
 

 

  
Abstract— This paper presents a design method and coordinate 

determination algorithm for ultra-short baseline (USBL) systems 
where the coordinates of the underwater object are determined with 
utilization both the orthogonal and non-orthogonal (skew) elemental 
(three-element) USBL arrays. In the article a five-element USBL 
receiving array is studied. The proposed design of five-element 
receiving array allows to have six orthogonal (four horizontal and 
two vertical) three-element USBL arrays and the four inclined skew 
three-element USBL arrays. The case of calculation of the Cartesian 
coordinates of the object in the reference coordinate system bounded 
up with the USBL system’s carrier is considered. The proposed 
design method and the algorithm are based on the determination of 
the object’s position on the basic three-element USBL receiving 
arrays (orthogonal and non-orthogonal) with the following averaging 
these results by applying multiple rotations of the elemental three-
element arrays around the horizontal and vertical axes associated 
with the carrier coordinate system. It is supposed that the spatial 
orientation of the receiving USBL array is controlled by the 
measurement of its pitch and roll angles. The coordinate 
determination algorithm for the proposed USBL system is designed 
and tested with the assumption that the object can have arbitrary 
position in the lower hemisphere and the USBL array can have 
significant inclination. 
 

Keywords—Ultra-short baseline (USBL) system, underwater 
object, transponder, carrier coordinate system, local coordinate 
system, skew coordinate system, pitch and roll angles.  

I. INTRODUCTION 
HE central problem of the USBL system design is the 
underwater object location determination with high 

accuracy in real marine conditions. The principle of operating 
of the USBL systems is well known and is described in detail 
in [1,2]. Object position determination with this method is 
realized by means of the measuring of the distance to the 
object and its angular position relative to the measuring system 
location. During the last decades numerous studies and 
investigations for improvements in accuracy and reliability of 
object position determination with use of the USBL systems 
were realized [3-7]. To improve the reliability of the USBL 
systems various special signal processing techniques were 
employed. In particular the chirp signals and greater inter-
element array separation [3] were used. Also the acoustic 
digital spread spectrum [4] and modulated Barker-coded 
signals [5] were applied. In [6] the USBL system with 
frequency-hopped pulses was investigated. The problem of 

 
 

improvement of accuracy in the case of instability of the 
position of the receiving USBL array was studied in detail in 
[7]. In [8,9] the problem of low precision in coordinate 
determination for the case of the object found in the plane of 
receiving bases is studied. In [10,11] the design method of 
multi-element USBL systems is proposed. The idea of this 
design method was to increase the reliability and accuracy of 
coordinate determination with use of the supplementary 
receiving elements of the USBL array.  
The idea of the design method in the present article is to use 
not only orthogonal three-element arrays of the receiving 
antenna but as well the non-orthogonal (skew) three-element 
arrays of the receiving antenna.  

II. BASIC USBL SYSTEM 
The measuring of the object coordinates is realized as the 

following. The USBL system transmitter sends an 
interrogation acoustical impulse in the propagation medium 
where the object is located at an accessible distance. The 
object must be equipped with a transponder that receives the 
interrogation impulse and sends an acoustical impulse in reply. 
The distance to the object is determined by the measurement 
of the values of propagation times of the interrogation impulse 
and the transponder response pulse. The angular position of 
the object is determined by the measurement of the phase 
difference of the transponder pulse carrier frequency on the 
receiving array outputs. The minimum number of receiving 
elements for the USBL system for object coordinate 
determination is three [1]. To improve the reliability and 
accuracy of coordinate determination the number of elements 
of receiving USBL array can be increased. In general the 
propagation medium is non-homogeneous. Furthermore, in this 
paper we assume that the propagation medium is homogeneous 
and the multipath interference is absent.  

We consider briefly the principle of coordinate 
determination for the case of the three-element orthogonal 
USBL array.  

Let Σ=(0,x,y,z) be the sea-surface associated reference 
frame with the origin in the point O (see Fig.1). Let the plane 
xy coincide with the sea surface (it is supposed that the sea 
surface is not perturbed) and the z axis goes downward. It is 
supposed that the carrier coordinate system Σcarrier= (0,xcarrier, 
ycarrier, zcarrier) coincides with the Σ=(0,x,y,z) when the carrier 
does not have pitch and roll inclinations. Also it is supposed 
that the x-coordinate axis coincides with the carrier 
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longitudinal axis L-L' (the positive direction coincides with the 
direction of the straight arrowed line), the y-coordinate 
coincides with the carrier lateral axis B-B', and z axis goes 
downwards. Now we can define the USBL array orientation in 
the introduced carrier coordinate system. Let 
Σ123=(0,x123,y123,z123) be the local coordinate system for the 
considered USBL system (with receiving elements 1,2,3). It is 
assumed that the origin of the USBL coordinate system 
coincides with the origin of  the  carrier coordinate  system,  
the angle between the y-axis and base 1-2 is 135°, and the 
angle between the y-axis and the base 3-2 is 45°. It is also 
supposed that the receiving USBL array is rigidly mounted on 
the carrier hull.  

The geometry of the introduced sea-surface associated 
coordinate system Σ=(0,x,y,z) and the receiving three-element 
USBL coordinate system Σ123=(0,x123,y123,z123) is presented in 
Fig.1. The reference grid is shown only for the Σ123 coordinate 
system. 

In Fig.1 we specify the angles (α, β and γ) that define the 
position of the underwater object (located in point P) in the 
Σ123=(0,x123,y123,z123) coordinate system. We also assume that 
the USBL system is equipped with a special unit to measure 
the pitch and roll angles of the carrier (the pitch and roll angles 
of the USBL array are the same as for the carrier). Let angles ξ 
and ζ  be pitch and roll angles corresponding to the receiving 
USBL antenna (in the figure these angles show the rotations 
relative to the carrier lateral B-B' axis and the carrier 
longitudinal L-L' axis). 

