

Abstract—Reconfigurable devices, such as the field
programmable gate arrays (FPGA), have provided electrical,
electronics and computer engineers with a versatile and cost-
effective platform for designing circuits, developing devices and
implementing electronic, communications, computer and other
related systems. Presented in this paper is the use of FPGA in the
development of a motherboard to introduce the concepts of data
and network communications protocol through different interfaces.
Some of the protocols implemented are VGA, PS/2, serial
communications and parallel communications. Since the
motherboard is FPGA-based, it can be reconfigured to perform
other protocols making it open to a lot of possibilities.

Keywords—communications, data, field programmable gate
array, motherboard, network, protocols, trainers.

I. INTRODUCTION

ATA handling and network communications has risen in
importance in this time and age[1]. Almost all electronic

equipment has some means of storing, manipulating, and
communicating data with users and with other devices. With
computer networks at the core of modern communication,

D

Manuscript received March 22, 2011. This work was funded by the Philippine
Department of Science and Technology under the Engineering Research and
Technology Program and the Ateneo de Manila University.

R. S.J. Reyes is with the Department of Electronics, Computer, and
Communications Engineering, Ateneo de Manila University, Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines (e-mail: rsjreyes@ateneo.edu)
and Blue Chip Designs, Inc, Unit 208 Xanland Place 323 Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines

C. M. Oppus is with the Department of Electronics, Computer, and
Communications Engineering, Ateneo de Manila University, Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines (e-mail: coppus@ateneo.edu)
and Blue Chip Designs, Inc, Unit 208 Xanland Place 323 Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines

J. C. Monje is with the Department of Electronics, Computer, and
Communications Engineering, Ateneo de Manila University, Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines (e-mail: jcmonje@ateneo.edu)
and Blue Chip Designs, Inc, Unit 208 Xanland Place 323 Katipunan Avenue,
Loyola Heights, Quezon City, 1108 Philippines

N. S. Patron is taking up a Master's degree in Electronics Engineering in
Ateneo de Manila University and is with Blue Chip Designs, Inc, Unit 208
Xanland Place 323 Katipunan Avenue, Loyola Heights, Quezon City, 1108
Philippines (e-mail: npatron@bcdph.com)

R. A. Gonzales is taking up a Master's degree in Electronics Engineering in
Ateneo de Manila University and is with Blue Chip Designs, Inc, Unit 208
Xanland Place 323 Katipunan Avenue, Loyola Heights, Quezon City, 1108
Philippines (e-mail: rgonzales@bcdph.com).

O. Idaño is taking up a Master's degree in Electronics Engineering in Ateneo
de Manila University and is with Bughaw Electronics Solutions and
Technologies , Unit 203 Xanland Place 323 Katipunan Avenue, Loyola Heights,
Quezon City, 1108 Philippines (e-mail: oidano@bestinc.ph).

M. G. Retirado is with Bughaw Electronics Solutions and Technologies , Unit
203 Xanland Place 323 Katipunan Avenue, Loyola Heights, Quezon City, 1108
Philippines (e-mail: mgretirado@bestinc.ph).

different networks, as well as different technologies within
them, need to be able to connect and understand data going to
and through them. Most of this processes goes unnoticed by
the regular user, even most of today's engineers know only the
theory on most of this basic communication protocols and
focus on the higher level logic of systems today. A basic
understanding of these concepts is required for efficient high
level programming. However, systems today that use these said
communication protocols, such as personal computers, are
already designed for other purposes. These same systems make
these protocols transparent to their users, and using them as
training tools for these basic protocols will be costly. Thus, a
low cost basic protocol motherboard will be beneficial
especially for laboratories since low costs can mean more units
and more time for hands-on exercises. Moreover, these
motherboards will be FPGA-based and can be expanded with
daughter boards for other purposes as the need arises.

II.USING FPGAS

Ten years ago, the thought of a single-chip design fulfilling
all of the needs of a certain project was unimaginable.
However, at present, the use of FPGAs has been a viable
option.

