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An Investigation on The Quality of Denoised
Images
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Abstract—The mean squared error (MSE) and its related
metrics such as peak signal to noise ratio (PSNR), root mean
squared error (RMSE) and signal to noise ratio (SNR) have been
the basis for mathematically defined image quality measurement
for a long time. These methods are all based on the MSE.
Denoised image quality has also been traditionally measured in
terms of the MSE or its derivatives. However, none of these
metrics takes the structural fidelity of the image into account.
We investigate the structural changes that occur during the
denoising process and attempt to study an alternative metric for
determining the quality of denoised images based on structural
changes. We also show the shortcomings of the MSE-based image
quality metrics.

Index Terms—SSIM, MSE, TV, PSNR, Noise, Denoise, Metric

I. I NTRODUCTION

I N this work we set out to determine if the traditional image
quality metrics such as the mean square error actually

give accurate measure of image quality improvement after
denoising. We therefore explore the use of the MSE and the
peak signal to noise ratio (PSNR) as error sensitivity metrics
and structural similarity metric (SSIM) that measures the
structural similarity of an image against a reference image. The
structural similarity of a denoised image tells us how much of
the original structure has been recovered after denoising. We
then study the SSIM of the denoised image against the MSE
and PSNR to determine different aspects of the image recovery
process. However, the fact that the measurement metric should
give an accurate estimation of the degree of restoration of
the denoised image must be kept in mind. Traditionally, the
error sensitivity approach has been used to measure the degree
of recovery. But the question must be asked if this is in
itself a sufficient tool to measure the quality of denoised
images. The structure of an image makes us infer that the
error sensitivity metrics have inadequacies in the manner in
which they measure image quality in general. For one, they
do not model the human visual system (HVS) adequately so
that the aspects of image quality which they measure do not
necessarily reflect the reality of the HVS. The ultimate aim of
denoising an image is to render it more pleasing to the eye
(HVS). The eye remains the best judge of image quality. For
this reason, we need to use a metric that models the HVS
as closely as possible. This is indeed a difficult task. The
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shortcoming of the error-sensitivity methods arise primarily in
the assumptions made in the measuring process. For example,
the assumption that the reference image is of perfect quality is
a necessary assumption, otherwise no meaningful comparison
of image quality can be made. But at the same time, it
is assumed that the channels of the HVS have little or no
interaction, which is not the case. The error sensitivity models
work well for simple patterns but for patterns such as natural
images where many simple patterns coincide at the same
image location, the error sensitivity models do not give a very
good approximation to the true quality of a denoised image.

We use the SSIM as an alternative metric to measure
structural recovery after denoising. It is important to note that
the structural distortion models measure different parameters
of images from the error sensitivity models. We shall explore
these differences and how they affect image quality.

II. I MAGE QUALITY MEASUREMENT

There are basically two classes of objective quality as-
sessment of images. The first are the mathematically defined
measures such as the mean square error (MSE), peak signal
to noise ratio (PSNR), root mean square error (RMSE) and
signal to noise ratio (SNR). The second class of measurement
methods depend on the characteristics of the human visual
system (HVS) in an attempt to incorporate perceptual quality
measures. Of the two methods the mathematically defined
measures are most widely used. This is because of simplicity
of implementation. Most error sensitivity methods are based
on the mean square error (MSE). In most cases, they are
equivalent metrics. The MSE is parameter free, inexpensive
to compute and the samples in an image are assumed to be
independent. The MSE offers a clear physical meaning. It
measures the energy of the signal using theL2-norm. Because
of the reflexivity of theL2 space, any transformation of the
error energy is preserved isometrically in the dual space which
is also anL2 space. TheL2-norm is energy preserving.

The MSE is an old statistical tool and it was first used by
C.F. Gauss to represent the statistical variance of the random
samples. He also used it in the method of least squares.
There are many other instances of the usefulness of the MSE.
Historically, it has been used extensively for assessing a wide
variety of imaging problems such as image compression,
restoration, denoising, classification and reconstruction. The
MSE is pervasive throughout the literature. It has been the de
facto tool for signal strength comparison.

This wide acceptability of the MSE makes it very difficult
to abandon. So even though there may be alternatives to the
MSE, its use is not likely to diminish for some time to come.
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But the error sensitivity models are not the only class of
models suitable for measuring image quality. There are models
based on the human visual system (HVS) that can accomplish
the same purpose albeit using different criteria from the MSE-
based methods. These models deal more with the perception
of the human eye. A serious drawback of any error sensitivity
model is that it treats all image degradations as some kind of
error. But the human eye is well adapted to extract structural
information from an image. The error sensitivity models do
not capture this fact. Unfortunately, modeling the HVS has
not known very good progress over the years. This could be
directly attributed to our limited understanding of the HVS.
However, it is generally known that the HVS

1. Has low-pass filter characteristics
2. Lacks color resolution
3. Shows sensitivity to motion
4. Exhibits integral face recognition characteristics
5. Is sensitive to structural distortion
The model we shall use takes the structural distortion into

account to determine the quality of denoised images. The HVS
has evolved to adapt its functions to extract useful structural
information from natural scenes. Therefore, an image quality
metric that aims to predict the evaluation behavior of the HVS
will also need to be adapted to the properties of natural image
signals. A distinct feature of natural images is that the image
pixels(signals) exhibit strong dependencies among themselves.
The greatest failure of the error sensitivity methods lies in
the fact that they ignore the structural dependencies between
image signal samples. This why its ability to provide an
acceptable quality measure for denoised images is suspect.