Let that the interrogation impulse has been sent and the 
reply impulse is being received by antenna. The distance to the 
object is defined by measuring the propagation times of the 
interrogation and reply pulses.    

Time delays on receiving elements define the object’s 
angular position. The time delays τ12 and τ32 of the signal on 
the outputs of the receiving elements of the base 1-2 and the 
base 3-2 (it is supposed that R>>d) can be expressed in the 
following way: τ12=(d/c)cosβ and τ32=(d/c)cosα, where c is the 
speed of the sound in the  water. 
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Fig.1. Geometry of the receiving antenna and the carrier  
longitudinal and lateral axes 

With  d/c  defined as  τd   we can write the direction cosines 
cosα=τ32/τd and cosβ=τ12/τd. The third direction cosine is 

defined as: cosγ=
12 32

2 2
1 / /( ) ( )d dτ τ τ τ−− . Cartesian 

coordinates of the point P in the Σ123=(0,x123,y123,z123) 
coordinate system are: X123=Rcosα, Y123=Rcosβ, Z123=Rcosγ. 
To obtain the coordinates of point P in the Σ=(0,x,y,z) 
coordinate system (point P(X,Y,Z) in Fig.1) it is necessary to 
carry out the corresponding transformation of obtained 
coordinates X123, Y123, Z123. 

Let the pitch and roll rotations of the receiving antenna take 
place. The pitch and roll rotations of the elemental three-
element USBL antenna are shown in Fig.1. After the first 
rotation on pitch angle ξ relative to B-B' axis the receiving 
elements are displaced to points 1ξ and 3ξ respectively. After 
the second rotation on the angle ζ relatively L-L' axis the 
receiving elements are displaced to point 1ξ,ζ and 3ξ,ζ 
respectively (see Fig.1). With the rotations of receiving bases 
the corresponding transformations of coordinate systems from  
Σ123=(0,x123,y123,z123) to Σξ123=(0,xξ123,yξ123,zξ123) and to 
Σξ,ζ123=(0,xξ,ζ123, yξ,ζ123, zξ,ζ123) have taken place. 

Calculation expressions for the case of the pitch and roll of 
the three-element receiving antenna with introduced 
orientation relative to the carrier have been obtained in [8,9]. 
So we describe the calculation procedure here very briefly. 

If we introduce vectors: pξ,ζ123=[Xξ,ζ123, Yξ,ζ123, Zξ,ζ123]T 

([Xξ,ζ
123, Yξ,ζ123, Zξ,ζ123]T represents the transpose of the vector 

[Xξ,ζ123, Yξ,ζ123, Zξ,ζ123]) and pξ123=[Xξ123, Yξ123, Zξ123]T (vector 
pξ,ζ123 represents the coordinates of the object in Σξ,ζ123 
coordinate system and vector pξ123 represents the coordinates 
of the object in Σξ123 coordinate system) and the transformation 
matrix B=B[ζ,,η123,,χ123,,ν123] with direction cosines η123= 
cos<(xξ123,L), χ123=cos<(yξ123,L), ν123.=cos<(zξ123,L) (matrix B 
transforms vector pξ123 to vector pξ,ζ123) we can write the 
equation: pξ123= B-1pξ,ζ123. 

If we introduce vector p123=[X123, Y123, Z123]T ( vector pξ123 
represents the coordinates of the object in Σ123 coordinate 
system) and the transformation matrix A= A[ξ,η123,χ123,ν123] 
with direction cosines η123= cos<(x123 ,B), χ123=cos<(y123 ,B), 
ν123 =cos<(z123 ,B) (matrix A transforms vector p123  to vector 
pξ123) we  can write the equation: p123=A-1pξ123. These two 
transformations can be combined in the equation p123= A-1        

B-1pξ,ζ123 . 
In order to obtain the coordinates of the object in the 

Σ=(0,x,y,z) coordinate system (we will have the same 
coordinates of the object in the carrier coordinate system 
Σcarrier=(0,xcarrier,ycarrier,zcarrier) and in the sea-surface associated 
coordinate system Σ=(0,x,y,z) if the carrier is not inclined) it is 
necessary to make one more rotation of the coordinate system 
Σ123 around the axis z on the angle of 135° (see Fig.1). For the 
Σ=(0,x,y,z) coordinate system, we have the following direction 
cosines for the z-axis: cos(x,z)=0, cos(y,z)=0, cos(z, z)=1. If 
we introduce vector p=[X, Y, Z]T (vector p represents the 
coordinates of the object in Σ=(0,x,y,z) coordinate system) and 
the transformation matrix C (matrix C transforms vector p to 
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vector p123) the  final  equation  to  find  vector  p  will be the  
following: p=C-1A-1B-1pξ,ζ123. Thus to find the coordinates in 
the Σ=(0,x,y,z) coordinate system we write the final matrix 
equation:  

    
     p=C-1A-1B-1pξ,ζ123.        (1) 

III. FIVE-ELEMENT USBL SYSTEM 
 Articles [8,9] noted the problem of the low precision 
coordinate determination for the cases when the controlled 
object is found in planes of receiving bases of elemental USBL 
systems. To resolve this problem a five-element USBL system 
with different spatial orientation of receiving bases was 
proposed. Also the special algorithm was designed and 
investigated and significant accuracy improvement was 
obtained. 
 In [10,11] the additional modernization of the antenna 
construction and improvement of the coordinate determination 
algorithm were proposed. In particular the number of 
transducers of the receiving array was increased to nine. As a 
result the new USBL array had a larger number of elemental 
USBL arrays with various spatial orientations and a higher 
reliability of system was obtained. 
 The main goal of present investigation is to check the 
possibility of obtaining the equivalent results with a smaller 
number of receiving array elements. If we analyze the 
construction of the five-element USBL array investigated in 
[8],[9] we can observe that besides having orthogonal basic 
three-element arrays this USBL antenna also has a non-
orthogonal basic three-element arrays. We can also observe 
that these non-orthogonal USBL arrays have different spatial 
orientations similar to the orientations of the additional 
orthogonal three-element USBL arrays of the nine-element 
array (mentioned above and have been investigated in [10] and 
[11]). 

