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Abstract—The mean squared error (MSE) and its related shortcoming of the error-sensitivity methods arise primarily in
metrics such as peak signal to noise ratio (PSNR), root mean the assumptions made in the measuring process. For example,
squared error (RMSE) and signal to noise ratio (SNR) have been o a55umption that the reference image is of perfect quality is

the basis for mathematically defined image quality measurement . . . )
for a long time. These methods are all based on the MSE a necessary assumption, otherwise ho meaningful comparison

Denoised image quality has also been traditionally measured in Of image quality can be made. But at the same time, it
terms of the MSE or its derivatives. However, none of these is assumed that the channels of the HVS have little or no
metrics takes the structural fidelity of the image into account. interaction, which is not the case. The error sensitivity models
We investigate the structural changes that occur during the \yqn \vell for simple patterns but for patterns such as natural

denoising process and attempt to study an alternative metric for . h imol tt incid t th
determining the quality of denoised images based on structural Images where many simplé patierns coincide a € same

changes. We also show the shortcomings of the MSE-based imagdMage location, the error sensitivity models do not give a very
quality metrics. good approximation to the true quality of a denoised image.

Index Terms—SSIM, MSE, TV, PSNR, Noise, Denoise, Metric We use the SSIM as an alterna_tiv_e metric to measure
structural recovery after denoising. It is important to note that
the structural distortion models measure different parameters
of images from the error sensitivity models. We shall explore

I. INTRODUCTION . . .
) o N ) these differences and how they affect image quality.
N this work we set out to determine if the traditional image

quality metrics such as the mean square error actually [I. IMAGE QUALITY MEASUREMENT
give accurate measure of image quality improvement after-l-here are basically two classes of objective quality as-

denoising. We therefore explore the use of the MSE and tgqsment of images. The first are the mathematically defined
peak signal to noise ratio (PSNR) as error sensitivity metriGs. asures such as the mean square error (MSE), peak signal
and structural similarity metric (SSIM) that measures t noise ratio (PSNR), root mean square error (RMSE) and

structural similarity of an image against a reference image. T @nal to noise ratio (SNR). The second class of measurement
structural similarity of a denoised image tells us how much %ethods depend on the characteristics of the human visual

the original structure has been rgcove_red after d_enoising. tem (HVS) in an attempt to incorporate perceptual quality
then study the SSIM of the denoised image against the Mk 55 ;res. Of the two methods the mathematically defined

and PSNR to determine different aspects of the image recovRii g res are most widely used. This is because of simplicity

process. However, the fact that the measurement metric Shoﬂﬂlqmplementation. Most error sensitivity methods are based

give an accurate estimation of the degree of restoration (% the mean square error (MSE). In most cases, they are
the denoised image must be kept in mind. Traditionally, tqu% ’

L uivalent metrics. The MSE is parameter free, inexpensive
error sensitivity approach has been used to measure the de% E’ompute and the samples in an image are assumed to be
of recovery. But the question must be asked

. - ed if this iS i jependent. The MSE offers a clear physical meaning. It
itself a sufficient tool to measure the quality of denoised o ¢ res the energy of the signal usingHRenorm. Because
images. The structure of an image makes us infer that ,lethe reflexivity of theL? space, any transformation of the

error sensitivity metns:s have '”"’?dequac'es in the manner diy.o energy is preserved isometrically in the dual space which
which they measure image quality in general. For one, th@’also anL? space. The.2-norm is energy preserving.

do not model the human visual system (HVS) adequately SOrpg \SE is an old statistical tool and it was first used by

that the aspects of image quality which they measure do RO Gayss to represent the statistical variance of the random

necessarily reflect the reality of the HVS. The ultimate aim %famples. He also used it in the method of least squares.

denoising an image is to render it more pleasing to the eyfare are many other instances of the usefulness of the MSE.
(HVS). The eye remains the best judge of image quality. Fpfigiorically, it has been used extensively for assessing a wide
this reason, we negd to use a metrlc that _m_odels the H iety of imaging problems such as image compression,
as closely as possible. This is indeed a difficult task. Thegtoration, denoising, classification and reconstruction. The

tGraduate School of Science and Technology, Niigata UniversitMSE is pervasive throughout the literature. It has been the de
8050, Ikarashi 2-n-cho, Nishi-ku, Niigata, 950-2181, Japan. e-mafiacto tool for signal strength comparison.
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But the error sensitivity models are not the only class ¢1VS. The effectiveness of these methods depend on how much
models suitable for measuring image quality. There are mod#ie HVS is understood and how accurately the simulation
based on the human visual system (HVS) that can accomplesan be implemented. By contrast, straightforward structural
the same purpose albeit using different criteria from the MSBpproaches are based on a top-down philosophy, which starts
based methods. These models deal more with the percepfimm the top level-simulating the hypthesized functionality
of the human eye. A serious drawback of any error sensitiviof the overall HVS. Top-down approaches sometimes lead
model is that it treats all image degradations as some kindtofsignificantly simplified algorithms, but rely heavily on the
error. But the human eye is well adapted to extract structusadcuracy of the underlying hypothesis. In particular, the basic
information from an image. The error sensitivity models dassumption made by structural approaches is that the HVS
not capture this fact. Unfortunately, modeling the HVS has highly adapted to extract structural information from the
not known very good progress over the years. This could kisual scene, and therefore structural distortion measure should
directly attributed to our limited understanding of the HVSgive good prediction of perceived image quality. Current