An FPGA or field programmable gate array is a
semiconductor device containing programmable logic
components and interconnects[2]. These logic components can
be programmed to duplicate the functionality of digital circuits.
To configure the FPGA, a circuit diagram or source code is
written using a hardware description language (HDL) that
describes the functionality of the FPGA. Thus, there is no need
to think about the gate level implementation of the circuit.

With its wide-range of capabilities and ease of use, it has
been able to tackle nearly any type of application imaginable.
One can implement a 16-bit microprocessor core inside an
FPGA [3]. FPGA's are now used in teaching microprocessor
and digital design courses [4]. Moreover, FPGAs are used to
design products, to test products or even using FPGA-based
hardware for controlling and manufacturing products. .

Field Programmable Gate Array Implementation of a
Motherboard for Data Communications and

Networking Protocols

Rosula S. J. Reyes, Ph.D., Carlos M. Oppus, Jose Claro S. Monje, Noel S. Patron, Raphael A.
Gonzales, Oscar Idaño and Mark Glenn Retirado

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 391

Because of this flexibility, a motherboard to be used as a
protocol trainer was designed using a FPGA by Blue Chip
Designs (BCD).

Using a FPGA as a Central Processing Unit (CPU, various
level converters and appropriate ports used by different
communications standards, a communications protocol trainer
can be developed.

For instance, connecting a DE-15 port and several lines of
HDL, a very cheap 4096-color VGA controller is also
created[5]. Another is to use the USB transceiver chip with
appropriate DAC/ADC circuits and lines of HDL code, USB
communication can be achieved. In addition, internal clocks
can also be generated by the FPGA using phase-locked loop
(PLL) circuits and most FPGAs today contain 1 to 8 PLLs[6].
Thus, only basic knowledge, coding skills, and good execution
is needed to come up with an innovation.

A. VGA Display

This trainer is able to generate the needed signals for a VGA
display monitor. There are five signals needed to display an
image using the VGA port. These are the red signal, green
signal, blue signal, horizontal synchronization, and vertical
synchronization.

Data for the red, green, and blue (RGB) signals
corresponds to the pixel data which represents the color and
intensity of the pixel. This data is saved in a memory module.
Then, data is retrieved from the memory module, formatted
into lines of pixels, and sent to the display device with the
appropriate horizontal and vertical synchronization pulses.

In addition, the pixel data used to form the image is
accessed from the RAM using horizontal and vertical counters
that are also used to generate the synchronization pulses for
VGA output.

Fig. 2 FPGA Motherboard

Fig. 3 VGA Port Schematic Diagram

Table I. Sample text map for the character 'A'

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0

4 0 0 1 1 1 0 0 0

5 0 1 1 0 1 1 0 0

6 1 1 0 0 0 1 1 0

7 1 1 0 0 0 1 1 0

8 1 1 1 1 1 1 1 0

9 1 1 0 0 0 1 1 0

10 1 1 0 0 0 1 1 0

11 1 1 0 0 0 1 1 0

12 1 1 0 0 0 1 1 0

13 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0

Fig. 1 Motherboard PCD Layout Diagram

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 392

1) Text Display
Text is generated using a pixel map of individual characters.

Each character is mapped on a grid with a size of 8 dots wide
by 16 dots high. This map is used to create the pixel data of the
needed character. Retrieval of the map is done by issuing the
appropriate ASCII code for the character, as well as the
coordinates of the individual pixel being generated. Table 1
shows a sample map for the character 'A.' 1 designates a pixel
to be active on the display while a 0 otherwise.

B. Serial Port

Another communication method included in the
motherboard is the serial communication. This is done through
the inclusion of three (3) DE9 connectors.

In contrast to parallel communication, serial communication
sends data one (1) bit at a time[7]. Although it may refer in
general to all types of devices which transmits data serially, the
most common standard associated with the term serial port is
the RS232 standard.

Although all the ports are designed to be UARTs, the three
ports on-board the motherboard are configured differently. The
first two (2) ports are level converted to be able to
communicate with a standard RS232 port on a Personal
Computer. The difference between these two ports is that the
first port is configured to emulate a Data Terminal Equipment
(DTE) while the second is configured to emulate a Data
Circuit-terminating Equipment (DCE). The third port is
configured for data transfer at TTL voltage levels.