IV. SKEW THREE-ELEMENT USBL SYSTEM 
 We will investigate the proposed design method for the five-
element USBL array that has been studied in [8,9]. The 
construction of the foregoing five-element USBL array is 
shown in Fig.2. The USBL array has the following orthogonal 
three-element USBL systems: USBL123, USBL234, USBL341, 
USBL412, USBL153, USBL254. The additional non-orthogonal 
three-element USBL systems presented in this array are: 
USBL152, USBL253, USBL354, USBL451 (in this particular   case   
all these non-orthogonal   three-element arrays form equilateral 
triangles). Our proposal is to utilize these non-orthogonal 
(skew) three-element arrays as a part of the USBL measuring 
system. We will demonstrate the proposed method in detail 
only for the case of the skew USBL152 system. For the rest of 
the skew three-element USBL systems the sequence of 
necessary operational steps will be similar.  
 Let Σ152=(0,x152,y152,z152) be the local coordinate system for 
the considered USBL152 system (with receiving elements 
1,5,2).  The origin of the  Σ152  coordinate  system  is located at 
the point of the placement of receiving element number 5.  
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  Fig.2. Five-element USBL array 
 

Before representing the sequence of algorithm steps we will 
introduce two new axes  to obtain easier examination 
of USBL152 array pitch and roll inclinations. Let the C-C' be 
the axis that is parallel to the lateral axis B-B' and let the axis 
C-C' pass through the point 5 (the point of location of the 
receiving element 5). Let the D-D' be the axis that is parallel to 
the longitudinal axis L-L' and let the axis D-D' pass through 
the point 5 (the point of location of the receiving element 5). 
After the introduction of these axes the rotation of the USBL152 
array around the lateral axis B-B' on the pitch angle can be 
replaced by the rotation around the axis C-C' and the rotation 
around the longitudinal axis L-L' on the roll angle can be 
replaced by the rotation around the axis D-D'. For further 
consideration all rotations of the USBL152 coordinate system 
will take place around its origin.  

V. CALCULATION EXPRESSIONS FOR SKEW THREE-
ELEMENT USBL SYSTEM 

We will consider the derivation of the calculation 
expressions for USBL152 system in detail. Then we will present 
the expressions for the other skew three-element USBL 
systems (USBL253, USBL354, USBL451). 

For convenience to get the calculation expressions we will 
firstly consider the case of location of the three-element 
USBL152 system on a horizontal plane. Let 
Σ152=(0,x152,y152,z152) be the local skew coordinate system for 
the considered USBL system. The angle between the axis x152, 
and axis y152 is defined by the elected design of receiving 
antenna. We will designate this angle as ν (for the proposed 
antenna design ν=60°). The origin of the coordinate system 
coincides with the receiving element 5. We also assume that 
the axis z forms a right angle with the axes x152, and y152. We 
will suppose that the object is located in the point P. Geometry 
of the receiving antenna and location of the object are 
represented in Fig.3. 

Direction cosines cosα and cosβ are defined in the same way 
as in the case of orthogonal axes: 

 
cosα=τ25/τd ;     cosβ=τ15/τd.         (2) 
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Fig.3. Skew three-element USBL array 
 
To obtain the third direction cosine cosγ (or angle γ) we 

need to solve the next system of equations: 
       
       Rh=R cosα/cosα1; 
       Rh=R cosβ/cosβ1; 
       Rh=R sinγ; 

α1+β1=ν,                   (3) 
 
where Rh is the distance to the object in horizontal plane; α1 

and β1 are the angles that define the angular position of the 
object in the horizontal plane. 

For the solution of (3) we can write the expression for α1 

and β1 as follows: 
 

    
1

1 cos cos
sin cos

arctg βα ν
ν α

  
  

  
= − ; 

 
1

1 cos cos
sin cos

arctg αβ ν
ν β

  
  
   

= − .        (4) 

 
The angle γ is defined as follows: 
 

1 1

cosβcosαarcsin = arcsin
cosα cosβ

γ= .                 (5) 

 
The covariant coordinates X152_covar , Y152_covar and Z115522__ccoovvaarr  

in skew coordinate system Σ152=(0,x152,y152,z152) are defined by 
the expressions: 

 
       X152_covar =Rcosα; 
       Y152_covar =Rcos β; 

   Z115522__  ccoovvaarr  = Rcosγ.              (6) 
 
The contravariant coordinates X152_ccntr , Y152_ccntr and 

Z115522__ccoonnttrr  in skew coordinate system Σ152=(0,x152,y152,z152) are 
defined by the expressions: 

 
   X152_ccntr = X152_covar – Rcosα tgα1 ctgν;    

   Y152_ccntr = Y152_covar – Rcosβ tgβ1 ctgν;  

   Z115522__  ccoonnttrr   = Z115522__  ccoovvaarr  = Rcosγ .            (7) 
 
After measuring the coordinates of the object in the skew 

coordinate system (in this particular case in the 
Σ152=(0,x152,y152,z152) coordinate system) we must transform 
these coordinates to regular Cartesian coordinates. We can do 
this transformation in this stage. It will allow us to make the 
further coordinate transformations by using the already 
designed procedures (the rotations of Cartesian coordinate 
systems around earlier defined axes by pitch and roll angles). 
So now we define the coordinates of the object in the Cartesian 
coordinate system Σ152_90=(0,x152_90,y152_90,z152_90). The z-axis 
in the new coordinate system will not change. The Cartesian 
coordinates in the new coordinate system will be defined with 
the expressions: 

 
        X152_90 = X152_ccntr cos345°+ Y152_ccntr cos285°;       

      Y152_90  = X152_ccntr cos75° + Y152_ccntr cos15°; 
     Z152_90  = Z115522__  ccoonnttrr  = Rcosγ .           (8) 

 
To obtain the coordinates of point P in the Σ=(0,x,y,z) 

coordinate system (point P(X,Y,Z) in Fig.1) it is necessary 
perform the corresponding transformations of obtained 
coordinates X152_90, Y152_90, Z152_90 .  