In the past century, there has been considerable progress
in increasing our depth of understanding the functions of the
human perceptual system and developing mathematical models
for its functions. However, our knowledge of human per-
ception remains rudimentary. The most common approach to
perception is by developing appropriate mathematical models
for each functional perceptual component. These components
form building blocks which are eventually integrated into a
full system.

Denoising follows the same process. To measure the quality
of a denoised image, we first need a mathematical model that
denoises the image. Different denoising models have different
denoising capabilities. Second, we need a mathematical model
that tells us exactly how much the image has been recovered
i.e. the degree of restoration. As we shall show, the error
sensitivity methods do not tell the whole story.

The ultimate judge of image quality is the human eye and
what is more important to the eye is the structural fidelity
of a denoised image. The HVS is quite sensitive to structural
information. How close the structure of a denoised image is to
the reference image really does matter. For this reason we can
say that the eye appeal of a denoised image is dependent on the
accuracy of the structural information between the denoised
image and its reference image.

Most HVS-based methods use some form of bottom-up
approach. They simulate the functions of relevant components
in the HVS and combine them together, with the goal that
the combined system can predict the behavior of the overall

HVS. The effectiveness of these methods depend on how much
the HVS is understood and how accurately the simulation
can be implemented. By contrast, straightforward structural
approaches are based on a top-down philosophy, which starts
from the top level–simulating the hypthesized functionality
of the overall HVS. Top-down approaches sometimes lead
to significantly simplified algorithms, but rely heavily on the
accuracy of the underlying hypothesis. In particular, the basic
assumption made by structural approaches is that the HVS
is highly adapted to extract structural information from the
visual scene, and therefore structural distortion measure should
give good prediction of perceived image quality. Current
experiments have demonstrated this to be the case.

The paradigm of structural image quality assessment is
still new. The current approaches can be extended in many
directions. Direct extensions include video quality assessment,
colour image quality assessment and multiscale image quality
assessment. Furhtermore, the SSIM index approach is quite
encouraging not only because of its good image quality pre-
diction accuracy, but also its simple formulation and low com-
putational complexity. This simplicity makes it quite tractable.
Consequently, the SSIM index, and other structurally-oriented
image quality assessment algorithms have great potential to be
used in the future development of image quality measurement.
We give a comparison of the error-sensitivity methods and the
structural distortion method and investigate the effect of each
on the quality of denoised images.

III. E RROR SENSITIVITY METHODS

The dominant error-sensitivity measurement tool has been
the mean square error. There are variations of the MSE that
are also in use as we mentioned. The MSE is used as a
signal fidelity measure. The goal of signal fidelity measure
is to compare two signals by providing a quantitative score to
determine the level of error or distortion between them. The
MSE between two signalsx andy is

MSE(x,y) =
1

N

N
∑

i=1

(xi − yi)
2 (1)

The error signalei = xi − yi is the difference between the
original and distorted signal. More generally the error can be
written in terms of thelp-norm:

dp(x,y) =

(

N
∑

i=1

(xi − yi)

)

1

p

(2)

which is called the Minkowski metric. The MSE is however
usually expressed as the peak signal to noise ration (PSNR)
measure

PSNR = 10 log10
L2

MSE
(3)

whereL is the dynamic range of allowable pixel intensities.
For example, for an 8-bit per pixel image,L = 28 − 1 = 255.
The error-sensitivity methods derive their effectiveness from
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Reference Image
MSE = 0, SSIM =1

Contrast Stretch
MSE = 255, SSIM = 0.9172

Negative Image
MSE = 255, SSIM = −0.1632

Gaussian White Noise
MSE = 255, SSIM = 0.5927

Lossy compression
MSE = 255, SSIM = 0.6947

Blurred Image
MSE = 255, SSIM = 0.7722

Fig. 1: Distorted Image Fidelity Measure

the Minkowski metric. The Minkowski metric is given as

‖Ep‖ =

(

N
∑

i=1

|xi − yi|
p

)

1

p

. (4)

MSE = 1
N
‖Ep‖

p when p = 2. The Minkowski metric
between the original image and the distorted image is always
the same no matter what power ofp is used. This is so even
when the quality of the distorted images changes drastically.
When p = 2, the Minkowski metric effectively becomes the
means square error(MSE) metric. An implicit assumption of
the Minkowski metric is that all signal samples are indepen-
dent. For this reason its value remains the same even when
there is a rearrangement of pixels in the image. The MSE is a
special case of the Minkowski metric whenp = 2. It is useful
because whenp = 2, the metric is a hilbert norm. The Hilbert
space is reflexive and so the Hilbert space is the same as its
dual space. This has the consequence of preserving energy in
general. This is possible only whenp = 2. In the Minkowski
norm

Ep =

(

N
∑

i=1

|xi − yi|
p

)

1

p

wherexi and yi are theith samples in the imagesx andy

respectively,N is the number of image samples, andp refers
to the degree of power. In the MSE, we refer to the error signal
ei = xi − yi which is the difference between the original and
distorted signals. The MSE may be regarded as a measure of
signal quality. It is believed that the smaller the error is the
closer the two images are in quality and that when the value
of the MSE does not change the there is no possible change of
quality between the two images. But as we will show through
experimental results, this is not true.