However, it is generally known that the HVS experiments have demonstrated this to be the case.
1. Has low-pass filter characteristics The paradigm of structural image quality assessment is
2. Lacks color resolution still new. The current approaches can be extended in many
3. Shows sensitivity to motion directions. Direct extensions include video quality assessment,
4. Exhibits integral face recognition characteristics colour image quality assessment and multiscale image quality
5. Is sensitive to structural distortion assessment. Furhtermore, the SSIM index approach is quite

The model we shall use takes the structural distortion inemcouraging not only because of its good image quality pre-
account to determine the quality of denoised images. The H#tion accuracy, but also its simple formulation and low com-
has evolved to adapt its functions to extract useful structuiitational complexity. This simplicity makes it quite tractable.
information from natural scenes. Therefore, an image quali§onsequently, the SSIM index, and other structurally-oriented
metric that aims to predict the evaluation behavior of the HViB1age quality assessment algorithms have great potential to be
will also need to be adapted to the properties of natural imageed in the future development of image quality measurement.
signals. A distinct feature of natural images is that the imad¥e give a comparison of the error-sensitivity methods and the
pixels(signals) exhibit strong dependencies among themsehgguctural distortion method and investigate the effect of each
The greatest failure of the error sensitivity methods lies ®n the quality of denoised images.
the fact that they ignore the structural dependencies between
image signal samples. This why its ability to provide an
acceptable quality measure for denoised images is suspect.

In the past century, there has been considerable progresshe dominant error-sensitivity measurement tool has been
in increasing our depth of understanding the functions of tlige mean square error. There are variations of the MSE that
human perceptual system and developing mathematical modgis also in use as we mentioned. The MSE is used as a
for its functions. However, our knowledge of human pessignal fidelity measure. The goal of signal fidelity measure
ception remains rudimentary. The most common approachigxo compare two signals by providing a quantitative score to
perception is by developing appropriate mathematical modeistermine the level of error or distortion between them. The
for each functional perceptual component. These componeRISE between two signals andy is
form building blocks which are eventually integrated into a
full system. 5

Denoising follows the same process. To measure the quality MSE(xy) = N Z(xi — i) 1)
of a denoised image, we first need a mathematical model that =1
denoises the image. Different denoising models have differentrhe error signak; = z; — ; is the difference between the
denoising capabilities. Second, we need a mathematical mogig§jinal and distorted signal. More generally the error can be
that tells us exactly how much the image has been recoveigékten in terms of the,-norm:

i.e. the degree of restoration. As we shall show, the error
sensitivity methods do not tell the whole story. N »

The ultimate judge of image quality is the human eye and dp(X,y) = (Z(% — yi)> 2
what is more important to the eye is the structural fidelity i=1
.Of a den.0|sed image. The HVS is quite sen3|t.|ve t(.) struc'gura ich is called the Minkowski metric. The MSE is however
information. How close the structure of a denoised image is 0

. . usually expressed as the peak signal to noise ration (PSNR
the reference image really does matter. For this reason we ¢can y exp P 9 ( )

IIl. ERRORSENSITIVITY METHODS

N

say that the eye appeal of a denoised image is dependent Onrrgﬁgsure
accuracy of the structural information between the denoised 9
image and its reference image. PSNR = 10log;, VSE 3

Most HVS-based methods use some form of bottom-up
approach. They simulate the functions of relevant componentiere L is the dynamic range of allowable pixel intensities.
in the HVS and combine them together, with the goal th&or example, for an 8-bit per pixel image,= 28 — 1 = 255.
the combined system can predict the behavior of the over@lie error-sensitivity methods derive their effectiveness from

Issue 4, Volume 5, 2011 424


user
Rectangle


INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Reference Image Contrast Stretch Negative Image
MSE =0, SSIM =1 MSE = 255, SSIM = 0.9172 MSE = 255, SSIM = -0.1632

Gaussian White Noise Lossy compression Blurred Image
MSE = 255, SSIM = 0.5927 MSE = 255, SSIM = 0.6947 MSE = 255, SSIM = 0.7722

Fig. 1. Distorted Image Fidelity Measure

the Minkowski metric. The Minkowski metric is given as  respectively,V is the number of image samples, amdefers
1 to the degree of power. In the MSE, we refer to the error signal
N P . . . ..
IE, | = (Z s — y'|p> ' @) €i =i —Yi which is the difference between the original and
P v distorted signals. The MSE may be regarded as a measure of
signal quality. It is believed that the smaller the error is the
MSE = §|E,|P whenp = 2. The Minkowski metric closer the two images are in quality and that when the value
between the original image and the distorted image is alwaysthe MSE does not change the there is no possible change of
the same no matter what power pfis used. This is so even quality between the two images. But as we will show through
when the quality of the distorted images changes drasticalperimental results, this is not true.
Whenp = 2, the Minkowski metric effectively becomes the |jke we said earlier, the MSE is converted into a peak

means square error(MSE) metric. An |mp|IC|t assumption %ﬁgnakto-noise ratio measure usua”y given as
the Minkowski metric is that all signal samples are indepen-

dent. For this reason its value remains the same even when PSNR
there is a rearrangement of pixels in the image. The MSE is a

special case of the Minkowski metric when= 2. It is useful where L is the dynamic range of allowable image pixel
because whep = 2, the metric is a hilbert norm. The Hilbertintensities. The PSNR differs in quality of measurement only
space is reflexive and so the Hilbert space is the same aswteen the images have different dynamic ranges, otherwise it
dual space. This has the consequence of preserving energgdntains no new information relative to the MSE [18]. The
general. This is possible only when= 2. In the Minkowski Minkowski metric does not respect the ordering and pattern

i=1

L2
=10 logw M—S’_E

norm . of the signal samples. However it is known that pixel order
N » carries important visual information in the image. This failure
E, = (Z | —yi|p> encourages us to examine other methods of image quality
=1 measurement based on other principles.