Let the pitch and roll rotations of the receiving antenna take 
place. The pitch and roll rotations of the three-element USBL 
arrays are shown in Fig.1,2. The difference of the 
consideration of the rotation of the USBL152_90 coordinate 
system from the rotation of USBL123 coordinate system is in 
the following: in the case of the USBL123 system the rotation is 
realized around the origin that is located in point 2 and in the 
case of the USBL152_90 system the rotation is realized around 
the origin that is located in point 5. With the first rotation on 
pitch angle ξ relative to C-C' axis the receiving elements are 
displaced to points 1ξ and 2ξ respectively. After a second 
rotation on the angle ζ relatively D-D' axis the receiving 
elements are displaced to point 1ξ,ζ and 2ξ,ζ respectively (see 
Fig.2). In our algorithm we will carry out the rotations with 
orthogonal coordinate systems. With this assumption the 
corresponding transformations of coordinate systems from  
Σ152_90=(0,x152_90,, y152_90, z152_90) to Σξ152_90=(0,xξ152_90,, 
yξ152_90,, zξ152_90) and to Σξ,ζ152_90=(0,xξ,ζ152_90,,yξ,ζ152_90,,zξ,ζ152_90) 
have taken place.  Calculation expressions for the case of the 
pitch and roll of the orthogonal three-element receiving 
antenna with different orientation relative to the carrier have 
been obtained in [8,9]. After the transformation of the skew 
coordinates to the orthogonal coordinates in the Σξ,ζ152_90 the 
further procedure of the calculation of the coordinates of the 
object in the Σ=(0,x,y,z) coordinate system is accomplished in 
the same way as it is made for the other orthogonal three-
element USBL systems. 

We will describe the calculation procedure in detail only for 
the USBL152 system. For the other three skew USBL systems 
(USBL253, USBL354, USBL451) the calculation procedures will 
be similar.  
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We will consider the general case supposing that the 
receiving array has pitch and roll inclinations. In this case 
firstly we find the covariant coordinates of the object  
Xξ,ζ152_covar, Yξ,ζ152_covar, Zξ,ζ152_covar   in the Σξ,ζ152 skew 
coordinate system utilizing the formulas (2), (4), (5) and (6). 
We can represent these coordinates as a row vector and then 
transform it to the column vector pξ,ζ152_covar=[Xξ,ζ

152_covar, 
Yξ,ζ152_covar, Zξ,ζ152_covar]T ([Xξ,ζ

152_covar, Yξ,ζ152_covar, Zξ,ζ152_covar]T 

represents transpose of the vector [Xξ,ζ
152_covar, Yξ,ζ152_covar, 

Zξ,ζ152_covar]). The contravariant coordinates of the object we 
can represent as a vector pξ,ζ152_contr. The vector pξ,ζ152_contr  is 
calculated with the applying the formulas (7). The next step is 
the calculation of the coordinate vector pξ,ζ152_90 that represents 
the object’s coordinates in the orthogonal coordinate system 
Σξ,ζ152_90= (0,xξ,ζ152_90,, yξ,ζ152_90,, zξ,ζ152_90). Vector pξ,ζ152_90  can 
be found by applying the formulas (8).  

In general case the Cartesian coordinate system Σξ,ζ152_90 has 
inclination that defined by pitch and roll angles. From this step 
we can utilize the approach that was successfully applied to 
USBL arrays where only the orthogonal three-element USBL 
arrays were utilized [8,9]. In accordance with this approach the 
coordinate system Σξ,ζ152_90  can be considered as the 
coordinate system obtained by rotation (by the roll angle ζ) of 
the coordinate system Σξ152_90 that has only pitch inclination. 
The coordinate system Σξ152_90 can be considered as the 
coordinate system obtained by rotation (by the pitch angle) of 
the coordinate system Σ152_90  that does not have any 
inclination.   

For the coordinate system Σ152_90=(0,x152_90, ,y152_90,, z152_90) 
and for introduced earlier axis CC' the direction cosines will 
be defined by next formulas: 

 

      
152_90

3 1
3

cos ( , )
2

x C −∠ = − ; 

      
152_90

3 1
3

cos ( , )
2

y C +∠ =  ; 

152_90 3
1cos ( , )z C∠ = .                (9) 

 
For the Σξ152_90=(0,xξ152_90,,yξ152_90,,zξ152_90) coordinate 

system and axis DD' the direction cosines will be defined by 
next formulas: 

 

      
152_90

3 1cos ( , )
2 3

x Dξ +∠ = − ;      

       
152_90 2

3 1cos ( , )
3

y Dξ −∠ = ; 

152_90 3
1cos ( , )z Dξ∠ = − .          (10) 

 

If we introduce vector p152_90=[X152_90, Y152_90, Z152_90]T 

(vector p152_90 represents the coordinates of the object in 

Σ152_90 coordinate system), vector pξ152_90= 
[Xξ152_90,,Yξ152_90,Zξ152_90]T (vector pξ152_90 represents the 
coordinates of the object in Σ ξ 152_90 coordinate system) and 
the transformation matrix A152_90  with direction cosines (9) 
and pitch angle ξ (matrix A152_90   transforms vector p123  to 
vector pξ123) we  can write the equation: p152_90 = A-1

152_90 

pξ152_90 .  
If we introduce transformation matrix B152_90 with direction 

cosines (10) and roll angle ζ (matrix B152_90 transforms vector 
pξ152_90 to vector pξ,ζ152_90 ) we  can write the equation: pξ152_90 = 
B-1

152_90 pξ,ζ152_90. These two transformations can be combine in 
the equation p152_90 = A-1

152_90 B-1
152_90 pξ,ζ152_90 . 

