
High-SpeedCalculation for
Tissue Characterization of Coronary Plaque

by Employing Parallel Computing Techniques
Takanori Koga, Shota Furukawa, Eiji Uchino and Noriaki Suetake

Abstract—In recent years, remarkable progress can be seen
in the field of computer-aided medical diagnosis of ischemic
coronary arterial disease. Intravascular ultrasound (IVUS)-based
tissue characterization of coronary plaque is a significant topic in
this field. The authors have proposed the multiple k-nearest neigh-
bor (MkNN) classifier for the tissue characterization of coronary
plaque in an IVUS B-mode image. Although its characterization
performance was highly evaluated, the calculation speed was too
slow to use actually in medical practice. The purpose of this study
is to accelerate the speed of MkNN classifier aiming for it to be
actually used in the medical practice. Recently, some parallel
computing techniques on central processing unit (CPU) or on
graphics processing unit (GPU) have come into general usage.
Especially, the general purpose computation technique on Graph-
ics Processing Unit (GPGPU) has got into the limelight recently.
In this study, the calculation speeds of the MkNN classifier are
evaluated for cases of various implementations using the parallel
computing techniques. By employing GPGPU technique, it has
been confirmed that its speed has been drastically accelerated
enough for the practical use.

Index Terms—Acute Coronary Syndromes (ACS), Intravas-
cular Ultrasound (IVUS) Method, Multiple k-Nearest Neighbor,
Parallel Computing, Pattern Classification, Pixel Classification,
Tissue Characterization, GPGPU

I. I NTRODUCTION

A n intravascular ultrasound (IVUS) method [1] is a tomo-
graphic imaging technology, which is often used for the

diagnosis of acute coronary syndromes (ACS) [2], [3] in the
field of cardiology. The IVUS method provides thousands of
two-dimensional cross-sectional images of plaque in coronary
artery. A medical doctor diagnoses the coronary plaque by
carefully observing the B-mode images [4], [5], which are
constructed by the intravascular ultrasound signals. For sup-
porting the interpretation of the B-mode images and estimation
of the structure of coronary plaque[6], some computer-aided

Manuscript received April 8, 2011.
This work was supported in part by the strategic program for promoting

research of Yamaguchi University, 2010. Many thanks are due to Dr. R. Kubota
for his helpful assistance.

T. Koga is with the Department of Computer Science and Electronic
Engineering, Tokuyama College of Technology, Gakuendai, Shunan 745–8585,
JAPAN, Phone and Fax:+81-834-29-6319; Email: koga@tokuyama.ac.jp

S. Furukawa, E. Uchino and N. Suetake are with the Graduate School of
Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi
753-8512, JAPAN. Phone and Fax:+81-834-29-6319; Email:{n016vc@,
uchino@, suetake@sci.}yamaguchi-u.ac.jp

E. Uchino is the Chair of Fuzzy Logic Systems Institute (FLSI), 680-41
Kawazu, Iizuka 820-0067, JAPAN

diagnosis methods had been proposed so far [7], [8], [9], [10],
[11], [12].

In order to realize a precise tissue characterization of coro-
nary plaque to support the medical doctors, we have proposed
the multiple k-nearest neighbor (MkNN) classifier so far [13],
[14], [15]. The MkNN classifier classifies coronary plaque
pixel by pixel. The MkNN classifier considers the spatial
continuity of distribution of the data, not only in the feature
space but also in the observation space, and thus performs a
fine classification even if the distributions of data for each class
overlap with each other in the feature space.

However, the MkNN classifier takes too much calculation
time for classification. This is because the calculation process
of the MkNN classifier is described by deeply-nested iteration
structure in the program code. Therefore, the speed-up of the
MkNN classifier is a supreme order to make it used in the
medical practice.

Recently, some parallel computing techniques on the central
processing unit (CPU) or on the graphics processing unit
(GPU) have been used in the various fields [16]. The Open
Multi-Processing (OpenMP) [17], [18] application program
interface (API) makes multi-platform shared-memory parallel
programming easy on a variety of single and multi-CPU
computer with C/C++ or Fortran language. On the other
hand, especially, the general purpose computation technique
on Graphics Processing Unit (GPGPU) [19], [20] has got
into the limelight in various fields of science and technology
[21], [22]. The calculation performance of the latest GPU
is extremely higher than that of CPU. Moreover, by using
the Compute Unified Device Architecture (CUDA) library
supplied by NVIDIA Corporation [23], it is easy to develop a
general purpose program processed on GPU with C language.