wherex; andy,; are theith samples in the images andy There are other relatives of the PSNR which deserve
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mention. They also measure the quality of images by error- IV. THE SSIM
sensitivity. The signal-to-noise ratio is the dimensionless ratio o ]
of the signal power to the noise power in a recorded signaI.The denmsmg_process is. also a_structural change process.
The power of the deterministic sign&, is given as The MSE-based image qu_allty metrics are not able to measure
structural change. For this reason we proceed to study an
1 (7 9 alternative method of determining quality of denoised images
P = T/O s™(t)dt ®) based purely on structural considerations. We then compare
_ ) _ ) . the structural methods to the error-sensitivity methods. For
where T is the interval of observation. The signal-to-noisg,e giryctural approach, we employ the use of the structural
ratio is typically written as similarity index (SSIM) as developed by Zhou Wang, Alan C.
P, (Ass nal)2 Bovik and Eero Simoncelli [3]. First we seek to understand
SNR= yov R (6) how the SSIM works with a view to applying it to the study
N (Anoise) of denoised image quality.
where P, is the signal power andPy is the noise power. We recall that the Minkowski metric does not take the order
Asignar IS the signal amplitude andi,,.;sc the noise am- of the signal samples into consideration. This assumption has
plitude. Since signal-to-noise ratio is often expressed usiggave implications for natural image signals because they are
logarithmtic decibel scale, in decibel, the SNR is expressedhighly structured. It is the ordering and pattern of natural
) images that give the distinct visual information in images. So
SNRap = 1010g,, Psignal — 1010g, <Asignal> . thg application of a model that t_akes this fact_ mto_account will
bring us closer to the true quality of a denoised image. What

. . . . we need is a metric that senses the structural changes in the
The concepts of signal-to-noise ratio and dynamic range are

closely related. Dynamic range measures the ratio betweenl{ﬁé_lﬁe sl,lgnf':lls. f ¢ is th duct of the ill
strongest and weakest signal on a channel which is actually the € luminance ol a suriace Is the product ot the 1iu-

noise level. SNR measures the ratio between an arbitrary sigI neatg): d:r?tdofrﬁlflljer;:;ﬁgggﬁ ﬂrzvge;zrbrﬂme(;; (|)r; iﬁuri?r?gt?or?re
level and noise. Measuring the signal-to-noise ratio requir P : J P

the selection of a representative reference signal. In im zrllg]ler:?nz?'lg:aaglr?é t(r:]c?;?:g:"ll?h?smaarhzgt%lnn gggg“r?gt O;;h:
processing, this representative signal is a reference im uml - LIS variatl v

considered to be noiseless. The numerator of equation (7 -Ssignificant effect on perceived image quality. Indeed [18]

the square of the peak value that the signal could have alé wed that luminance and contrast changes in an image can
oS

the denominator equals the noise power (noise variance). ser;%raltted from structurtal dt|stot.rt|onsf in the '”.‘agel s[[)ac?. In
example, an 8-bit image having values ranging fioto 255, inage fidelity measurement, retention of image signal structure

is important. Luminance change is a nonstructural distortion.

noise noise

for PSNR calculations, the numeratd®,  , = 255% in all .
cases. Also Other nonstructural changes include contrast change, gamma
' distortion and spatial shift. Supposeandy are local image
N 1 patches taken from the same location of two images, the local
ADise = MSE = N >z — il = N”EQHQ SSIM index measures the similarities of three elements of
i=1 the image patches. These are the luminance simil&ityy )

which measures the error between two images. So, we see ¥Maich measures the local patch brightness values.cThgy)

the SNR can be reduced to the PSNR in the case of imag&ihilarity measures determines the local patch contrast values
The root mean square error (RMSE) sometimes calléqd thes(x,y)_ determines_ local patch structural similarity.

the root mean square deviation (RMSD) is frequently user‘e forementlongd guantites are computed for the whole

to measure the difference between values predicted by igrge and combined together to form the SSIM for the

estimator and the values actually observed from the thiff§age: The luminance of each signal is estimated as the mean

being modeled or estimated. The RMSE of an estimétor/nNtensity

with respect to the estimated paramefers defined as the

square root of the mean square error

RMSE = \/MSE() = \/E((d — 6)?) (8)
The luminance comparison functiéfx, y) is then a function

Thtg RtMSE. meals%r_es tge Isql_Jare root of th? varltinceRR‘At%‘]Euz and y,, that is, l(x,y) = I(us, pty). We remove the
Estlma Ortv:/s no |aset._ ; J'”.‘ag_e processing, the ean intensity from the signal. The resulting sigwat .,
etween two image matricas /1S given as corresponds to the projection of the vectoonto the hyper-
- - 5 plane onﬁVZO x; = 0. We further use the standard deviation
Dot 2o (Lig = Jij) i f the signal ;
RMSE(I,J) = /MSE(I,J) = J i as an estimate of the signal constrast:

mXxXn

1 N
Po =T = N;xi (10)

9) N 3
We see from the above argument that the RMSE is related to oy = L Z(Ii — 1g)? (11)
the MSE because the MSE is a scaled square of the RMSE.