The default operation for the serial ports on this training
board is an implementation of an universal asynchronous
receiver and transmitter(UART). A UART is a circuit that
sends parallel data over a serial line. As its name implies, this
operation contains a receiver module and a transmitter module.
Since the transfer is asynchronous, meaning there is no clock
information data sent over the line, the transmitter and receiver
should beforehand agree on a set of parameters, such as
transfer rate, number of data bits, stop bits and error correction
bits and such, for a successful transfer of data.

1) UART Transmitter
The UART Transmitter is basically a shift register that shifts

of bits at the agreed upon transfer rate. This transmitter also
needs a timing generator. Unlike the receiver, this timing can
be at the same frequency as the transfer rate as this only signals
when the next bit should be transmitted. Transfer is also done
by a FSM, reading bits from an array one by one and
transmitting them over the serial interface.

2) UART Receiver
For a UART receiver, the timing of reading the serial input is

essential to be able to receive the correct data. The timing is
done using a baud rate generator. This generator creates a
sampling clock that is a multiple of the transfer rate parameter
that was agreed upon beforehand. Once a start bit is detected,

Fig. 4 UART Schematic Diagram

Fig. 6 UART Receive Process

Fig. 5 UART Transmit Process

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 393

this sampling clock is used to approximate the middle point of
a bit to sample it appropriately. Data bits are stored as parallel
data of a fixed length. A finite-state machine(FSM) is used to
sample the serial data and store it in a buffer until all bits are
received.

C.Personal System/2 (PS/2)

The Personal System/2 (PS/2) connector is used for
connecting a keyboard and a mouse to a compatible computer
system. The PS/2 port was first used on the Personal System/2
line of IBM computers first introduced in 1986, hence the
name.

The PS/2 port contains two connections for
communication purposes. One connection is for bi-directional
data, which is transmitted serially. The other connection is for
the clock, which specifies the timing when the data from the
data connection is valid and can be sampled. The information is
transmitted packets of eleven (11) bits. This packet contains a
start bit, eight (8) data bits, an odd parity bit, and a stop bit[8].

The PS/2 designs on keyboard and mouse interfaces are
electrically similar and employ the same communication
protocol. However, a given system's keyboard and mouse port
may not be interchangeable since the two devices use a
different set of commands.

The motherboard is allocated with two ports for PS/2. It is
designed for use with a keyboard and a mouse but it is
reconfigurable through the FPGA.

1) PS/2 Keyboard
A keyboard consists of an array of keys. Activity done on a

keyboard is monitored, or scanned, by a micro-controller. This
micro-controller then sends the corresponding scan code over
the PS/2 line.

The scan code consists of a sequence of codes that
corresponds to the different activities that occur on the
keyboard. When a key is pressed, the make code of the key is
sent. If it is continued to be held down longer that 500ms, the
make code is continually sent every 100ms. When the key is
released, a break code is sent.

2) PS/2 Mouse
The mouse is used to detect motion on a two-dimensional

surface. A mouse has an internal circuit that measures the
relative distance the unit has traveled as well as the status of the
buttons.

A mouse streams the data at a predetermined interval over
the PS/2 port, however, upon power-up, the mouse needs to be
sent commands to initialize the device. The PS/2 interface for
the mouse needs to be bi-directional in this case, different from
the keyboard which only sends data from the keyboard to the
receiving device.

Over the predetermined interval, the mouse stores the
relative movements over the x-axis and y-axis in an internal
counter, as well as the three buttons, left, right and middle,
states. These data are then sent through the PS/2 port in three
bytes[8]. Once the data are sent, these internal counters are
reset.

The x-axis movement is denoted by x8-x0 with xV signaling
an overflow on the counter. The y-axis movement is contained
in y8-y0 with yV as the overflow signal. Middle, right and left
buttons status signals are mB, rB and lB respectively.