In this paper, in order to realize a speed-up of the MkNN
classifier [13], [14], [15], it is implemented by employing
GPGPU technique. First, we verify its performance using a
benchmark problem by comparison to other implementations
of parallel computing. We then apply it to the real tissue
characterization problem of coronary plaque in the IVUS
image. This is our main concern.

II. I NTRAVASCULAR ULTRASOUND (IVUS) METHOD

Intravascular ultrasound (IVUS) method [1], [4] is one of
the medical imaging techniques. It allows the application of
ultrasound technology to observe from inside the blood vessels

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 435



Plaque

Coronary Artery 

Ultrasound 
Probe

Rotating 
Catheter

RF Signal

Fig. 1. Overview image of the intravascular ultrasound (IVUS) method.

Adventitial
Boundary 
(AB)

Plaque Luminal
Boundary (LB)

Seed
Points

LumenProbe

[mm]

[mm]

5

0

50
-5

-5

Fig. 2. An example of B-mode image obtained by the IVUS method. In the
image, 4mm corresponds to 2,048 pixels.

out through the surrounding blood column, visualizing the
coronary plaque in vivo.

In the IVUS method, a specially designed thin catheter
with the ultimately-miniaturized ultrasound probe attached to
its distal end is used (see Fig. 1). To visualize the coronary
arteries and plaques in vivo, angiographic techniques are used.
A medical doctor steers the guidewire with very thin diameter
from outside the body through angiography catheters into the
coronary artery to be visualized. The ultrasound catheter tip is
slid in over the guidewire and positioned, using angiography
techniques so that the tip is at the farthest away position to be
visualized. The guidewire is kept stationary and the ultrasound
catheter tip is slid backwards, usually under motorized control.

The proximal end of the catheter is connected to a comput-
erized ultrasound equipment. The ultrasound waves are emitted
from the ultrasound probe, which are in the 40MHz range in
this study, and the catheter also receives the reflected signal
from the plaque tissue. It is sampled at 400 MHz and stored
in the computerized ultrasound equipment.

An IVUS image is constructed of the amplitude information
of the received radiofrequency (RF) signal. In order to visualize
the inside of a coronary artery, the sampled RF signal is first
transformed into an 8-bit luminal intensity signal by taking the

absolute value of a signal, then by taking the envelope of a
signal, and finally by taking its logarithmic value.

The luminal intensity signals in all radial directions are then
formed to obtain a tomographic cross sectional image of a
coronary artery as shown in Fig. 2. The IVUS image of Fig. 2
is called “B-mode image.” A B-mode image displays a real
time ultrasound cross-sectional image of a thin section of a
blood vessel currently surrounding a catheter probe.

In this study, the B-mode image is constructed with 2,048
pixels in depth, and 256 lines in radial direction. Hence,
the resolution of distance and angle are 1.95µm/pixel and
1.41◦/line, respectively.

In the qualitative assessment of coronary plaque, the area of
coronary plaque surrounded by the following two boundaries
is extracted in the IVUS B-mode image as shown in Fig. 2.
One is a luminal boundary (LB) between the lumen and the
plaque, and the other is an adventitial boundary (AB) between
the plaque and the vascular wall. Then the area of coronary
plaque is characterized by using the diagnosis methods in order
to analyze its composition and structure.

III. M KNN CLASSIFIER

Fig. 3 shows the pixel classification procedure of the
multiple k-nearest neighbor (MkNN) classifier [13], [14], [15]
for an example of a two-class classification problem. In Fig.
3, the observation space is an observed image, and the feature
vector space consists of the feature vectors obtained at each
pixel of the observed image. In general, the feature vectors are
calculated usually,e.g., by principal component analysis of an
image, Fourier transformation, and so on.

In this paper, for the tissue characterization of coronary
plaque, the feature vectors are calculated by the Fourier trans-
formation of radio frequency (RF) signal, which constitutes
the IVUS B-mode image [4], [5]. The training feature vectors
(prototypes) are fed to the MkNN classifier in the same manner
as to the ordinary kNN classifier.