N —1+4
=1
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©)
A (B)

Fig. 2: (A) Original Pristine Image (B) Image Corrupted witta@sian Noise (C) The SSIM Image Quality Map of (A) and
(B)

The contrast comparisarix, y) is then the comparison ef, in our computations. Structure comparison is carried out
andoy: after luminance subtraction and constrast normalization. The
c(x,y) = (e, piy) angle between the vectors—= and ¥*-t~ each lying in
E T Y

N . . .
Thirdly, the signal is normalized by its own standard deviatiof® hyperplane_;_, z; = 0 provides a simple and effective
so that the two signals being compared have unit standdpgasure that quantifies structural similarity. This corresponds
deviation. the structure comparise(x,y) on the normalized t0 measuring the correlation coefficient betweeandy. The

signals is: structure comparison function is defined as:
_ _ 204y + C3
(X Yoy _ 205+ Cs 16
s(x,y) =s < Py > (12) s(x,y) 020y + Cs (16)
Finally, the three components are combined to yield an overdfe takeC's = 0. The cross correlation coefficiest,, is given
similarity measure as N
1
S(X, Y) = f(l(X7 y)7 C(X, Y)u S(X, Y)) (13) Oxy = m Z(xz - Mw)(yl - My) (17)

The three components do not depend on one another and =t

so the changes in luminance and constrast has no effectfdally, we combine the luminance, constrast and structure
the structures of the object in a scene. We define the functigi@ilarity functions. The result is usually called the structural
I(x,y),c(x,y) ands(x,y) as well as the combination of all Similarity (SSIM) index. So,

three functions. Furthermore the similarity measure satisfies . a B y

the fOIIOWing Conditions: SSIM(X7 Y) - [l(X7 y)] [C(X7 Y)] [S(Xa y)] (18)

1. Symmetry:s(x,y) = s(y,x). This means that the wherea > 0, 8 > 0 and~ > 0 are used to tune the relative
order of the input signals should not affect the resultinighportance of the three components. In our experiments we
measurement. takea = =+ = 1. So, we have

2. Boundedness:-1 < s(x,y) < 1. The upper bound in-
dicates how close the two signals are to being identical. SSTM (x,y) =

3. Unique maximums(x,y) = 1 if and only if x = y. ( 2451y + Ch ) ( 20,0, + Oy ) (20—% + 03>
This perfect score.shou_ld be achu_eveq only if the com- 12 + %2! + O o2 + 05 T 020y + Cs
pared signals are identical otherwise it should measure (19)

any variations that may exist between the images.

The luminance comparison function is defined as wherep, andoy, represents the local sample meanscaind

y. o, ando, are the local standard deviations whitg, is
I(x,y) = 2ptapty + C1 (14) the sample cross correlation afandy after the mean has
pz + pg 4+ Ch been removed i.e. the cross correlatiorxof ;i andy — py.

In our experiments(?; = 0 but a common assumption is thain the hyperplane of_1, = 0, the SSIM index compares the

C, = (K,L)*> where L is the dynamic range of the imagevectors(x— i) and(y — iy ) with two independent quantities:
andK, < 1. The contrast comparison function takes a simildhe vector lengths and their angles. The angular measure gives
form to the luminance comparison function: an indication of structural distortion.

20,0, + Cs SSIM indicgs give a measure of similarity betw_een images:
m (15) If one of the images is regarded as a reference image, that is
* 4 2 of perfect quality, then the SSIM index can ne viewed as an
Here also,Cy = (K,L)?> where L is the dynamic range indication of the quality of the other image being compared.
of the image andK; < 1 but we assume thaf; = 0 Image quality is computed locally rather than globally. The

C(X7 y) =
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local statisticg:,,, 0, ando,, are computed within a loc&lx8 C* is the complex conjugate @' and K is a small stabi-
square window. This produces an image quality map (see Higer. m(C,, C,) is determined by the norm of the coefficients.
2). The image quality map is combined into a single quality is maximum when|C;, ;| = |Cy ;| for all i. p(C,,Cy) is
score for the entire image. The local statistics and SSIM adetermined by the consistency of phase changes bet@gen
calculated within each window. A drawback of this approacind C,. It is maximum when the phase difference between
is that the index map exhibits blocking artifacts. To overcom&, ; and Cy; is the same for alli. The phase component
this drawback, the authors in [15] used a circular-symmetridfectively measures image structural similarity because the
Gaussian weighting functiow = {w;|i = 1,2,..., N} with local structure of the image is realized by the relative phase
Zf.vzl w; = 1 with the local statisticg:,, o, ando,, modified patterns of local image frequencies. Also a constant phase shift

by the weighting functiorw of the wavelet coefficients will not change the structure of the
N local image structure. Just like the SSIM, the CW-SSIM is
Ly = sz'd?i, (20) computed locally from each subband, and then averaged over
=1 space and subbands to yield the CW-SSIM index between two
1 images.