In order to obtain the coordinates of the object in the 
Σ=(0,x,y,z) coordinate system (we will have the same 
coordinates of the object in the carrier coordinate system 
Σcarrier=(0,xcarrier,ycarrier,zcarrier) and in the sea-surface associated 
coordinate system Σ=(0,x,y,z) if the carrier is not inclined) it is 
necessary to make firstly one rotation of the coordinate system 
Σ152_90  around the M-M' axis on the angle of 35.2644° (see 
Fig.2) to obtain coordinates of the object in the vertical 
orientated coordinate system Σ152_90. After that we have to 
accomplish two more rotation. First rotation is carry out on the 
angle of 45° around the vertical axis, the second rotation is 
carryout on the angle 90° around the C-C' axis. Finally we 
have the coordinates of the object in the Σ=(0,x,y,z) coordinate 
system. 

These three rotations we can represent with the three 
corresponding transformation matrixes. We introduce these 
matrixes in the following way: transformation matrix C152_90 
rotate the coordinate system Σ=(0,x,y,z) around the C-C' axis 
on the angle of 90°;   transformation matrix D152_90 rotate the 
coordinate system derived in the previous step around the 
vertical axis on the angle of 45°; transformation matrix F152_90  
rotate the coordinate system derived in the previous step 
around the  M-M' axis on the angle of 35.2644° (see Fig.2). As 
a result of these three rotations we have introduced earlier 
Σ152_90 coordinate system.  If we introduce vector 

USBL152
p  

(vector
USBL USBL USBL USBL

, , T

152 152 152 152
[ X Y Z ]=p represents 

the Cartesian coordinates of the object in Σ=(0,x,y,z) 
coordinate system obtained with the USBL152 system) we can 
write the final matrix equation as follows: 

 

USBL 152_90 152_90 152_90 152_90 152_90 152_90152

ξ,-1 -1 -1 -1 -1 ςp = C D F A B p .  (11) 

VI. CALCULATION EXPRESSIONS FOR FIVE-
ELEMENT USBL SYSTEM 

In the case of the five-element USBL array, the system 
consists of ten basic USBL systems with ten different spatial 
orientations: USBL123, USBL234, USBL341, USBL412, USBL153, 
USBL254, USBL152, USBL253, USBL354, and USBL451. 

The coordinates of the object are determined individually in 
each elemental USBL system. The USBL234, USBL341 and 
USBL412 systems differ from the USBL123 system in their own 
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values of the pitch and roll angles and in their own angles of 
rotation of each USBL antenna around the z-axis. The 
coordinate determination for the USBL153 systems is almost 
the same as for the USBL123 system, the difference is that one 
additional step is required to reduce the USBL153 system 
coordinates to a horizontal plane (by rotation the USBL153 
system on a 90° angle). We have to do the same with 
coordinates obtained with the USBL254 system. To accomplish 
these additional rotations for the USBL153 and USBL254 arrays 
we introduce for each system the transformation matrix (matrix 
D). The USBL253, USBL354 and USBL451 systems differ from 
the USBL152 in their own direction cosines, in their own values 
of the pitch and roll angles and in their own angles of rotation 
of each USBL array around the z-axis (see Fig.2). So for the 
USBL253, USBL354 and USBL451 systems we have to 
accomplish the all steps that have been implemented for 
USBL152 system. In order to distinguish the results of the 
measured coordinates by different basic USBL systems we 
introduce the consequent designations for the vectors and 
transformation matrixes for each particular USBL system: 

 

USBL 123 123 123 123123

ξ,-1 -1 -1 ςp = C A B p ; 

USBL 234 234 234 234234

ξ,-1 -1 -1 ςp = C A B p ; 

USBL 341 341 341 341341

ξ,-1 -1 -1 ςp = C A B p ;            

 
USBL 412 412 412 412412

ξ,-1 -1 -1 ςp = C A B p ;           

 
USBL 153 153 153 153 153153

ξ,-1 -1 -1 -1 ςp = C D A B p ;
 

USBL 254 254 254 254 254254

ξ,-1 -1 -1 -1 ςp = C D A B p ;

 
USBL 152_90 152_90 152_90 152_90 152_90 152_90152

ξ,-1 -1 -1 -1 -1 ςp = C D F A B p ;

 
USBL 253_90 253_90 253_90 253_90 253_90 253_90253

ξ,-1 -1 -1 -1 -1 ςp = C D F A B p ;

 
USBL 354_90 354_90 354_90 354_90 354_90 354_90354

ξ,-1 -1 -1 -1 -1 ςp = C D F A B p ;

 
USBL 451_90 451_90 451_90 451_90 451_90 451_90451

ξ,-1 -1 -1 -1 -1 ςp = C D F A B p . 