D. Universal Serial Bus (USB)

Universal Serial Bus (USB) is a specification to establish
communication between devices and a host controller, usually
personal computers. It was developed to interface external
devices to a host controller by eliminating the different types
of connectors and using a single standard for physical and
logical connections.

A USB transceiver chip is used for the USB module. It is
prepared on the motherboard with its corresponding circuit for
signal preparation. This transceiver is controlled using the
FPGA. Also, handshaking and data transfer is also controlled
by the FPGA.

E. Parallel Port

This trainer is equipped with a sixteen (16) pin parallel

Table II. Mouse Data packet format

Byte 1 yV xV 1 y8 x8 mB rB lB

Byte 2 x7 x6 x5 x4 x3 x2 x1 x0

Byte 3 y7 y6 y5 y4 y3 y2 y1 y0

Fig. 7 PS/2 Ports Schematic Diagram

Fig. 8 USB schematic diagram using a transceiver chip

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 394

interface or otherwise called a General Purpose Input/Output
(GPIO) port. Aside from the Vcc pin and the ground pin, other
pins are customizable to the users specifications. For this
motherboard, the default configuration is the same as
IEEE1284 standard for parallel communications.

Before USB, parallel communication was used to interface a
wide range of peripheral devices to a computer. The most
common of these devices was the printer. Currently, other
interfaces were developed and are used other than the parallel
port, predominantly the USB.

Recently, manufacturers consider parallel communications to
be outdated and respective hardware to be legacy devices,
opting to use more recent interfaces, such as USB or Firewire.
As such, they removed parallel communication devices
altogether.

F. Analog-to-Digital/Digital-to-Analog Converters

An Analog-to-Digital Converter(ADC) is a device that
converts an analog signal, such as voltages or currents, into
discrete digital signals representative of the analog signal being
converted. The reverse is true of a Digital-to-Analog
Converter(DAC) where discrete signals of a predetermined
coding scheme is converted into analog signals.

For this motherboard a MAX1240 IC was used for the ADC
component while MAX550 IC was used for the DAC.

The following the the HDL codes for the controllers of the
ICs in Verilog HDL language:

module MAX_550(RST_n, CLK, START, CTRL_BYTE,
DT_BYTE, MAX_SCLK, MAX_CS_n, MAX_LDAC_n,
MAX_DIN);

 input RST_n;
 input CLK;
 input START;
 input [7:0] CTRL_BYTE;
 input [7:0] DT_BYTE;
 output MAX_SCLK;
 output MAX_CS_n;
 output MAX_LDAC_n;//output if MAX550
 output MAX_DIN;

 reg MAX_SCLK;
 reg MAX_CS_n;
 reg MAX_DIN;

 reg [3:0] CLK_CNT;
 reg [4:0] BIT_CNT;
 reg [15:0] TRANS_DATA;

 wire START_PE;
 wire MAX_CS_n_PE;
 wire MAX_SCLK_PE;

 wire MAX_SCLK_NE;

 wire START_GO;
 wire MAX_SCLKfr_NE;

 reg [15:0] BUSY_n_shift;
 reg BUSY;

 always @(posedge CLK)
 if (!RST_n) BUSY_n_shift <= 16'hffff;
 else if (START_GO) BUSY_n_shift <= 16'h0000;
 else if (MAX_SCLKfr_NE) BUSY_n_shift <=

{BUSY_n_shift[14:0], MAX_CS_n};

Fig. 9 Parallel Port Pin Assignment

Fig. 10 Parallel Port Schematic Diagram

Fig. 11 ADC/DAC schematic diagram

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 395

 always @(posedge CLK)
 BUSY <= ~|BUSY_n_shift[1];

 always @(posedge CLK)
 if (~RST_n) CLK_CNT <= 0;
 else if (START_GO) CLK_CNT <= 0;
 else CLK_CNT <= CLK_CNT + 1;

 always @(posedge CLK)
 if (~RST_n) MAX_SCLK <= 0;
 else MAX_SCLK <= CLK_CNT[3] & (BIT_CNT < 16);

 always @(posedge CLK)
 if (~RST_n) MAX_CS_n <= 1;
 else if (START_GO) MAX_CS_n <= 0;
 else if (&BIT_CNT) MAX_CS_n <= 1;