N
o = (Z w;(w; — um)2> (21)
i=1 V. NOISE MODELS

and ) , ) .
We consider some noise models that occur in practice. Some

N
Oay = > _wili — piz) (Ui — piy)- (22) are natually occurring such as the gaussian noise; some are
i=1 sensor-related e.g. photon counting noise and speckle noise.
Because of the isotropic property of the Gaussian functioBopme kinds of noise arise from processing e.g. quantization
the quality map will exhibit a locally isotropic property also.and processing. There are additive, multiplicative noise models
The SSIM has worked quite well across a wide varietys well as models which do not fit into these two categories.
of applications. Where the MSE-based metrics have failed lowever, we shall use only additive and multiplicative noise
provide a good indication of image distortion, the SSIM indeix our experiments. Additive noise is usually intensity-related.
has proved to be effective in this respect. For this reason, wet « be a discrete image anti= (4, ;); ; be ann, x n,
employ it in the study of denoised image quality as we see inatrix of intensities of independent and identically distributed
Fig. 3, the SSIM changes as the denoising parameters charggelom variables. If the recorded intensity data are
but the MSE remains constant at 255. Here, we see that the
MSE do not give a good account of the quality changes in the ' =u+d

image. Generally, the SSIM scores are better at representing o ) _ )
visual reality. then we speak of additive intensity errors in the image data.

[18] showed that the SSIM handles texture masking visugkamples are thermal noise, photographic noise and quantiza-
effects well. When noise is added uniformly across the imadton noise. A model for multiplicative noise is given by
the visual appearance of the image is more highly degraded 5. d
in smooth regions of the image. If we use ganorm such w=u
as the MkaWSk'. metric to measure the image quality, the where (¢; ;);; is a matrix of values which are independent
measurement is likely to be uniform even though the human . 0 _ . L

. X ) and identically distributed random variables. The multiplica-

eye will observe a degradation of the image. The SSIM SCOIRS. | oise is understood pointwise i€ — ;6. Poisson
more in accord with human visual perception than the MSé. P A

SSIM has been used for evaluating image processing res&l?é‘:'e and s_alt-and-pepper noise are p_romlnent noise models
with a functional dependence of the nois@n w.

in applications such as image fusion, image compression,

video hashing, etc. Here, we use it to evaluate denoised

images. A drawback of the SSIM index is that it is sensitive VI. DENOISING MODELS

to translations, scaling and rotation of images. To overcome

this, the authors in [15] developed a wavelet domain version!n our experiments, we use two kinds of noises: additive
of the SSIM called the complex wavelet SSIM (CW-SSIM). Ifoise and multiplicative noise. We adopt the use of the
Cp = {Cpili =1,2,..,N} andC, = {C, i = 1,2,..,N} Gaussian white noise for additive noise analysis and the salt
are sets of coefficients extracted from the same spatial locat®t! Pepper noise for multiplicative noise. The choice of these

in the same wavelet subbands of two imageandy, then noise types also necessitate that the method of denoising the
the CW-SSIM has the following form: image should be adapted to the form of the noise as well.

For additive noise, we choose the use of the total variation
~ denoising method. The reason for this choice is that the
S(x,y) =m(Cy, Cy) - p(Cy,Cy) = total variation method allows us the possibility to tune the
9 Zi\/:1 G, i|Cyil + K 2| Zi\le CoiCril + K _de_noising parf_;\maters. This_ enables_ us to qbserve the_changes
N N : N in image quality more easily. We give a brief description of
2z |Gl + sy Oyl + K 235, [Cei O + K the total variation denoising and its applicability to additive
(23)  noise restoration.
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A. Total Variation Denoising where(} is the domain

Image degradation usually results from image acquisition W& consider

modality and defects in the imaging system or random noise 1, 1 / Ruld /
. L = - +A Vul)d 30
from unwanted signals. Therefore, it is important to choose (u) 2 Ja [uo ul*de Q w(IVul)de (30)

a noise model that correlates with reality in order to solvgs a4 general form of the total variation regularization of the
a denmsmg problem successfplly. We assume an additiygrosed energy equation whete is a function of [Vul. If
random noise for the total variation denoising method. WE () has a minimum point, (which is the desired denoised

kind of noise in an image is not not always possible and (19l
(2 u

so some assumptions need to be made. If we assume that R*Ru — )\div(
u:Q: R?— Ris an original image and, is the observed Vul
image (i.e. the corrupted image from which we wish to obtaiBquation (31) can be written in an expanded form by formally

Vu) = R*uyg (31)

u), then we can assume that developing the divergence term
/
up = Ru+n 24 RRu— <¢|$Z|“|) urr + ¢ (IVul) uny = R*uo (32)

wheren stands for a white Gaussian additive noise d&hds o
a linear operator representing a blur. So, giwgnwe wish to Wheréurr and uyy represent the second derivatives «of

obtainu. This problem is ill-posed because the naturekog N the tangent and normal directions to the image isophotes
not usually known and there is no direct method of measurifgSPectively. At weak intensity variations (low gradients),
R or 7. It can only be formulated as an inverse problem. [Fmeothing occurs in all directions. Assuming the functoto
accordance with the maximum likelihood principle, we caR€ régular, this isotropic smoothing condition may be achieved
find an approximation of: from (24) by solving the least PY Imposing ony the following condition: [10]

squares problem:

©'(0) = 0,1lim cp'is) =lim " (s) = ¢"(0) >0 (33)

: 2
inf /Q [uo — Rul“dx (25)  Therefore at points wher@/«/| is small (32) becomes
with Q as the image domain. (25) is simply a minimization of R*Ru — X" (0)(urr + unn) = R ug (34)
the MSE. If equation (25) has a minimum, then it must satisii}/1at is

R*up— R*Ru =0 (26) R*Ru — A" (0)(Au) = R*ug (35)

i.e.u = R*ug if R*R is one-to-one wher®&* is the adjoint of SO at these points, locally has strong regularizing properties
R. Because of ill-posedness, obtainiagnay not be possible. in all directions.

Because of this, it is necessary to regularize (25) in order toln the neighborhood of an edge, the image presents a strong
introduce stability into the solution. An idea introduced bgradient. To preserve the edge, diffusion should occur along
Tikhonov and Arsenin (1977) is to overcome ill-posedness e edge and not across it. So the coefficient@fy in (34)
adding a regularization term to (25). Tkhonov and Arsenighould be eliminated and prevent the coefficientgf- from

considered the following minimization problem: vanishing:
/

. . S
F(u) :/ |u0—Ru|2da:+)\/ |Vu|?da (27) lim ¢"(s) =0, lim ‘F’i ) =B>0 (36)
Q Q

s——+o00 s—r—+o0

When ¢(s) = s and R is the identity operator, Chambolle
L?é has remarked that the minimization of the total variation
cen be viewed as a projection problem on some convex set.
e& uij, (i, =1,...,N), be a discrete image andl = R

with boundary condition% = 0. The first term measures
the fidelity to the data and the second term is a smoothi
term. The experience with using (27) in imaging is that th
smoothing term penalizes the edges by smoothing them . ; . i
well. It is then necessary to reduce the power of the smoothi set of al] d_|screte Images of Si2e’. .In order to _deflne
term. This leads to the Rudin, Osher and Fatemi model. Th total_vanatlon (TV) of the discrete image, we introduce
introduced the use of the total variation functionfgl|Vu|dx the gradient
instead of the smoothing term in (27). In general, the energy

equation can be rewritten as

V:X—>XxX:

1 (v )1 {ulqu_j — Uj 5 if i< N (37)
E(u)= - — Rul*d d 28 Wij = .o
() =3 [ Jwo=RuPde+a [ o(Vuhde (28) i B
if R is the identity matrix, a denoising will occur, if it is not,
a blurring occurs. So, we will tak& = I. In the smoothing Wit —ui; ifj<N
term, we takep(|Vu|) = |Vu| so that (28) can be rewritten (Vu)? ;= 7 v (38)
as ' 0 if j=N
_1 2
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A further discretization of the total variation can be found in We can take the Lagrangidd.[p, 1]) of the dual problem
[7] and [10]. (46) with the Lagrange multiplier functiop = pu(z):
The the discretd’V is thel!-norm of the vectoNu by

2\ 2

Setting the gradient af with respect to p we get the necessary

Jrv is a discretization of the total variatiqfi’V’) defined in condition for optimality:
the continuous setting for a functiane L'(9) by

a = u — i 2 H 2 T
Jrv(u) = Z|(VU)1J| (39) Lip.p) = /Q( oV.p (Vp)* + 5 (1 —p?))dz  (49)

1
—V(uo = 3V-p) —pp =0 (50)

The complementary condition of the lagrange multiplier

Sup{/ w(z)divo(z)dr;v € CH(Q: RY)|v(z)| < 1,V € Q} implies that if [p| = 1 at the optimum, therp > 0. If
Q Ip| < 1, theny = 0. In any case,u = |H(p)| where
(40)| H (p)| = =V (ug — +V.p). Thus, (48) can be written as

The equation H(p) — |H(p)lp=0

inf {JTV(U) + 2—1/\|u0 - U|X2} (41) We use the following time marching scheme
ueX

J(u) =

corresponds to the Rudin, Osher and Fatemi model in ptt=pt 41 (H(p(")) - IH(p("))Ip"“)
equation (29).

We introduce the set G and define it as which leads to the scheme:

G= 1+ 7|H(p™)|
{veX;Ipe X stipy|<1,¥i,jstu=dvp} (42) Analysis shows that the scheme converges(for 7 < 1.