That is, in the MkNN classifier, the classification is carried
out for the feature vector obtained at each pixelp=(x1, x2) of
interest (POI) in the observation space as shown in Fig. 3. In
this figure, note thatk represents “the number of neighboring
pixels pm of p (POI) in the observation space,” andk′

represents “the number of training feature vectorsum in the
feature space corresponding to pixelspm in the observation
space.”

The substantial difference between the ordinary kNN clas-
sifier and the MkNN classifier is as follows. In the MkNN
classifier, not only the training feature vectors corresponding
to the pixel of interestp (the pixel to be classified) but also
those of neighboring pixelspm of p in the observation space
(i.e., on the image) are used for the classification. That is, in
the MkNN classifier,(k×k′)-nearest training feature vectors
are selected for the training ofp (POI). Finally, the majority
decision considering the class labels of all the selected training
feature vectors is made in order to classifyp (POI). On the
other hand, the ordinary kNN classifier only uses the class

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 436



1v

3v

1x

2x

Pixel of Interest

Feature Vector Space

Observation Space 
(Observed Image)

0

0

),( )'(k
mm vuρ1u

mu

},,1;{ kmm L=p
Neighboring k Pixels

ku

p

2v
k’ prototypes are 
chosen for each um

Fig. 3. Overview of the MkNN classifier.

labels of k′-nearest prototypes corresponding top (POI) in
the majority decision making.

The following is a brief description of the procedure of the
MkNN classifier.

Step1:Select the neighboring pixels{pm;m=1, · · · , k} of
p (POI) in the observation space. Calculateum for
pm.

Step2:Suppose that a set ofN pairs {(vn, in);n =
1, · · · , N} are given, wherevn is a training feature
vector which belongs to classin ∈ {1, · · · , C}. C
is the number of classes. Calculate the Euclidean
distances∥vn−um∥ between eachum and all the
training feature vectors{vn;n = 1, · · · , N}.

Step3:The training feature vectorsvn which satisfy the
following condition:

∥vn−um∥ ≤ ρ
(
um,v(k′)

m

)
, (1)

are selected for eachum, where v
(k′)
m is the

k′-th nearest training feature vector aroundum.
ρ(um,v

(k′)
m ) is an Euclidean distance betweenum

andv(k′)
m in the feature space.

Step4:The feature vector for pixelp in the observation space
is classified into classc as follows:

c = argmax
j

k∑
m=1

N∑
n=1

U(um,vn, in, j), (2)

U =

{
1, ∥vn − um∥ ≤ ρ

(
um,v

(k′)
m

)
and in= j

0, otherwise.

(3)

Eq. (3) is a function for a majority decision making of a class
label.

In the MkNN classifier, the spatial continuities both in the
observation and feature spaces are utilized in the procedure
of Step3. That is, in the MkNN classifier,(k× k′)-nearest
training feature vectors are selected for each feature vector
corresponding top (POI) based on the spatial relationship
betweenp andpm in the observation space. This means that
the characteristic of MkNN is to utilize the information on the
spatial continuities in both the observation and feature spaces.
The MkNN classifier thus realizes a fine pixel classification
even for the B-mode image with heavy noises and/or measur-
ing errors [13], [14], [15].

IV. PARALLEL COMPUTATION ON CPU/GPU

In this study, for acceleration of the calculation of the
MkNN classifier, some parallel computing implementations are
compared to each other. The overviews of parallel computing
on CPU or on GPU are described in the following subsections.

A. Parallel Computation on CPU

The parallel computing models using multi CPUs or a
many-core CPU are categorized as a distributed memory type,
a shared-memory type or a hybrid distributed shared-memory
type.

In the distributed memory type, there is typically a pro-
cessor, a memory, and some form of interconnection that
allows programs on each processor to interact with each
other. Message Passing Interface (MPI) is a de-facto standard
in the development of parallel computing program for the
distributed memory system. MPI is a library for data and
message transfer, which can be used in C/C++ and Fortran
program. In the programming with MPI, memory management
and data transferring process are to be described obviously.
This is somewhat troublesome, and portability of the program
becomes low.

On the other hand, in computer hardware, shared memory
refers to a (typically) large block of random access memory
that can be accessed by several different central processing
units (CPUs) in a multiple-processor computer system. For
the parallel computing on CPU, the open multi-programming
(OpenMP) [17], [18] or the portable operating system interface
(POSIX) thread called Pthread, are broadly used.