//if MAX550
 reg MAX_LDAC_n;
 reg MAX_LDAC_n_dn1, MAX_LDAC_n_dn2;
 always @(posedge CLK)
 begin
 MAX_LDAC_n_dn2 <= MAX_LDAC_n_dn1;

MAX_LDAC_n <= MAX_LDAC_n_dn2;
 end

 always @(posedge CLK)
 if (~RST_n) MAX_LDAC_n_dn1 <= 1'b1;
 else if (MAX_CS_n_PE) MAX_LDAC_n_dn1 <= 1'b0;
 else if (MAX_SCLKfr_NE) MAX_LDAC_n_dn1 <= 1'b1;

 always @(posedge CLK)
 if (~RST_n) MAX_DIN <= 0;
 else if (~MAX_CS_n && (BIT_CNT < 16)) MAX_DIN <=

TRANS_DATA[BIT_CNT];

 always @(posedge CLK)
 if (~RST_n) TRANS_DATA <= 16'b0000000000000000;
 else if (START_GO) TRANS_DATA <= {CTRL_BYTE,

DT_BYTE};

 always @(posedge CLK)
 if (~RST_n) BIT_CNT <= 5'b11111;
 else if (START_GO) BIT_CNT <= 5'd15;
 else if (MAX_SCLK_NE & ~&BIT_CNT) BIT_CNT <=

BIT_CNT - 1;

 assign START_GO = START_PE & ~BUSY;

 edge_detector #1 edge_detector0(CLK, 1'b1, START,
START_PE);

 edge_detector #0 edge_detector1(CLK, 1'b1, CLK_CNT[3],
MAX_SCLKfr_NE);

 edge_detector #1 edge_detector2(CLK, 1'b1, MAX_CS_n,
MAX_CS_n_PE);

 edge_detector #1 edge_detector3(CLK, 1'b1, CLK_CNT[3] &
~MAX_CS_n, MAX_SCLK_PE);

 edge_detector #0 edge_detector4(CLK, 1'b1, CLK_CNT[3] &
~MAX_CS_n, MAX_SCLK_NE);

endmodule

module MAX_1240(RST_n, CLK, START,
MAX1240_SCLK, MAX1240_CS_n, MAX1240_DOUT,
DT_VALID, DT, NEXT);

 input RST_n;
 input CLK;
 input START;
 output MAX1240_SCLK;
 output MAX1240_CS_n;
 input MAX1240_DOUT;
 output DT_VALID;
 output [11:0] DT;
 output NEXT;

 reg MAX1240_SCLK;
 reg MAX1240_CS_n;
 reg [11:0] DT;
 reg DT_VALID;

 reg [4:0] CLK_CNT;
 reg [4:0] BIT;
 reg [15:0] DT_LATCH;
 reg DT_RDY;

 wire MAX1240_CS_PE;
 wire MAX1240_CS_NE;
 wire MAX1240_SCLK_PE;
 wire MAX1240_SCLK_NE;
 wire MAX1240_DOUT_PE;
 wire START_PE;
 wire DT_RDY_PE;
 reg MAX1240_CS_nx;
 reg SCLKenable;
 reg [9:0] cnten;
 reg enable;
 reg [9:0] cntenx;

 always @(posedge CLK)
 if (~RST_n) cntenx <= 0;
 else if (!MAX1240_CS_n) cntenx <= 0;
 else if (cntenx == 60) cntenx <= 60;
 else cntenx <= cntenx + 1;

 always @(posedge CLK)
 if (~RST_n) enable <= 0;
 else if (cntenx > 58) enable <= 1;
 else enable <= 0;

 edge_detector1 #1 _MAX1240_NEXT(CLK, 1'b1, enable,
NEXT);

 edge_detector1 #1 _MAX1240_CS_PE(CLK, 1'b1,
MAX1240_CS_n, MAX1240_CS_PE);

 edge_detector1 #0 _MAX1240_CS_NE(CLK, 1'b1,
MAX1240_CS_nx, MAX1240_CS_NE);

 edge_detector1 #1 _MAX1240_SCLK_PE(CLK, 1'b1,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 396