Like we said earlier, the MSE is converted into a peak
signal-to-noise ratio measure usually given as

PSNR = 10 log10
L2

MSE

where L is the dynamic range of allowable image pixel
intensities. The PSNR differs in quality of measurement only
when the images have different dynamic ranges, otherwise it
contains no new information relative to the MSE [18]. The
Minkowski metric does not respect the ordering and pattern
of the signal samples. However it is known that pixel order
carries important visual information in the image. This failure
encourages us to examine other methods of image quality
measurement based on other principles.

There are other relatives of the PSNR which deserve
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mention. They also measure the quality of images by error-
sensitivity. The signal-to-noise ratio is the dimensionless ratio
of the signal power to the noise power in a recorded signal.
The power of the deterministic signalPs is given as

Ps =
1

T

∫ T

0

s2(t)dt (5)

where T is the interval of observation. The signal-to-noise
ratio is typically written as

SNR =
Ps

PN

=
(Asignal)

2

(Anoise)
2 (6)

where Ps is the signal power andPN is the noise power.
Asignal is the signal amplitude andAnoise the noise am-
plitude. Since signal-to-noise ratio is often expressed using
logarithmtic decibel scale, in decibel, the SNR is expressed as

SNRdB = 10 log10
Psignal

Pnoise

= 10 log10

(

Asignal

Anoise

)2

. (7)

The concepts of signal-to-noise ratio and dynamic range are
closely related. Dynamic range measures the ratio between the
strongest and weakest signal on a channel which is actually the
noise level. SNR measures the ratio between an arbitrary signal
level and noise. Measuring the signal-to-noise ratio requires
the selection of a representative reference signal. In image
processing, this representative signal is a reference image
considered to be noiseless. The numerator of equation (7) is
the square of the peak value that the signal could have and
the denominator equals the noise power (noise variance). For
example, an 8-bit image having values ranging from0 to 255,
for PSNR calculations, the numeratorA2

signal = 2552 in all
cases. Also,

A2
noise = MSE =

1

N

N
∑

i=1

|xi − yi|
2 =

1

N
‖E2‖

2

which measures the error between two images. So, we see that
the SNR can be reduced to the PSNR in the case of images.

The root mean square error (RMSE) sometimes called
the root mean square deviation (RMSD) is frequently used
to measure the difference between values predicted by an
estimator and the values actually observed from the thing
being modeled or estimated. The RMSE of an estimatorθ̂

with respect to the estimated parameterθ is defined as the
square root of the mean square error

RMSE =
√

MSE(θ) =

√

E((θ̂ − θ)2) (8)

The RMSE measures the square root of the variance if the
estimator is not biased. In image processing, the RMSE
between two image matricesI, J is given as

RMSE(I, J) =
√

MSE(I, J) =

√

∑m
j=1

∑n
i=1 (Iij − Jij)

2

m× n
(9)

We see from the above argument that the RMSE is related to
the MSE because the MSE is a scaled square of the RMSE.

IV. T HE SSIM

The denoising process is also a structural change process.
The MSE-based image quality metrics are not able to measure
structural change. For this reason we proceed to study an
alternative method of determining quality of denoised images
based purely on structural considerations. We then compare
the structural methods to the error-sensitivity methods. For
the structural approach, we employ the use of the structural
similarity index (SSIM) as developed by Zhou Wang, Alan C.
Bovik and Eero Simoncelli [3]. First we seek to understand
how the SSIM works with a view to applying it to the study
of denoised image quality.

We recall that the Minkowski metric does not take the order
of the signal samples into consideration. This assumption has
grave implications for natural image signals because they are
highly structured. It is the ordering and pattern of natural
images that give the distinct visual information in images. So
the application of a model that takes this fact into account will
bring us closer to the true quality of a denoised image. What
we need is a metric that senses the structural changes in the
image signals.

The luminance of a surface is the product of the illu-
mination and reflectance. However, objects in a scene are
independent of illumination. The major impact of illumination
change in an image, therefore, is a change in variation of the
local luminance and contrast. This variation does not have
a significant effect on perceived image quality. Indeed [18]
showed that luminance and contrast changes in an image can
be separated from structural distortions in the image space. In
inage fidelity measurement, retention of image signal structure
is important. Luminance change is a nonstructural distortion.
Other nonstructural changes include contrast change, gamma
distortion and spatial shift. Supposex andy are local image
patches taken from the same location of two images, the local
SSIM index measures the similarities of three elements of
the image patches. These are the luminance similarityl(x,y)
which measures the local patch brightness values. Thec(x,y)
similarity measures determines the local patch contrast values
and thes(x,y) determines local patch structural similarity.
The forementioned quantites are computed for the whole
image and combined together to form the SSIM for the
image. The luminance of each signal is estimated as the mean
intensity

µx = x̄ =
1

N

N
∑

i=1

xi (10)

The luminance comparison functionl(x,y) is then a function
of µx and µy, that is, l(x,y) = l(µx, µy). We remove the
mean intensity from the signal. The resulting signalx − µx

corresponds to the projection of the vectorx onto the hyper-
plane of

∑N
i=0 xi = 0. We further use the standard deviation

as an estimate of the signal constrast:

σx =

(

1

N − 1

N
∑

i=1

(xi − µx)
2

)

1

2

(11)
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(A) (B)
(C)

Fig. 2: (A) Original Pristine Image (B) Image Corrupted with Gaussian Noise (C) The SSIM Image Quality Map of (A) and
(B)