Especially, OpenMP is a de-facto standard for shared-
memory programming and most people in scientific field use
OpenMP in case of shared memory parallelization. OpenMP
is a set of compiler directives, callable runtime library routines
and environmental variables that extend C/C++ or Fortran
to express shared-memory parallelism. In practical use of
OpenMP, scalable parallel computing on CPU is easily re-
alized by inserting some compiler directives into key points

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 437



Texture cache
Texture unit

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Texture cache
Texture unit

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP
SF
U

SF
U

C-Cache

MT Issue

MT Issue

DP

Texture cache
Texture unit

Shared 
Memory

SP SP

SP SP

SP SP

SP SP

SFU SFU

C-Cache

MT Issue

I-Cache

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP

SFU SFU

C-Cache

MT Issue

I-Cache

DP

Shared 
Memory

SP SP

SP SP

SP SP

SP SP

SFU SFU

C-Cache

MT Issue

I-Cache

DP

Host CPU
Main 

Memory

GPU 
Memory

Host Computer

GPU
Board

1 2

3

4

3

L2

ROP

Fig. 4. Architecture of GPU computing board and execution process of
GPGPU.

and combining some functions in a non-parallelized program
code. In addition, highly portable software for shared-memory
system can be realized by using OpenMP.

For these reasons, we employ OpenMP for the parallel com-
puting implementation on CPU for comparisons to GPGPU.

B. Parallel Computation on GPU

To meet the strong demand for real-time, high-definition
3D graphics and multimedia experiences, the programmable
graphics processing unit (GPU) has evolved into a massively
parallel, multithreaded, many-core processor. The latest GPUs
have tens of hundreds of fragment processors, and higher
memory bandwidths than regular CPUs.

However, GPUs are designed specifically for graphics.
Therefore, they are critically-constrained in terms of operations
and programming. Due to such characteristic, GPUs are only
effective at problems that can be solved using stream process-
ing. Furthermore, the hardware can only be used in specific
purposes.

Under such constraints, the idea behind general-purpose
computing on graphics processing units (GPGPU) [19], [20]
is to use GPUs to accelerate selected computations in appli-
cations that are traditionally handled by CPUs. It is made
possible by the addition of programmable stages and higher
precision arithmetic to the rendering pipelines, which allows
software developers to use stream processing on non-graphics
data.

In the field of GPGPU, Compute Unified Device Architec-
ture (CUDA) [23], which is a parallel computing architecture
developed by NVIDIA, is frequently used. By using CUDA,
developers can access to the virtual instruction set and memory
of the parallel computational elements in GPUs. In general, in
the programming using CUDA, programmers write an appli-
cation with two portions of code, functions to be executed on

TABLE I
SPECIFICATION OFTESLA C1060 GPUCOMPUTING PROCESSOR BOARD

USED IN THE EXPERIMENTS.

PeakProcessing Performance 933 [GFLOPs]
Numberof Processor Cores 240

Clock Speed 1,296[MHz]
Memory Size 4 [GB]
Memory I/O GDDR3 512 [bit]

Memory Clock 800 [MHz]

the CPU host (Host program) and functions to be executed on
the GPU device (GPU kernel function), by using C language.
Fig. 4 briefly shows the following sequence of steps involved
in a typical CUDA kernel invocation.

1. Copy the data from main memory to GPU memory.
2. CPU instructs GPU to start execution of the kernel.
3. GPU gets the data from GPU memory and execute the

kernel in parallrel processing.
4. Calculation results are copied to main memory.

GPUs can only process independent vertices and fragments
for graphics, but can process many of them in parallel. This is
especially effective when the vertices or fragments are to be
processed in the same manner. In this regard, GPUs are stream
processors, which can operate in parallel by running a single
kernel on many records in a stream at once. Furthermore, it
is important for GPGPU applications to have high arithmetic
intensity. Otherwise, the memory access latency will limit com-
putational speed-up. Ideal GPGPU applications have massive
data sets, high parallelism, and minimal dependency between
data elements.

The pixel classification by the MkNN classifier is suitable
for the parallel processing on GPU by using GPGPU technique.
This is because the pixel classification process can be inde-
pendently calculated pixel by pixel and the above-mentioned
matters are satisfied.

V. EXPERIMENTS

A. Experimental Conditions

In order to compare the computational costs for various im-
plementations, the following nine types of implementations are
achieved. Below is a brief explanation of each implementation
with an abbreviation label of each implementation.