MAX1240_SCLK, MAX1240_SCLK_PE);
 edge_detector1 #0 _MAX1240_SCLK_NE(CLK, 1'b1,

MAX1240_SCLK, MAX1240_SCLK_NE);
 edge_detector1 #1 _MAX1240_DOUT_PE(CLK, 1'b1,

MAX1240_DOUT, MAX1240_DOUT_PE);
 edge_detector1 #1 _START_PE(CLK, 1'b1, START,

START_PE);
 edge_detector1 #1 _DT_RDY_PE(CLK, 1'b1, DT_RDY,

DT_RDY_PE);

//**
// MAX1240 CS_n pin

 always @(posedge CLK)
 if (~RST_n) MAX1240_CS_nx <= 1;
 //else if (START_PE & MAX1240_CS_n)

MAX1240_CS_nx <= 0;
 else if (START_PE) MAX1240_CS_nx <= 0;
 else if (&BIT & MAX1240_SCLK_NE) MAX1240_CS_nx

<= 1;

reg [3:0] scnt;
initial scnt = 0;
 always @(posedge CLK)
 if (MAX1240_CS_PE) scnt <= 0;
 else scnt <= scnt + 1;

 always @(posedge CLK)
 if (!RST_n) MAX1240_CS_n <= 1;
 else if (&scnt) MAX1240_CS_n <= MAX1240_CS_nx;

//**
// clock division, clock position markers

 always @(posedge CLK)
 if (~RST_n) CLK_CNT <= 0;
 else if (MAX1240_CS_NE | DT_RDY_PE) CLK_CNT <=

0;
 else if (SCLKenable && !MAX1240_CS_nx) CLK_CNT

<= CLK_CNT + 1;

 always @(posedge CLK)
 if (~RST_n) cnten <= 0;
 else if (MAX1240_CS_n || !DT_RDY) cnten <= 0;
 else if (cnten == 50) cnten <= 50;
 else cnten <= cnten + 1;

 always @(posedge CLK)
 if (~RST_n) SCLKenable <= 0;
 else if (cnten > 48) SCLKenable <= 1;
 else SCLKenable <= 0;

 always @(posedge CLK)
 if (~RST_n) MAX1240_SCLK <= 0;
 else if (SCLKenable) MAX1240_SCLK <= CLK_CNT[4];

//**

// data ready marker

 always @(posedge CLK)
 if (~RST_n) DT_RDY <= 0;
 else if (MAX1240_CS_NE) DT_RDY <= 0;
 else if (MAX1240_DOUT_PE) DT_RDY <= 1;

//**
// BIT marker

 always @(posedge CLK)
 if (~RST_n) BIT <= 15;
 else if (DT_RDY_PE) BIT <= 15;
 else if (MAX1240_SCLK_PE & ~&BIT) BIT <= BIT - 1;

//**
// digital data

 always @(posedge CLK)
 if (~RST_n) DT_LATCH <= 0;
 else if (MAX1240_SCLK_PE) DT_LATCH[BIT] <=

MAX1240_DOUT;

 always @(posedge CLK)
 if (~RST_n) DT <= 0;
 else if (DT_VALID) DT <= DT_LATCH[14:3];
 else DT <= 0;

 always @(posedge CLK)
 if (~RST_n) DT_VALID <= 0;
 else if (START_PE) DT_VALID <= 0;
 else if (MAX1240_CS_PE) DT_VALID <= 1;

endmodule

G. Digital Display Devices

Other display devices that are included in the motherboard
are the seven-segment display and the liquid crystal
display(LCD).

A seven segment display is a component that is composed of
seven elements that can be turned on or off. In combination
these elements can represent numerals or alphabets.

In the case of the motherboard the seven-segment display
elements are light emitting diodes (LEDs) that can be
controlled by registers within the FPGA, these registers are
used as latches to tell the individual elements if they should be
on or off.