The contrast comparisonc(x,y) is then the comparison ofσx

andσy:
c(x,y) = c(µx, µy)

Thirdly, the signal is normalized by its own standard deviation
so that the two signals being compared have unit standard
deviation. the structure comparisons(x,y) on the normalized
signals is:

s(x,y) = s

(

x− µx

σx

,
y − µy

σy

)

(12)

Finally, the three components are combined to yield an overall
similarity measure

S(x,y) = f(l(x,y), c(x,y), s(x,y)). (13)

The three components do not depend on one another and
so the changes in luminance and constrast has no effect on
the structures of the object in a scene. We define the functions
l(x,y),c(x,y) and s(x,y) as well as the combination of all
three functions. Furthermore the similarity measure satisfies
the following conditions:

1. Symmetry: s(x,y) = s(y,x). This means that the
order of the input signals should not affect the resulting
measurement.

2. Boundedness:−1 < s(x,y) ≤ 1. The upper bound in-
dicates how close the two signals are to being identical.

3. Unique maximum:s(x,y) = 1 if and only if x = y.
This perfect score should be achieved only if the com-
pared signals are identical otherwise it should measure
any variations that may exist between the images.

The luminance comparison function is defined as

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(14)

In our experiments,C1 = 0 but a common assumption is that
C1 = (K1L)

2 whereL is the dynamic range of the image
andK1 ≪ 1. The contrast comparison function takes a similar
form to the luminance comparison function:

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(15)

Here also,C2 = (K2L)
2 where L is the dynamic range

of the image andK2 ≪ 1 but we assume thatC2 = 0

in our computations. Structure comparison is carried out
after luminance subtraction and constrast normalization. The
angle between the vectorsx−µx

σx

and y−µy

σy

each lying in

the hyperplane
∑N

i=1 xi = 0 provides a simple and effective
measure that quantifies structural similarity. This corresponds
to measuring the correlation coefficient betweenx andy. The
structure comparison function is defined as:

s(x,y) =
2σxy + C3

σxσy + C3
(16)

We takeC3 = 0. The cross correlation coefficientσxy is given
as

σxy =
1

N − 1

N
∑

i=1

(xi − µx)(yi − µy) (17)

Finally, we combine the luminance, constrast and structure
similarity functions. The result is usually called the structural
similarity (SSIM) index. So,

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (18)

whereα > 0, β > 0 andγ > 0 are used to tune the relative
importance of the three components. In our experiments we
takeα = β = γ = 1. So, we have

SSIM(x,y) =
(

2µxµy + C1

µ2
x + µ2

y + C1

)

·

(

2σxσy + C2

σ2
x + σ2

y + C2

)

·

(

2σxy + C3

σxσy + C3

)

(19)

whereµx andσy represents the local sample means ofx and
y. σx and σy are the local standard deviations whileσxy is
the sample cross correlation ofx and y after the mean has
been removed i.e. the cross correlation ofx−µx andy−µy.
In the hyperplane of

∑N
i=1 = 0, the SSIM index compares the

vectors(x−µx) and(y−µy) with two independent quantities:
the vector lengths and their angles. The angular measure gives
an indication of structural distortion.

SSIM indices give a measure of similarity between images.
If one of the images is regarded as a reference image, that is
of perfect quality, then the SSIM index can ne viewed as an
indication of the quality of the other image being compared.
Image quality is computed locally rather than globally. The
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local statisticsµx, σx andσxy are computed within a local8×8
square window. This produces an image quality map (see Fig.
2). The image quality map is combined into a single quality
score for the entire image. The local statistics and SSIM are
calculated within each window. A drawback of this approach
is that the index map exhibits blocking artifacts. To overcome
this drawback, the authors in [15] used a circular-symmetric
Gaussian weighting functionw = {wi|i = 1, 2, ..., N} with
∑N

i=1 wi = 1 with the local statisticsµx, σx andσxy modified
by the weighting functionw

µx =

N
∑

i=1

wixi, (20)

σx =

(

N
∑

i=1

wi(xi − µx)
2

)

1

2

(21)

and

σxy =

N
∑

i=1

wi(xi − µx)(yi − µy). (22)

Because of the isotropic property of the Gaussian function,
the quality map will exhibit a locally isotropic property also.

The SSIM has worked quite well across a wide variety
of applications. Where the MSE-based metrics have failed to
provide a good indication of image distortion, the SSIM index
has proved to be effective in this respect. For this reason, we
employ it in the study of denoised image quality as we see in
Fig. 3, the SSIM changes as the denoising parameters change
but the MSE remains constant at 255. Here, we see that the
MSE do not give a good account of the quality changes in the
image. Generally, the SSIM scores are better at representing
visual reality.

[18] showed that the SSIM handles texture masking visual
effects well. When noise is added uniformly across the image,
the visual appearance of the image is more highly degraded
in smooth regions of the image. If we use anlp-norm such
as the Minkowski metric to measure the image quality, the
measurement is likely to be uniform even though the human
eye will observe a degradation of the image. The SSIM scores
more in accord with human visual perception than the MSE.