(12) 

VII. ALGORITHM DESCRIPTION 
It is assumed that the measured values are: ξ and ζ – pitch 

and roll angles of the receiving nine-element antenna (see 
Fig.2); t – interrogation and response pulse separation; τ12, τ32, 
τ23, τ43, τ34, τ14, τ41, τ21, τ15, τ35, τ25, τ45 - time delays for 
receiving bases of the corresponding USBL123, USBL234, 
USBL341, USBL412, USBL153, USBL452, USBL152, USBL253, 
USBL354, and USBL451 systems (twelve time delays are 
measured, to provide the positive values of time delays the 
second-indexed outputs are inverted). First the vector 
pξ,ζ153=[Xξ,ζ153,,Yξ,ζ153,,Zξ,ζ153]T) is calculated. The sign of the 
Zξ,ζ153 coordinate is defined by utilizing the time delay values 
obtained for the USBL452 system (values τ25, τ45). If τ45>τ25 the 

sign of the Zξ,ζ153 coordinate is assumed to be negative. If τ45≤ 
τ25 is assumed the Zξ,ζ153 coordinate is positive. With the 
obtained values of the vector pξ,ζ153=[Xξ,ζ

153 ,Yξ,ζ153 , Zξ,ζ153]T 
the values of τ'25 y τ'45 are calculated for the USBL452 system. 
Then the modules of the differences δ1= |τ'25-τ25| and δ2=|τ'45-
τ45| are calculated (values τ25 y τ45 are obtained through 
measurement). Then the value ∆1=(δ12+δ22)0.5 is calculated. 
The same procedure is repeated with the opposite sign of 
Zξ,ζ153 coordinate with calculation of the corresponding value 
∆2. If ∆1>∆2 the latter sign is assumed as correct. Otherwise 
the initial sign value of Zξ,ζ153 coordinate is assumed as correct.  
Then the same procedure is applied to the USBL254 system 
vector pξ,ζ254=[Xξ,ζ

254, Yξ,ζ254,,Zξ,ζ254]T ) in order to define,  the 
sign of the Zξ,ζ254 coordinate. 

Further the values of the Cartesian coordinates of the object 
in the Σ=(0,x,y,z) coordinate system are calculated. Through 
these calculations the values of the angles between the plane of 
the measuring antenna and the direction to the object (latitude 
angle to object) are evaluated. 

For that the coordinate vectors in the spherical coordinate 
can be expressed as follows: 

 

    , ,( , ),ξ T
153 153 153 153

R ξ ξς ς ςψ ϕ, q = ; 

, ,( , ),ξ T
254 254 254 254

R ξ ξς ς ςψ ϕ, q = ,         (13) 

 
where ψξ,ζ153 , φξ,ζ153 are the polar and azimuth angles in the 

USBL153 spherical  coordinate system and ψξ,ζ254 , φξ,ζ254 are 
the polar and azimuth angles in the USBL254 spherical 
coordinate system. The values of latitude angle for each USBL 
system define the decision to utilize or no utilize this system in 
the calculation of coordinate means. Analysis of values of 
latitude angle for elemental USBL systems shows that for 
reliable calculations the modulus of latitude angle must be 
more than 10° [9]. So if the values of the corresponding polar 
angles of both systems are found outside [80°, 100°] diapason, 
the values of both systems are utilized. If the value of the polar 
angle of one of the USBL systems lies outside the diapason 
[80°, 100°] and the value of the polar angle of the other system 
belongs to the [80°, 100°] then the value of the first system is 
utilized and the value obtained from another system is not 
taken into account. If the values of the polar angles of both 
systems are found within [80°, 100°] diapason, the polar angle 
value of the system with the greater latitude angle (latitude 
angle to object originating from the corresponding x-y plane) 
should be kept for further consideration. The final step in the 
coordinate determination of this part of the algorithm is the 
calculation of the Cartesian coordinates of the object in the 
Σ=(0,x,y,z) coordinate (calculation of the vectors 

USBL153
p  and 

USBL254
p ). These calculations for the USBL153 and USBL254 

systems are carried out according to the formulas (12).  
In the second stage of the algorithm the object coordinates 

are calculated using the time delays obtained by the four 
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horizontal measuring systems (USBL123, USBL234, USBL341, 
USBL412) and four inclined skew measuring systems 
(USBL152, USBL253, USBL354, and USBL451). It is also 
supposed that the receiving USBL array can have pitch and 
roll inclinations.  

In order to resolve the Z-coordinate sign ambiguity problem 
for horizontal and inclined systems a special procedure is 
applied. We consider the skew USBL152 system in order to 
describe this procedure (for the other three-element USBL 
systems this part of the algorithm functions in the same way). 
Suppose we determine the sign of the coordinate Zξ,ζ152_90 
(Zξ,ζ152). First we calculate the coordinates of the object based 
on the delays measured with the USBL152 system 
(pξ,ζ152_90=[Xξ,ζ152_90, Yξ,ζ152_90, Zξ,ζ152_90]T). The sign of the 
Zξ,ζ152_90 coordinate is obtained using the values τ15, τ35 of the 
USBL153 system and the values τ25, τ45 of the USBL254 system. 
The values of the components of the vector 
pξ,ζ152_90=[Xξ,ζ

152_90, Yξ,ζ152_90, Zξ,ζ152_90]T allow us to calculate 
the values of the delays τ'15 and τ'35 for the USBL153 system 
and value of delays τ'25 and τ'45 for the USBL254 system. Next, 
we calculate the absolute values of the following differences: 
δ1=|τ'15-τ15|, δ2=|τ'35-τ35|, δ3=|τ'25-τ25| and δ4=|τ'45-τ45| (the 
values τ15, τ35, τ25 and τ45 are obtained through measurement). 
Now we calculate the geometric mean δgeom_mean_1 of the δ1, δ2, 
δ3 and δ4. The same procedure is repeated with opposite sign 
designation for the coordinate Zξ,ζ152_90. The geometric mean in 
this case will be δgeom_mean_2. The coordinates corresponding to 
a less geometric mean are taken as correct. The same 
procedure is applied to the USBL123, USBL234, USBL341, 
USBL412, USBL253, USBL354 and USBL451 systems.  