The liquid crystal display uses the same concept for display
and relaying information. Rather that limiting it to seven
segments, a LCD screen uses more elements in a dot-matrix
environment capable of displaying more complex
representations on the display.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 397

III. SUMMARY

The Data and Network Communications Protocol
Motherboard Using Reconfigurable Hardware was designed to
develop a firm base of knowledge by giving more of a hands-
on approach to learning.

The core of this motherboard is a reconfigurable FPGA.
Using a compiler and some basic skills. A user will be able to
design and implement his own project using the different
devices on the board.

The board is outfitted with a VGA port to be connected to a
VGA ready monitor. The user will design his own timing
signals to be able to implement a VGA controller as well as
design the display itself.

Two PS/2 ports are provided. The user will be able to use
these as ports for a keyboard as well as for a mouse.

A USB port is also provided. This USB is already designed
to transmit over a USB cable and what is needed from the user
are the control signals as well as the data to be sent over the
line.

A general input/output port is also provided. Primarily it will
be used as a parallel port for parallel communications. It will

also be used as an interface for daughter boards to be designed
and implemented for additional functions for the motherboard.

For serial communications three DB9 ports are provided.
They are designed to emulate communication devices using
serial communications such as DTE and DCE devices.

ACKNOWLEDGMENT

The authors wish to extend their gratitude to the Philippine
Council for Advanced Science and Technology Research and
Development of the Department of Science and Technology
for funding this study and to the Department of Electronics,
Computer, and Communications Engineering Department,
Ateneo de Manila University.

REFERENCES

[1] Carlson, A. Bruce, Communication Systems, McGraw-Hill, 2002.

[2] Smith, Doug J., HDL Chip Design, Doone Publications, 2001.
[3] E. Alaer, A. Tangel, and M. Yakut., ?MIB-16? FPGA Based Design and

Implementation of a 16-Bit Microprocessor for Educational Use, WSEAS
Transactions on Advances in Engineering Education, Vol.5, No.5, 2008,
pp.326-330.

[4] A. J. Araujo and J. C. Alves, A Project Based Methodology to Teach a
Course on Advanced Digital Systems Design. WSEAS Transactions on
Advances in Engineering Education, Vol.5, No.6, 2008, pp. 437-446

[5] Rosula Reyes, Carlos Oppus, Jose Claro Monje, Noel Patron, Reynaldo
Guerrero, and Jovilyn Therese Fajardo. “FPGA Implementation of a
Telecommunications Trainer System”. International Journal of Circuits,
Systems and Signal Processing. NAUN Press, Vol. 2, Issue 2, 2008, pp.
87-94. (ISSN: 1998-4464).Rosula Reyes, Carlos Oppus, Jose Claro
Monje, Noel Patron, Reynaldo Guerrero, and Jovilyn Therese Fajardo.
“FPGA Implementation of a Telecommunications Trainer System”.
International Journal of Circuits, Systems and Signal Processing. NAUN
Press, Vol. 2, Issue 2, 2008, pp. 87-94. (ISSN: 1998-4464).

[6] Maxfield, Clive, The Design Warrior’s Guide to FPGAs: Devices, Tools,
and Flows, Elsevier Science and Technology, 2004.

[7] Brown, Stephen, Zvonko Vranesic, Fundamentals of Digital Logic with
Verilog Design, McGraw-Hill, 2008.

[8] Chu, Pong P., FPGA Prototyping by Verilog Design, John Wiley & Sons,
Inc., 2008.

[9] Rosula Reyes, Carlos Oppus, Jose Claro Monje, Noel Patron, Raphael
Gonzales, and Jovilyn Therese Fajardo. "FPGA-based DSP Trainer," CSIE
2009, 2009 WRI World Congress on Computer Science and Information
Engineering, March 31 - April 2, 2009, Los Angeles, California, USA, 7
Volumes, IEEE Computer Society 2009, Volume 5, pp. 343-347 (ISBN
978-0-7695-3507-4).

Fig. 12 7-Segment Display schematic diagram

Fig. 13 Liquid Crystal Display schematic diagram

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 398