SSIM has been used for evaluating image processing results
in applications such as image fusion, image compression,
video hashing, etc. Here, we use it to evaluate denoised
images. A drawback of the SSIM index is that it is sensitive
to translations, scaling and rotation of images. To overcome
this, the authors in [15] developed a wavelet domain version
of the SSIM called the complex wavelet SSIM (CW-SSIM). If
Cx = {Cx,i|i = 1, 2, ..., N} andCy = {Cy,i|i = 1, 2, ..., N}
are sets of coefficients extracted from the same spatial location
in the same wavelet subbands of two imagesx andy, then
the CW-SSIM has the following form:

S̄(x,y) = m̄(Cx, Cy) · p̄(Cx, Cy) =

2
∑N

i=1 |Cx,i||Cy,i|+K
∑N

i=1 |Cx,i|2 +
∑N

i=1 |Cy,i|2 +K
·
2|
∑N

i=1 Cx,iC
∗

y,i|+K

2
∑N

i=1 |Cx,iC
∗

y,i|+K

(23)

C∗ is the complex conjugate ofC andK is a small stabi-
lizer. m̄(Cx, Cy) is determined by the norm of the coefficients.
It is maximum when|Cx,i| = |Cy,i| for all i. p̄(Cx, Cy) is
determined by the consistency of phase changes betweenCx

and Cy. It is maximum when the phase difference between
Cx,i and Cy,i is the same for alli. The phase component
effectively measures image structural similarity because the
local structure of the image is realized by the relative phase
patterns of local image frequencies. Also a constant phase shift
of the wavelet coefficients will not change the structure of the
local image structure. Just like the SSIM, the CW-SSIM is
computed locally from each subband, and then averaged over
space and subbands to yield the CW-SSIM index between two
images.

V. NOISE MODELS

We consider some noise models that occur in practice. Some
are natually occurring such as the gaussian noise; some are
sensor-related e.g. photon counting noise and speckle noise.
Some kinds of noise arise from processing e.g. quantization
and processing. There are additive, multiplicative noise models
as well as models which do not fit into these two categories.
However, we shall use only additive and multiplicative noise
in our experiments. Additive noise is usually intensity-related.
Let u be a discrete image andδ = (δi,j)i,j be annx × ny

matrix of intensities of independent and identically distributed
random variables. If the recorded intensity data are

uδ = u+ d

then we speak of additive intensity errors in the image data.
Examples are thermal noise, photographic noise and quantiza-
tion noise. A model for multiplicative noise is given by

uδ = u · d

where(δi,j)ij is a matrix of values which are independent
and identically distributed random variables. The multiplica-
tive noise is understood pointwise i.e.uδ

i,j = ui,jδi,j . Poisson
noise and salt-and-pepper noise are prominent noise models
with a functional dependence of the noiseδ on u.

VI. D ENOISING MODELS

In our experiments, we use two kinds of noises: additive
noise and multiplicative noise. We adopt the use of the
Gaussian white noise for additive noise analysis and the salt
and pepper noise for multiplicative noise. The choice of these
noise types also necessitate that the method of denoising the
image should be adapted to the form of the noise as well.
For additive noise, we choose the use of the total variation
denoising method. The reason for this choice is that the
total variation method allows us the possibility to tune the
denoising paramaters. This enables us to observe the changes
in image quality more easily. We give a brief description of
the total variation denoising and its applicability to additive
noise restoration.
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A. Total Variation Denoising

Image degradation usually results from image acquisition
modality and defects in the imaging system or random noise
from unwanted signals. Therefore, it is important to choose
a noise model that correlates with reality in order to solve
a denoising problem successfully. We assume an additive
random noise for the total variation denoising method. We
model the noise as a Gaussian distribution. Knowing the
kind of noise in an image is not not always possible and
so some assumptions need to be made. If we assume that
u : Ω : R2 → R is an original image andu0 is the observed
image (i.e. the corrupted image from which we wish to obtain
u), then we can assume that

u0 = Ru+ η (24)

whereη stands for a white Gaussian additive noise andR is
a linear operator representing a blur. So, givenu0, we wish to
obtainu. This problem is ill-posed because the nature ofR is
not usually known and there is no direct method of measuring
R or η. It can only be formulated as an inverse problem. In
accordance with the maximum likelihood principle, we can
find an approximation ofu from (24) by solving the least
squares problem:

inf
u

∫

Ω

|u0 −Ru|2dx (25)

with Ω as the image domain. (25) is simply a minimization of
the MSE. If equation (25) has a minimum, then it must satisfy

R∗u0 −R∗Ru = 0 (26)

i.e.u = R∗u0 if R∗R is one-to-one whereR∗ is the adjoint of
R. Because of ill-posedness, obtainingu may not be possible.
Because of this, it is necessary to regularize (25) in order to
introduce stability into the solution. An idea introduced by
Tikhonov and Arsenin (1977) is to overcome ill-posedness by
adding a regularization term to (25). Tkhonov and Arsenin
considered the following minimization problem:

F (u) =

∫

Ω

|u0 −Ru|2dx+ λ

∫

Ω

|∇u|2dx (27)

with boundary condition∂u
∂N

= 0. The first term measures
the fidelity to the data and the second term is a smoothing
term. The experience with using (27) in imaging is that the
smoothing term penalizes the edges by smoothing them as
well. It is then necessary to reduce the power of the smoothing
term. This leads to the Rudin, Osher and Fatemi model. They
introduced the use of the total variation functional

∫

Ω |∇u|dx
instead of the smoothing term in (27). In general, the energy
equation can be rewritten as

E(u) =
1

2

∫

Ω

|u0 −Ru|2dx+ λ

∫

Ω

ϕ(|∇u|)dx (28)

if R is the identity matrix, a denoising will occur, if it is not,
a blurring occurs. So, we will takeR ≡ I. In the smoothing
term, we takeϕ(|∇u|) = |∇u| so that (28) can be rewritten
as