The unique minimizer of (41) is given by = f — P\¢G(f) This ?s the_ form in which we use the total variation denosing
whereP\G(f) is the L2- othornormal projection of on the algorithm in this work.
setAG

We proceed to describe the TV denoising algorithm bas&l Median Filter
on duality. Equations (28) and (29), provide a basis for the order statistic filters are spatial filters whose response is
primal approach but because the solution is degenerate WigRed on ranking the values of the pixels contained in the

[Vu| = 0, the dual approach offers an alternative formulatiofnage area delineated by the filter. The result of the ordering
for effective computational algorithms. The energy model {getermines the filter response. The median filter is an order

(51)

given as N statistic filter. It replaces the pixel value by the median
min [ |Du| + 2 / (uo — u)?dx (43) intensity values in the neighbourhood of that pixel. It is given
woJo Q as
by definition, flz,y) = (mte)digng(s,t) (52)
S$,t)ESzy
/ |Du| = sup /uV.pd:c (44) where S, is a window in which we take the median
Q PECL(Q) JQ values. Median filters provide a very good noise reduction

{p = (p1,p2)lp € CL, |Ipl| 12 < 1} using the definition of the capabilities for certain noise types such as multiplicative
TV term. we have noise. A better order statistic filter is the adaptive median

filter. The median filter has no regard for image variation
. A 2 from point to point but the adaptive filter filters images
e <p€scuf()m/9uv'pdx> + 2 /Q(uo —u)de - (45) based on local image characteristics. For this reason, they
) do much better than ordinary order statistic filters which
fail to perform well when the noise probability density is
; ! / Vepd + é/( —u)?d (46) greater thar_O.2 [16]. Adaptive_.r_nedian filtering can handle
peﬁﬁf()mnﬂn DN A impulses with noise probabilities much greater thag.
‘ Additionally, adaptive median filters seek to preserve detalil
The problem is quadratic in, therefore it can be solved byhile smoothing out noise. The adaptive median filter works
setting the gradient of the objective function to zero [1] i.e.in a rectangular window and adjusts the sizeSf, during
1 operation depending on certain conditions. L8}, =
U=t —TV.p (47) " minimum value ofS,,
Zmax = Maximum intensity value b,
Zmed = Medium intensity value irb,,

sup (/ woV.pdz — 1 (V.p)Qd:c) (48) Ly = intensjty value at coordinate{s:, Y)
peci) \Ja 2X Jo Smaz = Maximum allowed size of,,,
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which can be regrouped as

substituting into equation (44) we get the dual formulation
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Reference Image: MSE = 255, SSIM =1 Denoised Image: A = 60,1 = 0.01, Denoised Image: A = 12, 1 = 0.01,
@) MSE = 255, SSIM = 0.653430 MSE = 255, SSIM = 0.892388
(b) ()

Denoised Image: A =2, 1=0.01, Denoised Image: A =1, 1 =0.01, Denoised Image: A =0.5, 1= 0.01,
MSE = 255, SSIM = 0.748494 MSE = 255, SSIM = 0.712412 MSE = 255, SSIM = 0.685501
(d) (e) ®

Fig. 3: SSIM and MSE Scores for Total Variation Denoised Insage
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Fig. 4. A Comparison of SSIM and Error Senstivity Norms for T\éridised Images

The adaptive median-filtering algorithm works in two stage€l! se i ncrease the wi ndow si ze

Stage 1 I f window size < S,,.. repeat Stage
Al = Zmed - Zmin

A2 = Zmed - Zmam St age 2

If A1>0 AND A2<0 go to Stage 2 Bl = Zyy — Zmin
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B2 =Zyy — Zmax guaranteed interval of convergenceis a tuning parameter.
If B1>0 AND B2 <0, output Z The larger\ is the less denoising takes place. Therfore, it is
El se out put Z,cq necessary to keep small enough to obtain an appropriate

denoisng of the image. Small enough means that we should

The adaptive median filters removes salt and pepper noisegk the optimak for the best denoising of the image. This is
smooth other noise types and reduces distortion. The purposdeed a difficult task because there is no unique optimal (best)
of the first stage is to determine if the filter outpit,., is an A for the best denoising of the image. The best valug tfat
impulse or not. If the conditioly,,,;,, < Zimea < Zmae holds, gives the best denoising result is image dependent. If the value
then Z,,.q cannot be an impulse. In this event, the algorithraf A chosen is greater than the best value forthere will
goes to the second stage and test to see if the point in e visible noise distortion left in the image after denoising.
center of the windowZ,,, is itself an impulse. IfB1 > 0 If the value chosen is less than the optimalvalue, there
AND B2 < 0 is true, thenZ,,;, < Zyy < Zma, and Z,, will be an oversmoothing of the image and its visual quality
cannot be an impulse. In this case, the algorithm outputs th@l fall. In our experiments, we found that even though the
value Z,,, unchanged. This helps to minimize distortions iisual quality fluctuates, this fact is not captured by the error
the image. If the conditiorB1 > 0 AND B2 < 0 is false, sensitivity metrics i.e. the MSE and PSNR. The SSIM index of
then eitherZ,, = Z,.:, Or Zyy, = Znas- In either case, the image however is more sensitive to changes in the values of
the value of the pixel is an extreme value and the algorithm As we reduce the value of from 60 (an arbitrary starting
outputs the median valug,,.; which is not a noise impulse. point), the quality of the image continues to improve until
If the algorithm fails to branch to Stage 2, then the size of thiee optimal\ value is reached. Thereafter, the SSIM index
window is increased and Stage 1 is repeated. This continstarts to drop. This happens because of oversmoothing of the
until a nonimpulse median value is found and branches itnage. It is important to understand why this happens. ¥or
Stage 2 or the maximum window size reached in which cagelues greater than the optimalfor denoising the image, the
the algorithm returns the valug,,.,. The smaller the noise SSIM index is sensitive to the noise distortion in the image
probability is or the largefb,,.. is, the less likely a prematureand it shows this in the results obtained. When the valug of
exit condition will occur. Every time the algorithm outputs alrops below the optimal value, oversmoothing begins to occur
value, the windowsS,,, is moved to the next location in theand this results in blurring. Our previous experiments show
image. We use &8 x 3 window size as a starting window sizethat blurring degrades the structural quality of the image. This