The final stage of the algorithm examines the reliability of 
the calculation of the Z-coordinate for the USBL systems 
under consideration. For that we calculate the spherical 
coordinates:  

 
, ,( , ),ξ, T

123 123 123 123
R ξ ξς ςς ψ ϕ q = ;    , ,( , ),ξ, T

234 234 234 234
R ξ ξς ςς ψ ϕ q = ; 

, ,( , ),ξ, T
341 341 341 341

R ξ ξς ςς ψ ϕ q = ; , ,( , ),ξ, T
412 412 412 412

R ξ ξς ςς ψ ϕ q = ;

 , ,( , ),ξ, T
152 152 152 152

R ξ ξς ςς ψ ϕ q = ;    , ,( , ),ξ, T
253 253 253 253

R ξ ξς ςς ψ ϕ q = ; 

, ,( , ),ξ, T
354 354 354 354

R ξ ξς ςς ψ ϕ q = ;    , ,( , ),ξ, T
451 451 451 451

R ξ ξς ςς ψ ϕ q = .  

 (14) 
 
If the values of the polar angle of some USBL systems lie 

within the diapason [80°, 100°], the calculated values are 
discarded. If the values of the polar angle of the analyzed 
USBL systems lay outside of the diapason [80°, 100°] the 
corresponding Cartesian coordinates of these systems are 
considering as reliable. The values of the object coordinates in 
the carrier coordinate system are calculated according to the 
formulas (12). The last step of the algorithm implies the 
calculation of the arithmetic means of the object coordinates in 
the carrier coordinate system with reliable data obtained by the 
elemental USBL systems: 

  
USBL

=p
USBL

( ,X
USBL

,Y
USBL

)TZ = 

arithmetic mean (
USBL153

p ,
USBL254

p ,
USBL123

p ,
USBL234

p , 

USBL341
p ,

USBL412
p ,

USBL152
p ,

USBL253
p ,

USBL354
p ,

USBL451
p ). 

(15) 

VIII. SIMULATION RESULTS 
For the algorithm simulation a special computer program 

was designed. During the simulation of the algorithm, it was 
assumed that the distance to the object, and the pitch and roll 
angles were being measured precisely. We assume that the 
measurement of the time delays is provided by utilizing the 
binary counters and the signal-to-noise ratio (SNR) on the 
inputs of receiving elements and signal reception conditions 
allow us to measure the time delays without errors. It is also 
supposed that the accuracy of measurement of the time delays 
is limited by the clock drive frequency of the time delay 
counters. The different values of the horizontal distance to the 
object, the depth of the object, the azimuth angle, and the pitch 
and roll angles were utilized for modeling the difficult 
conditions to measure the object coordinates with high 
accuracy (cases when an object is found in the plane of the 
horizontal receiving bases or near to the plane of the 
horizontal receiving bases). The computer simulation of 
algorithm will estimate the instrumental precision of the USBL 
system. 

Let X, Y, Z be the true values of the coordinates of the 
object in the coordinate system Σ=(0,x,y,z). Let R be the true 
incline distance to the object. Let XUSBL, YUSBL, ZUSBL be the 
values of the coordinates obtained by applying of the 
developed algorithm (the   coordinates   of   the   object are 
calculated utilizing the expression (12), (13) and (14) for 
USBL153, USBL254 USBL123, USBL234, USBL341, USBL412, 
USBL152, USBL253, USBL354, and USBL451 systems). The 
values of the true errors of determination of the coordinates 
are: ∆X=XUSBL-X; ∆Y=YUSBL-Y, ∆Z= ZUSBL-Z. The values of the 
relative true errors of the coordinates are: ∆X/R; ∆Y/R; ∆Z/R. 
In process of the simulation the azimuth angle φ is changing 
clockwise (if looking down on the horizontal plane, see 
Figs.1,2) from 0° to 360°  in the (x,y) coordinate plane (zero 
reading is coincided with x-axis of the Σ=(0,x,y,z) coordinate 
system, see Fig.1). The other parameters of algorithm 
simulation have following values: the speed of the sound in the 
water c=1500m/s; the size of receiving bases d=0.056m; 
transponder pulse carrier frequency f=11KHz (operating 
frequency of USBL system); the frequency of the time delay 
counter fc=25MHz. 

The results of the simulation of the designed algorithm are 
shown in Figs.4-6. First we will consider the case when the 
receiving antenna does not have any inclination and the object 
is located in the horizontal distance of 100 meters and the 
relative depth is 5 meters. The angular position of the object 
(azimuth angle φ) is changing with the step of 1°. 

The results of the algorithm simulation for the examining 
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case (R=100m; Z=5 m; ξ=0°; ζ= 0°) are shown in Fig.4. In the 
absence of the pitch and roll the modulus of the latitude angle 
to the object (in graphs this angle is designated as |ψξ,ζ

1234 -
90°|) should be invariable and the value of the latitude angle is 
approximately 2.86°. It means that the horizontal USBL 
systems are not participated in the calculation of coordinate 
arithmetic means and the maximum number of systems that are 
taken into account in this case is 6 (N=6). We can observe this 
on the Fig.4, - the maximum number of utilized USBL systems 
is 6, and we can also observe that the number of utilized USBL 
systems is depend on azimuth angle and varied from 4 to 6. 