E(u) =
1

2

∫

Ω

|u0 − u|2dx+ λ

∫

Ω

|∇u|dx (29)

whereΩ is the domain
We consider

E(u) =
1

2

∫

Ω

|u0 −Ru|2dx+ λ

∫

Ω

ϕ(|∇u|)dx (30)

as a general form of the total variation regularization of the
ill-posed energy equation whereϕ is a function of |∇u|. If
E(u) has a minimum pointu (which is the desired denoised
image), then it satisfies the Euler-Lagrange equation

R∗Ru− λdiv

(

ϕ′(|∇u|

|∇u|
∇u

)

= R∗u0 (31)

Equation (31) can be written in an expanded form by formally
developing the divergence term

R∗Ru− λ

(

ϕ′(|∇u|

|∇u|

)

uTT + ϕ
′′

(|∇u|)uNN = R∗u0 (32)

whereuTT and uNN represent the second derivatives ofu

in the tangent and normal directions to the image isophotes
respectively. At weak intensity variations (low gradients),
smoothing occurs in all directions. Assuming the functionϕ to
be regular, this isotropic smoothing condition may be achieved
by imposing onϕ the following condition: [10]

ϕ′(0) = 0, lim
ϕ′(s)

s
= limϕ′′(s) = ϕ′′(0) > 0 (33)

Therefore at points where|∇u| is small (32) becomes

R∗Ru− λϕ′′(0)(uTT + uNN) = R∗u0 (34)

that is
R∗Ru− λϕ′′(0)(∆u) = R∗u0 (35)

so at these points,u locally has strong regularizing properties
in all directions.

In the neighborhood of an edge, the image presents a strong
gradient. To preserve the edge, diffusion should occur along
the edge and not across it. So the coefficient ofuNN in (34)
should be eliminated and prevent the coefficient ofuTT from
vanishing:

lim
s→+∞

ϕ′′(s) = 0, lim
s→+∞

ϕ′(s)

s
= β > 0 (36)

Whenϕ(s) = s andR is the identity operator, Chambolle
[7] has remarked that the minimization of the total variation
can be viewed as a projection problem on some convex set.
Let ui,j , (i, j = 1, ..., N), be a discrete image andX = RN2

the set of all discrete images of sizeN2. In order to define
the total variation (TV) of the discrete image, we introduce
the gradient

∇ : X → X ×X :

(∇u)
1
i,j =

{

ui+1,j − ui,j if i < N

0 if i = N
(37)

(∇u)
2
i,j =

{

ui,j+1 − ui,j if j < N

0 if j = N
(38)

(divp)i,j = (divp)1i,j + (divp)2i,j
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A further discretization of the total variation can be found in
[7] and [10].

The the discreteTV is the l1-norm of the vector∇u by

JTV (u) =
N
∑

i,j

|(∇u)i,j | (39)

JTV is a discretization of the total variation(TV ) defined in
the continuous setting for a functionu ∈ L1(Ω) by

J(u) =

sup

{
∫

Ω

u(x)divv(x)dx; v ∈ C1
0 (Ω;R

2)|v(x)| ≤ 1, ∀x ∈ Ω

}

(40)

The equation

inf
u∈X

{

JTV (u) +
1

2λ
|u0 − u|X2

}

(41)

corresponds to the Rudin, Osher and Fatemi model in
equation (29).

We introduce the set G and define it as

G =

{v ∈ X ; ∃p ∈ X s.t. |pi,j | ≤ 1, ∀i, j s.t. v = divp} (42)

The unique minimizer of (41) is given byu = f −PλGG(f)
wherePλGG(f) is theL2- othornormal projection off on the
setλG

We proceed to describe the TV denoising algorithm based
on duality. Equations (28) and (29), provide a basis for the
primal approach but because the solution is degenerate when
|∇u| = 0, the dual approach offers an alternative formulation
for effective computational algorithms. The energy model is
given as

min
u

∫

Ω

|Du|+
λ

2

∫

Ω

(u0 − u)2dx (43)

by definition,
∫

Ω

|Du| = sup
p∈C1

c
(Ω)

∫

Ω

u∇.pdx (44)

{

p = (p1, p2)|p ∈ C1, ||p||L2 < 1
}

using the definition of the
TV term, we have

min
u

(

sup
p∈C1

c
(Ω)

∫

Ω

u∇.pdx

)

+
λ

2

∫

Ω

(u0 − u)2dx (45)

which can be regrouped as

sup
p∈C1

c
(Ω)

min
u

(
∫

Ω

u∇.pdx+
λ

2

∫

Ω

(u0 − u)2dx

)

(46)

The problem is quadratic inu, therefore it can be solved by
setting the gradient of the objective function to zero [1] i.e.

u = u0 −
1

λ
∇.p (47)

substituting into equation (44) we get the dual formulation

sup
p∈C1

c
(Ω)

(
∫

Ω

u0∇.pdx−
1

2λ

∫

Ω

(∇.p)2dx

)

(48)

We can take the Lagrangian(L[p, µ]) of the dual problem
(46) with the Lagrange multiplier functionµ = µ(x):

L(p, µ) =

∫

Ω

(u0∇.p−
1

2λ
(∇.p)2 +

µ

2
(1− p2))dx (49)

Setting the gradient ofL with respect to p we get the necessary
condition for optimality:

−∇(u0 −
1

λ
∇.p)− µp = 0 (50)

The complementary condition of the lagrange multiplier
implies that if |p| = 1 at the optimum, thenµ > 0. If
|p| < 1, then µ = 0. In any case,µ = |H(p)| where
|H(p)| = −∇(u0 −

1
λ
∇.p). Thus, (48) can be written as

H(p)− |H(p)|p = 0

We use the following time marching scheme

pn+1 = pn + τ
(

H(p(n))− |H(p(n))|pn+1
)

which leads to the scheme:

pn+1 =
p(n) + τH(p(n))

1 + τ |H(p(n))|
(51)

Analysis shows that the scheme converges for0 < τ ≤ 1
8 .