• MATLAB: Program described by MATLAB script
• MATLAB+PCT: Program described by MATLAB script

using Parallel Computing Toolbox (execution in parallel
on CPU)

• MATLAB+PCT+BLAS: Program described by MATLAB
script using Parallel Computing Toolbox, in which Basic
Linear Algebra Subprograms (BLAS) library like distance
calculation is performed (execution in parallel on CPU)

• C: Program described by C language (execution in parallel
on CPU)

• C+OpenMP: Program described by C language with
OpenMP (execution in parallel on CPU)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 438



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 2000 4000 6000 8000 10000

MATLAB

MATLAB+PCT

MATLAB+PCT+BLAS

C

C+OpenMP

CBLAS

CBLAS+OpenMP

CUDA

CUBLAS

The number of data

Pr
oc

es
si

ng
 T

im
e 

(s
ec

.)

Fig. 5. Computational costs versus the number of data (pixels) to be classified. Experimental conditions:k=9 (3×3), andk′=9．

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300

MATLAB

MATLAB+PCT

MATLAB+PCT+BLAS

C

C+OpenMP

CBLAS

CBLAS+OpenMP

CUDA

CUBLAS

Pr
oc

es
si

ng
 T

im
e 

(s
ec

.)

The number of neighborhoods 
in the observation space

Fig. 6. Computational costs versus the number of neighboring data (pixels) in the data observation space to be classified. Experimental conditions: the number
of data to be classified is 3,000, andk′=9.

• CBLAS: Program described by C language and BLAS
library (execution in parallel on CPU)

• CBLAS+OpenMP: CBLAS: Program described by C lan-
guage, BLAS library and OpenMP (execution in parallel
on CPU)

• CUDA: Program described by C language and CUDA
(execution in parallel on GPU)

• CUBLAS: Program described by C language, CUDA, and
CUBLAS (execution in parallel on GPU)

MATLAB is a numerical computation software produced by
Mathworks. MATLAB’s Parallel Computing Toolbox (PCT) is

a library to produce functions for parallel computing on multi-
core CPU. BLAS is a library for linear algebraic processing
with respect to vectors and matrices. CUBLAS is an optimized
BLAS library for GPGPU.

Note that Basic Linear Algebra Subprograms (BLAS) li-
brary like distance calculation in the MATLAB+PCT+BLAS
makes the following reduction in terms of the distance calcula-
tion of Eq.(1). The Euclidian distance between a feature vector
um and a training vectorvn is calculated by∥vn−um∥2 =
vT
nvn−2uT

mvn+uT
mum. Here,uT

mum can be neglected as
an unnecessary term in the evaluation of distance. Thus, the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 439



0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60 70 80 90 100

MATLAB

MATLAB+PCT

MATLAB+PCT+BLAS

C

C+OpenMP

CBLAS

CBLAS+OpenMP

CUDA

CUBLAS

Pr
oc

es
si

ng
 T

im
e 

(s
ec

.)

The number of neighborhoods 
in the feature vector space

Fig. 7. Computational costs versus the number of neighboring vectors in the feature vector space. Experimental conditions: the number of data to be classified
is 3,000, andk=9(3×3)．

Euclidian distance between the feature vector and the training
vector can be obtained only by calculatingvT

nvn−2uT
mvn. In

the program code of the MATLAB+PCT+BLAS, this leads to
a big reduction of calculation.

The computer used in the experiments has Intel Core i7 920
2.67GHz (with 4 cores) CPU and NVIDIA Tesla C1060 GPU
computing processor board．The specification of Tesla C1060
computing processor board is described in Table I. Operating
system (OS) is Microsoft Windows XP 32-bit. The GPU kernel
function is described by CUDA．MATLAB’s version is 2009b．
Compiler of C language and its developing environment is
Microsoft Visual Studio 2008 Express Edition with Windows
SDK for Windows Server 2008 and .NET Framework 3.5．In
the programs with OpenMP, the number of threads is set to be
8. In the programs with CUDA, the number of threads is set
to be 240.

The program codes for GPGPU using CUDA library are
constituted by a host program and a GPU kernel function. The
host program consists of the program routines for data transfer
to GPU and its control routines. The GPU kernel function
consists of the program routines to be processed on the GPU.
The data to be processed on GPU is transferred at once from
the main memory of host machine to GPU memory in order
to avoid data transfer latency. In addition, in programming
of MkNN classifier, paper [24] is referred, which describes
an implementation of the ordinary kNN classifier by using
GPGPU technique.