in our experiments. results in poor SSIM index values. Fig. 1 and Fig. 3 illutrate
this. Fig. 4(A) and Fig. 4(B)show the graphs of the relationship
VIl. EXPERIMENTAL RESULTS between the SSIM, the MSE and the PSNR for total variation

h%enoising. We observe from the graphs that while the MSE

In this section, we show experimental evidence of t PSNR ) tor all val the SSIM ind
arguments proposed in previous sections. First, our inter&. remain constant orafiva uespthe index
ows that there are changes in the structure of the images.

is in determining if the error sensitivity metrics based on t

mean square error (MSE) are sufficient tools in determinirﬁ%ﬂs keeps track of the visual quality of the images as they are

the quality of denoised images. For this, we measure t noised at different values af As the value of\ is increased

MSE and PSNR of denoised images. On the other hand, wam 0, th? quality ,Of the imagg represented by the SSIM
also determine the SSIM index of the images as dif'fereuﬁdex continues to mcrease.untll the. optimal vglue)ofs .
parameters of the denoising algorithm are changed. We emp _ched._ Thereafter, th? q“"%"ty of the image be_g|_ns to decI|r_1e.
the total variation denoising algorithm in denoising additiv is optimal value which gives the best denoising result is

Gaussian noise from images and the adaptive median filter ge dependent, as we have mentioned earlier. The challenge

multiplicative noise. Here, the noise type under investigati Herefore, IS to. determln_e an apprommatlon of the begt value
is the salt and pepper noise. Below we give details of the t r A for each image being denoised. Furthermore, this value

approaches showing how they were implemented. 0 A is also dependent on _th_e amount of noise presen_t in the
image. So at best, determining an appropriate value\for

o any experiment could be a matter of trial and error. What

A. Total Variation Approach is certain is the pattern of the graph. The improvement and

The total variation algorithm represented by the time marctegradation phases of image quality during denoising follow
ing algorithm in equation (51) have two parameterand a somewhat linear patterns with a sharp peak representing the
7 which determine the denoising process. The algorithm liest value for\.
convergent to a minimum (optimal) value(f< 7 < % This
proof is provided in [7]. Therefore, it is necessary to kee
7 <« 1 for a good result. As long as remains within the
interval of convergence, no visible effect can be observed onMedian filters are more effective in removing multiplicative
the quality of the image. In other words, it does not affect theise than the total variation methods. For this reason, we
denoising process very much. Because of this fact, we kesmploy it in the denoising of salt and pepper noise. The noise
7 = 0.01 throughout the experiments. + > % convergence density was increased frofhto 1 with increments of).1. At
is not guarenteed. This does not mean that there will never dech incremented step, we measured the SSIM index, the MSE
convergence but to avoid this uncertainty, we keepthin the and the PSNR of the image under increasing noise in Fig. 6B

B. Median Filter Approach
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Original Image MSE = 255, SSIM = 0.71, d = 0.02 MSE = 255, SSIM = 0.61, d = 0.04

MSE = 255,SSIM = 0.54, d = 0.06 MSE = 255, SSIM = 0.50, d = 0.08 MSE = 255, SSIM=0.47,d = 0.1

Fig. 5: Images Distorted by Salt and Pepper Noise and Their BISESSIM Scores
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Fig. 6: Salt and Pepper Noise and Error Sensitivity Norms

shows the MSE and the PSNR remained constant but Fig. @Aincide. In other words as noise is increased, the denoising
shows the graph of the structural degradation in the presemgorithm does little to ameliorate the quality of the image.
of increasing salt and pepper noise. It is interesting to nofdis is a common phenomenon in image denoising. We also
that the structural degradation of the image under increasiolgserve that in the case of median filter approach, there does
noise density is somewhat exponential in behavior. Fig. 6#ot appear to be an optimal value for which some parameter
also shows the graph of recovery of the image after denoisigyes the best denoising possible.

using the median filter. As the noise density increases, to

the graphs of the image quality before and after denoising
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VIll. CONCLUSION [11]

The error sensitivity metrics have been used to determine
the quality of denoised images for a long time. And they have
proved to be useful in so far as only nonstructural aspects]
of image quality are being measured. But the human eye
is quite sensitive to structural information. Our experiments
have shown that using the error sensitivity metrics alone &l
determine denoised image quality is not sufficient to describe
image quality changes. The use of the SSIM is encouragéd
to help better ascertain the true quality of a denoised image.
The PSNR is commonly used for the purpose of describifp]

denoised image quality. But the PSNR depends on the dynamic

range and the MSE of the image. If two images with different
dynamic ranges are corrupted with the same amount of noité]
the resulting PSNR value will be different because of the
difference in dynamic ranges. This is a drawback because tHig
loss of image quality is not caused by some form of external
degradation but by the model itself. Thus, it becomes difficults]
to refer to the quality of a denoised image without reference
to its dynamic range. Here, the SSIM offers a better metijio;
for determining the quality of the denoised image since it does
not depend on the dynamic range of the image neither doegdj

consider the MSE of the images being compared.
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