This is the form in which we use the total variation denosing
algorithm in this work.

B. Median Filter

Order statistic filters are spatial filters whose response is
based on ranking the values of the pixels contained in the
image area delineated by the filter. The result of the ordering
determines the filter response. The median filter is an order
statistic filter. It replaces the pixel value by the median
intensity values in the neighbourhood of that pixel. It is given
as

f(x, y) = median
(s,t)∈Sxy

g(s, t) (52)

where Sxy is a window in which we take the median
values. Median filters provide a very good noise reduction
capabilities for certain noise types such as multiplicative
noise. A better order statistic filter is the adaptive median
filter. The median filter has no regard for image variation
from point to point but the adaptive filter filters images
based on local image characteristics. For this reason, they
do much better than ordinary order statistic filters which
fail to perform well when the noise probability density is
greater than0.2 [16]. Adaptive median filtering can handle
impulses with noise probabilities much greater than0.2.
Additionally, adaptive median filters seek to preserve detail
while smoothing out noise. The adaptive median filter works
in a rectangular window and adjusts the size ofSxy during
operation depending on certain conditions. LetZmin =
minimum value ofSxy

Zmax = maximum intensity value inSxy

Zmed = medium intensity value inSxy

Zxy = intensity value at coordinates(x, y)
Smax = maximum allowed size ofSxy
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Reference Image: MSE = 255, SSIM = 1
(a)

Denoised Image: λ = 60,τ = 0.01, 
MSE = 255, SSIM = 0.653430

(b)

Denoised Image: λ = 12, τ = 0.01,
MSE = 255, SSIM = 0.892388

(c)

Denoised Image: λ = 2, τ = 0.01,
 MSE = 255, SSIM = 0.748494

(d)

Denoised Image: λ = 1, τ = 0.01,
 MSE = 255, SSIM = 0.712412

(e)

Denoised Image: λ = 0.5, τ = 0.01,
MSE = 255, SSIM = 0.685501

(f)

Fig. 3: SSIM and MSE Scores for Total Variation Denoised Images
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Fig. 4: A Comparison of SSIM and Error Senstivity Norms for TV Denoised Images

The adaptive median-filtering algorithm works in two stages:
Stage 1
A1 = Zmed − Zmin

A2 = Zmed − Zmax

If A1 > 0 AND A2 < 0 go to Stage 2

Else increase the window size
If window size ≤ Smax repeat Stage 1

Stage 2
B1 = Zxy − Zmin
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B2 = Zxy − Zmax

If B1 > 0 AND B2 < 0, output Zxy

Else output Zmed

The adaptive median filters removes salt and pepper noise,
smooth other noise types and reduces distortion. The purpose
of the first stage is to determine if the filter output,Zmed is an
impulse or not. If the conditionZmin < Zmed < Zmax holds,
thenZmed cannot be an impulse. In this event, the algorithm
goes to the second stage and test to see if the point in the
center of the window,Zxy, is itself an impulse. IfB1 > 0
AND B2 < 0 is true, thenZmin < Zxy < Zmax andZxy

cannot be an impulse. In this case, the algorithm outputs the
valueZxy unchanged. This helps to minimize distortions in
the image. If the conditionB1 > 0 AND B2 < 0 is false,
then eitherZxy = Zmin or Zxy = Zmax. In either case,
the value of the pixel is an extreme value and the algorithm
outputs the median valueZmed which is not a noise impulse.
If the algorithm fails to branch to Stage 2, then the size of the
window is increased and Stage 1 is repeated. This continues
until a nonimpulse median value is found and branches to
Stage 2 or the maximum window size reached in which case
the algorithm returns the valueZmed. The smaller the noise
probability is or the largerSmax is, the less likely a premature
exit condition will occur. Every time the algorithm outputs a
value, the windowSxy is moved to the next location in the
image. We use a3× 3 window size as a starting window size
in our experiments.

VII. E XPERIMENTAL RESULTS

In this section, we show experimental evidence of the
arguments proposed in previous sections. First, our interest
is in determining if the error sensitivity metrics based on the
mean square error (MSE) are sufficient tools in determining
the quality of denoised images. For this, we measure the
MSE and PSNR of denoised images. On the other hand, we
also determine the SSIM index of the images as different
parameters of the denoising algorithm are changed. We employ
the total variation denoising algorithm in denoising additive
Gaussian noise from images and the adaptive median filter for
multiplicative noise. Here, the noise type under investigation
is the salt and pepper noise. Below we give details of the two
approaches showing how they were implemented.