All the programs are fully tuned with respect to program
description for the parallel processing. For example, various
points such as the position of the parallel for statement in
PCT and OpenMP, data partitioning in GPU, and so on are
empirically tuned in order to make the performance of each
implementation best. This is because the performance of the
parallel computation is greatly influenced by those factors.

B. Performance Validation by Using Randomly-Generated
Data Set

For performance validation of GPGPU, an artificially-
generated random data set is used. The feature vector is 16-
dimensional real-valued vector．The number of classes is 11.
The number of the training feature vectors is 3,000. The
training feature vectors are sampled from 11 classes of data
set with equal probability.

Under the above conditions, the computational costs are
evaluated for the following 3 cases．

• Case 1: the number of data (pixels) to be classified is
changed

• Case 2: the number of neighboring data (pixels) in the
data observation space is changed

• Case 3: the number of neighboring vectors in the feature
vector space is changed

The computational cost is evaluated by an average time of
100 iterations for each case. The parameters of the MkNN
classifier are shown in the captions of Figs. 5, 6 and 7,
respectively.

Fig. 5 shows the experimental results for case 1 versus
the number of data (pixels) to be classified. In general, the
computational cost monotonically increases with the number
of data. On the contrary, in cases with CUDA and CUBLAS,
the computational cost is very small independent of the number
of data. The program using CUBLAS is a little bit faster than
that using CUDA.

In the experimental results of MATLAB+PCT and MAT-
LAB+PCT+BLAS, there are missings of result around 6,000
and 7,000 of the number of data, respectively. This is because
a memory allocation was impossible due to a hardware re-
striction. It is thought that these are caused by the internal
processes of memory allocation for parallel processing. That

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 440



is, this comes from too huge memory area was tried to be
allocated automatically for the parallel processing by PCT.

Fig. 6 shows the experimental results for case 2 versus the
number of neighboring data (pixels) in the data observation
space. It can be seen that the computational cost is indepen-
dent of the neighboring data. Those results imply that each
implementation method can process the MkNN classifier in
approximately the same calculation time with the ordinary
kNN classifier. It means that the MkNN classifier is an
effective classifier because it can use the information in the
data observation space in approximately the similar calculation
time of the ordinary kNN classifier.

Fig. 7 shows the experimental results for case 3 versus the
number of neighboring vectors in the feature vector space.
The computational cost is in general independent of the
neighboring data. The programs using CUDA and CUBLAS
are a little bit influenced by the number of neighboring data.
This is because the sorting algorithm is involved in the MkNN
classifier to obtain the neighboring order in the feature vector
space, which is not suitable for parallel processing. The similar
phenomena have been reported in [24].

In cases of parallel computing on CPU, the performance of
the programs with PCT or OpenMP has shown better than that
of the program without using parallel computing. On the other
hand, the programs parallely-executed on GPU with GPGPU
technique has shown overwhelming performance. In addition,
it was confirmed that the classification results were not affected
in all the experiments with Tesla C1060, although Tesla C1060
computing processor board only supports single precision.

By the results of these experiments, the superiority and
basic characteristics of the MkNN classifier on GPU has been
verified.

C. Real Application to Tissue Characterization of Coronary
Plaque

Here we confirm the performance of the GPGPU technique
applied to the tissue characterization of coronary plaque in the
real IVUS image of a patient.

Fig. 8(a) is a microscopic image of stained tissue of test
data. Fig. 8(b) is a desirable characterization result for the
test data, which is obtained by medical doctor’s interpretation.
The region of interest (ROI) surrounded by two white lines
in Fig. 8(c) is classified into lipid tissue, fibrofatty tissue, and
fibrous tissue pixel by pixel. In the experiments, the feature
vector obtained at each pixel of a B-mode image is a power
spectrum calculated by the short-time discrete FFT of a radio
frequency (RF) signal in radial direction [13], [14], [15].

The short-time discrete FFT was carried out by shifting the
window of a size of 32 pixels in depth direction of a radial
line. The feature vector is 17-dimensional real-valued vector
concerning spectrum．The feature vectors are normalized in
the range of[0, 1]. The number of class is 3. The number of
the training feature vectors is 195. The training feature vectors
are sampled from 3 classes of data sets with equal probability.

