 2.317  

3.5 7.920 6.911 6.928 2.853 2.868 2.851  
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CR the PLA algorithm would have been chosen using the PRD 

versus CR selection criterion. The consequences of such error 

are significant since clinical diagnosis relies heavily on 

assessment of the duration of ECG components [27]. 

 Three new variable error threshold versions of the SAPA 

and SAPA-2 algorithms were presented. Again using the total 

PRD versus CR selection criteria the subtle variations in 

accuracy that the different versions of the algorithms provide 

were not visible. However using DTW one could see what 

portions of the signal were best and least preserved using the 

various approximation algorithms. The selection of 

approximation method can then be made based on the 

application and what weight the user places on preservation of 

the various portions of the ECG.  

 The dynamic time warping results are in contradiction with 

both the total PRD calculation which would indicate that all 

approximations are as accurate as each other, and the partial 

PRD calculation which indicate the PLA algorithm provides 

similar or better preservation of the actual ECG or ―beat‖ 

components of the original signal than the SAPA-2 algorithm. 

However the DTW results demonstrate that not only does the 

original SAPA-2 algorithm preserve the ECG morphology 

more accurately than the PLA, but that the novel variable 

threshold forms VTH-SAPA-2 and MOD-VTH-SAPA-2 can 

preserve the signal morphology in different ways also. With 

the plethora of new accuracy information an approximation 

method may be chosen depending on the user requirements 

rather than the crude PRD versus CR method.  

 This novel method of testing approximation accuracy which 

is a powerful alternative to PRD calculation, raises significant 

concerns over the use of PRD to determine approximation 

accuracy and is a useful method of comparing approximation 

algorithms. Time warping essentially provides a similar test to 

having the approximations viewed by a cardiologist. In this 

context the results indicate that direct data compression, 

transform and parameter compression algorithms should be 

compared using dynamic time warping and not PRD versus 

CR. The benefit of the approach is also that it does not require 

transformation of the signals to another domain to extract the 

significant features of the recording and the associated 

complexity and error associated with such transformations. In 

staying in the time domain the accuracy of the approximations 

are determined using the exact same time domain features of 

the signal used by the end user i.e. a cardiologist, during the 

analysis of the recordings and associated diagnosis.  
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