A. Total Variation Approach

The total variation algorithm represented by the time march-
ing algorithm in equation (51) have two parametersλ and
τ which determine the denoising process. The algorithm is
convergent to a minimum (optimal) value if0 < τ ≤ 1

8 . This
proof is provided in [7]. Therefore, it is necessary to keep
τ ≪ 1 for a good result. As long asτ remains within the
interval of convergence, no visible effect can be observed on
the quality of the image. In other words, it does not affect the
denoising process very much. Because of this fact, we keep
τ = 0.01 throughout the experiments. Ifτ > 1

8 , convergence
is not guarenteed. This does not mean that there will never be
convergence but to avoid this uncertainty, we keepτ within the

guaranteed interval of convergence.λ is a tuning parameter.
The largerλ is the less denoising takes place. Therfore, it is
necessary to keepλ small enough to obtain an appropriate
denoisng of the image. Small enough means that we should
seek the optimalλ for the best denoising of the image. This is
indeed a difficult task because there is no unique optimal (best)
λ for the best denoising of the image. The best value ofλ that
gives the best denoising result is image dependent. If the value
of λ chosen is greater than the best value forλ, there will
be visible noise distortion left in the image after denoising.
If the value chosen is less than the optimalλ value, there
will be an oversmoothing of the image and its visual quality
will fall. In our experiments, we found that even though the
visual quality fluctuates, this fact is not captured by the error
sensitivity metrics i.e. the MSE and PSNR. The SSIM index of
the image however is more sensitive to changes in the values of
λ. As we reduce the value ofλ from 60 (an arbitrary starting
point), the quality of the image continues to improve until
the optimalλ value is reached. Thereafter, the SSIM index
starts to drop. This happens because of oversmoothing of the
image. It is important to understand why this happens. Forλ

values greater than the optimalλ for denoising the image, the
SSIM index is sensitive to the noise distortion in the image
and it shows this in the results obtained. When the value ofλ

drops below the optimal value, oversmoothing begins to occur
and this results in blurring. Our previous experiments show
that blurring degrades the structural quality of the image. This
results in poor SSIM index values. Fig. 1 and Fig. 3 illutrate
this. Fig. 4(A) and Fig. 4(B)show the graphs of the relationship
between the SSIM, the MSE and the PSNR for total variation
denoising. We observe from the graphs that while the MSE
and PSNR remain constant for all values ofλ, the SSIM index
shows that there are changes in the structure of the images.
This keeps track of the visual quality of the images as they are
denoised at different values ofλ. As the value ofλ is increased
from 0, the quality of the image represented by the SSIM
index continues to increase until the optimal value ofλ is
reached. Thereafter, the quality of the image begins to decline.
This optimal value which gives the best denoising result is
image dependent, as we have mentioned earlier. The challenge
therefore, is to determine an approximation of the best value
for λ for each image being denoised. Furthermore, this value
of λ is also dependent on the amount of noise present in the
image. So at best, determining an appropriate value forλ in
any experiment could be a matter of trial and error. What
is certain is the pattern of the graph. The improvement and
degradation phases of image quality during denoising follow
a somewhat linear patterns with a sharp peak representing the
best value forλ.

B. Median Filter Approach

Median filters are more effective in removing multiplicative
noise than the total variation methods. For this reason, we
employ it in the denoising of salt and pepper noise. The noise
density was increased from0 to 1 with increments of0.1. At
each incremented step, we measured the SSIM index, the MSE
and the PSNR of the image under increasing noise in Fig. 6B
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Original Image MSE = 255, SSIM = 0.71, d = 0.02 MSE = 255, SSIM = 0.61, d = 0.04

MSE = 255,SSIM = 0.54, d = 0.06 MSE = 255, SSIM = 0.50, d = 0.08 MSE = 255, SSIM = 0.47, d = 0.1

Fig. 5: Images Distorted by Salt and Pepper Noise and Their MSEand SSIM Scores
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Fig. 6: Salt and Pepper Noise and Error Sensitivity Norms

shows the MSE and the PSNR remained constant but Fig. 6A
shows the graph of the structural degradation in the presence
of increasing salt and pepper noise. It is interesting to note
that the structural degradation of the image under increasing
noise density is somewhat exponential in behavior. Fig. 6A
also shows the graph of recovery of the image after denoising
using the median filter. As the noise density increases to1,
the graphs of the image quality before and after denoising

coincide. In other words as noise is increased, the denoising
algorithm does little to ameliorate the quality of the image.
This is a common phenomenon in image denoising. We also
observe that in the case of median filter approach, there does
not appear to be an optimal value for which some parameter
gives the best denoising possible.
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VIII. C ONCLUSION

The error sensitivity metrics have been used to determine
the quality of denoised images for a long time. And they have
proved to be useful in so far as only nonstructural aspects
of image quality are being measured. But the human eye
is quite sensitive to structural information. Our experiments
have shown that using the error sensitivity metrics alone to
determine denoised image quality is not sufficient to describe
image quality changes. The use of the SSIM is encouraged
to help better ascertain the true quality of a denoised image.
The PSNR is commonly used for the purpose of describing
denoised image quality. But the PSNR depends on the dynamic
range and the MSE of the image. If two images with different
dynamic ranges are corrupted with the same amount of noise,
the resulting PSNR value will be different because of the
difference in dynamic ranges. This is a drawback because this
loss of image quality is not caused by some form of external
degradation but by the model itself. Thus, it becomes difficult
to refer to the quality of a denoised image without reference
to its dynamic range. Here, the SSIM offers a better metric
for determining the quality of the denoised image since it does
not depend on the dynamic range of the image neither does it
consider the MSE of the images being compared.
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