We will consider in detail the behavior of the function 
N=N(φ) only in the diapason of changing of the angle φ from 
0° to 90°. In the other diapasons of φ ([90°-180°], [180°-
270°], [270°-360°]) the behavior of the function N=N(φ) will 
be analogous. In the azimuth angle ranges from 0° to 10° the 
number of the utilized USBL system is 5 (N=5) and the 
systems that are utilized in the calculation of the coordinate 
arithmetic means are: USBL153, USBL152, USBL253,  USBL354 
and USBL451 (see Figs.2,4). For the USBL452 system (the case: 
ζ= 0°) the azimuth angle φ can be interpreted as the altitude 
angle to the object relative to the plane of the USBL452 three-
element array. So the utilization of the USBL452 system is 
began from φ >10°. In the interval [11°- 30°] the number of 
used systems is 6 (N=6, two vertical orthogonal USBL   
systems and all skew USBL systems are in use). From the φ 
>30° firstly one skew system and then two skew systems 
(USBL152, USBL451) have the latitude angles less than 10°. In 
the diapason [35°-45°] the number of USBL systems in use is 
4. The behavior of the function N=N(φ) is in the interval [45°-
90°] is the same as in the just considered interval [0°-45°]. For 
the case of ξ=0°; ζ= 0° the behavior of the function N=N(φ)  is  
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Fig.4. Variation of the relative errors of the object 

coordinates, number of the elemental USBL systems N that are 
used for calculation of coordinate means and modulus of the 
latitude angle to the transponder (object) relative to the 
USBL1234 plane; R=100m; Z=5 m; ξ=0°; ζ= 0°. 
 

repeated in the other three 90°-sectors.  
The utilization of the different elemental USBL arrays is 

defined according to algorithm described above. The relative 
errors of all three object coordinates (∆X/R, ∆Y/R, ∆Z/R) 
have not exceeded the threshold of 0.12% of inclined distance 
to the object. The behavior of the relative errors is also similar 
within each 90°-sector. The greatest errors take place for the 
Z-coordinate of the object. The relative errors of X- and Y-
coordinates not exceeded the values of 0.1%. 

Let that the USBL array has some inclination (pitch and roll 
angles are not zeros). The simulation results for these cases are 
shown in Figs.5-6.  

From Fig.5 (R=100m; Z=15m; ξ=5°; ζ= –6°) it is seen that 
the relative errors (∆X/R, ∆Y/R, ∆Z/R) of all three coordinates 
have not exceeded the threshold of 0.2% of inclined distance 
to the object. The values of the relative errors ∆X/R and ∆Y/R 
are less than 0.12% in all examined diapason of φ. The number 
of the utilizing elemental systems (N) is varying from 4 to 10. 

From the graphs it is seen that if the |ψξ,ζ
1234 -90°|≤10° the 

number of the utilized system is less or equal to 6. If the 
|ψξ,ζ

1234 -90°|>10° the number of the utilized systems (N) is 
varying from 8 to 10 and the exact  number is defined by the 
values of altitude angle for the other three-element array 
planes.  

The graphs in Fig.6 illustrate the variation of relative errors 
of object coordinates for the case when R=100m; Z=40m; ξ= –
20°; ζ=10°. The relative location of the measuring  system and 
the object (with predetermined spatial orientation of receiving 
antenna) defines the case of significant inclination of receiving 
antenna and  when  the  object  can be  found in the  plane of 
horizontal  receiving bases of USBL system. It is seen that the 
relative errors do not exceed the threshold of  0.15% of incline  
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Fig.5. Variation of the relative errors of the object 

coordinates, number of the elemental USBL systems N that are 
used for calculation of coordinate means and modulus of the 
latitude angle to the transponder (object) relatively the 
USBL1234 plane; R=100m; Z=15 m; ξ=5°; ζ= -6°. 
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Fig.6. Variation of the relative errors of the object coordinates, 

number of the elemental USBL systems N that are used for 
calculation of coordinate means and modulus of the latitude angle to 
the transponder (object) relatively the USBL1234 plane; R=100m; 
Z=40 m; ξ= -20°; ζ= 10°. 

 
distance in all diapason of changing azimuth angle φ.   

Also it is seen that when the modulus of altitude angle 
|ψξ,ζ

1234 -90°| is more than 10° the number of the utilized three-
element systems is found in interval between 7 and 10 
(7≤N≤10).  

The designed algorithm has been examined for various 
relative locations of the measuring system and object (object 
location in the lower hemisphere was considered, the 
maximum horizontal distance was assumed to be 100m). The 
values of pitch and roll angles ξ  and ζ  are assumed to be in 
the range from –40° to +40°. The computer simulation 
demonstrated the reliable operation of the designed algorithm 
for all tested angular antenna positions and verified locations 
of object. The results of the calculation of the errors of the 
determination of the coordinates of the object show that the 
relative true errors of the coordinates have values less than 
0.2% of the slant distance to the object. It is also necessary to 
mention, that in a wide range of distances, depths,   pitch and 
roll angles the values of true relative errors are less than 0.1%. 

IX. CONCLUSION 
In this article we have considered the method of design of 

USBL system utilizing both orthogonal and non-orthogonal 
(skew) elemental three-element arrays. A case for the design of 
a five-element USBL system is presented. The paper focused 
on the problem of exploiting the latent resources of the 
receiving USBL array (skew three-element arrays) for accurate 
coordinate determination in conditions when the receiving 
antenna can have significant inclinations and the location of 
the object is arbitrary. The proposed algorithm accomplishes 
the selection of reliable elemental USBL arrays (orthogonal 
and non-orthogonal) utilizing the analysis of the values of 
latitude angles to the object for each elemental array. The 

presented algorithm is a significantly modified version of the 
algorithm designed for the five-element USBL system where 
only orthogonal elemental three-element arrays have been 
utilized [9]. Algorithm simulation was realized for a variety of 
USBL system and object mutual positions in a wide range of 
pitch and roll of receiving arrays (pitch and roll angles ξ  and ζ  
are assumed to be in the range from -40° to +40°). For all 
tested angular receiving array positions and object locations 
the designed algorithm showed reliable operation. The 
accuracy of coordinate determination for the proposed five-
element USBL system can be evaluated as the 0.2% of slant 
distance to the object.  
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