In the experiments, approximately 70,000 samples (pixels)
per IVUS B-mode image are classified. In case of the MkNN

Fibrofatty

Lipid

Fibrous

(a)

Fibrous

FibrofattyLipid

(b)

(c)

Fibrofatty

Lipid

Fibrous

(d)

Fig. 8. Tissue characterization of coronary plaque in IVUS B-mode image. (a)
Microscopic image of stained tissue of test data (b) Desirable characterization
result for test data. (c) The area surrounded by two white lines is the region
of interest (ROI) to be characterized. (d) Tissue characterization results by the
MkNN classifier.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 441



TABLE II
COMPUTATIONAL COST FOR EACH IMPLEMENTATION IN CLASSIFICATION

OF IVUS DATA .

Implementationmethod Calculationtime (sec.)

MATLAB 13.12
MATLAB+PCT 6.00
MATLAB+PCT+BLAS 4.56
C 1.24
C+OpenMP 0.73
CBLAS 0.53
CBLAS+OpenMP 0.38
CUDA 0.07

classifier, the number of neighboring data in the feature vector
spacek′ is set to be 9, and the number of neighborhood data
in the observation spacek is set to be 9 (3×3).

Fig. 8(d) shows the characterization result by the MkNN
classifier. Table II shows the comparison of processing time
by each implementation. In this regard, experimental result
by CUBLAS could not be obtained partly because memory
allocation was impossible due to a hardware restriction. The
calculation time employing GPGPU (CUDA) is drastically
reduced, which is good enough for a medical practice.

It was also confirmed as in the simulation experiments
using artificial data set in the previous subsection that the
classification results were not affected in all the experiments
with Tesla C1060, although Tesla C1060 computing processor
board only supports single precision.

With those experiments, tissue characterization of coronary
plaque by the MkNN classifier has proposed in [13], [14], [15]
reached almost near to the practical use.

VI. CONCLUSION

In this paper, we have implemented the MkNN classifier, a
tissue characterization algorithm for coronary plaque, by using
some parallel computing techniques. It has been shown that the
calculation speed of the MkNN classifier had been drastically
accelerated by using GPGPU technique. The possibility of the
practical use of the tissue characterization by MkNN classifier
has been greatly increased.

Future work is to further reduce the computing time by
using GPU clusters aiming at the real practical use soon.

REFERENCES

[1] J. B. Hodgson, S. P. Graham, A. D. Savakus, S. G. Dame, D. N.
Stephens, P. S. Dhillon, D. Brands, H. Sheehan, and M. J. Eberle,
“Clinical percutaneous imaging of coronary anatomy using an over-the-
wire ultrasound catheter system,”Int. J. Cardiac Imaging, vol. 4, pp.
187–193, 1989.

[2] E. Falk, “Why do plaques rupture?,”Circulation, vol. 86, pp. 30–42,
1992.

[3] E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,”
Circulation, vol. 92, no. 3, pp. 657–671, 1995.

[4] B. N. Potkin, A. L. Bartorelli, J. M. Gessert, R. F. Neville, Y. Almagor,
W. C. Roberts, and M. B. Leon, “Coronary artery imaging with
intravascular high-frequency ultrasound,”Circulation, vol. 81, pp. 1575–
1585, 1990.

[5] J. D. Klingensmith, D. G. Vince, B. D. Kuban, R. Shekhar, E. M. Tuzcu,
S. E. Nissen, and J. F. Cornhill, “Assessment of coronary compensatory
enlargement by three-dimensional intravascular ultrasound,”Int. J.
Cardiac Imaging, vol. 16, pp. 87–98, 2000.

[6] G. J. Friedrich, N. Y. Moes, V. A. Muhlberger, C. Gabl, G. Mikuz,
D. Hausmann, P. J. Fitzgerald, and P. G. Yock, “Detection of intralesional
calcium by intracoronary ultrasound depends on the histlogic pattern,”
Am. Heart J., vol. 128, pp. 435–441, 1994.

[7] D. T. Linker, A. Klevan,Å. Grø nningsæther, P. G. Yock, and Bj. A. J.
Angelsen, “Tissue characterization with intra-arterial ultrasound: Special
promise and problems,”Int. J. Cardiac Imaging, vol. 6, pp. 255–263,
1991.

[8] M. Sonka, X. Zhang, M. Siebes, M. S. Bissing, S. C. DeJong, S. M.
Collins, and C. R. McKay, “Segmentation of intravascular ultrasound
images: A knowledge-based approach,”IEEE Trans. Med. Img., vol. 14,
pp. 719–732, 1995.

[9] S. J. Nicholls, E. M. Tuzcu, I. Sipahi, P. Schoenhagen, and S. E. Nissen,
“Intravascular ultrasound in cardiovascular medicine,”Circulation, vol.
114, pp. 54–59, 2006.

[10] R. Kubota, M. Kunihiro, N. Suetake, E. Uchino, G. Hashimoto, T. Hiro,
and M. Matsuzaki, “An intravascular ultrasound-based tissue charac-
terization using shift-invariant features extracted by adaptive subspace
SOM,” Int. J. of Biology and Biomedical Engineering, vol. 2, no. 2, pp.
79–88, 2008.

[11] M. Kawasaki, H. Takatsu, T. Noda, K. Sano, Y. Ito, K. Hayakawa,
K. Tsuchiya, M. Arai, K. Nishigaki, G. Takemura, S. Minatoguchi,
T. Fujiwara, and H. Fujiwara, “In vivo quantitative tissue characterization
of human coronary arterial plaques by use of integrated backscatter
intravascular ultrasound and comparison with angioscopic findings,”
Circulation, vol. 105, pp. 2487–2492, 2002.

[12] M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni,
B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic
accuracy of optical coherence tomography and integrated backscatter
intravascular ultrasound images for tissue characterization of human
coronary plaques,”J. Am. Coll. Cardiol., vol. 48, pp. 81–88, 2006.

[13] R. Kubota, M. Kunihiro, N. Suetake, E. Uchino, G. Hashimoto, T. Hiro,
and M. Matsuzaki, “Intravascular ultrasound-based tissue classification
of coronary plaque into fibrosis or lipid by k-nearest neighbor method,”
Proc. of Int. Conf. on Soft Computing and Human Sci. -New Horizon
beyond the 20th Anniversary of BMFSA, pp. 93–96, 2007.

[14] R. Kubota, N. Suetake, and E. Uchino, “Hierarchical k-nearest neighbor
classification using feature and observation space information,”IEICE
Electronics Express, vol. 5, no. 3, pp. 114–119, 2008.

[15] E. Uchino, N. Suetake, R. Kubota, T. Koga, G. Hashimoto, T. Hiro,
and M. Matsuzaki, “An ROC performance validation of hierarchical k-
nearest neighbor classifier applied to tissue characterization using IVUS-
RF signal,”Proc. of 2009 Int. Workshop on Nonlinear Circuits and Signal
Processing, pp. 333–336, 2009.

[16] D. Wippig and B. Klauer, “GPU-based translation-invariant 2D discrete
wavelet transform for image processing,”Int. J. of Comp., vol. 5, no. 2,
pp. 226–234, 2011.

[17] M. J. Quinn, Parallel Programming in C with MPI and OpenMP,
McGraw Hill Higher Education, 2003.

[18] D. J. Kuck, B. Chapman, G. Jost, and R. van der Pas,Using OpenMP:
Portable Shared Memory Parallel Programming (Scientific and Engi-
neering Computation), The MIT Press, 2007.

[19] M. Pharr and R. Fernando,GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation,
Addison-Wesley Professional, 2005.

[20] D. B. Kirk and W. W. Hwu,Programming Massively Parallel Processors:
A Hands-on Approach (Applications of GPU Computing Series), Morgan
Kaufmann, 2010.

[21] A. Victor, M. A. D. Bogdan, M. Florica, M. Anca, and E. Alexandru,
“GPGPU for cheaper 3D MMO servers,”Proc. of the 9th Int. Conf. on
Telecommunications and Informatics, pp. 238–243, 2010.

[22] A. Moldoveanu, F. Moldoveanu, and V. Asavei, “More scalability at
lower costs - server architecture for massive multiplayer 3D virtual
spaces powered by GPGPU,”Int. J. of Computers and Communications,
pp. 117–126, 2007.

[23] J. Sanders and E. Kandrot,CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley Professional,
2010.

[24] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using GPU,” Proc. of the CVPR Workshop on Comp. Vision on GPU,
pp. 1–6, 2008.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 5, 2011 442




