



Abstract— This paper presents an algorithm that detects certain

objects in a moving image and extracts their features. We named this

algorithm as the purification algorithm because it is also used for

purifying the remains of detected objects and for saving each purified

object as a separate image file. The algorithm is implemented on the

Bi-i Cellular Vision System which is a Cellular Neural

Network(CNN) Universal Machine. The CNN Universal Machine is

known as the analogical array computer and it contains two

processors which can work interactively with each other. These

processors are the ACE16k that is the hardware implementation of

CNNs and the Digital Signal Processor(DSP). The purification

algorithm is implemented with two different applications. In the first

application, all phases of the algorithm are implemented just on the

DSP. In the second application, the morphological operations of the

algorithm are performed on the ACE16k and all other operations are

performed on the DSP. Therefore, in the latter one, the application is

run in coordination with both the ACE16k processor and the DSP.

The obtained results are evaluated in terms of the run-time of the

purification algorithm to show the comparison of these applications.

Experimental results show that the performance of the proposed

algorithm is good.

Keywords— ACE16k, Bi-i Cellular Vision System, Cellular

Neural Networks, CNN Universal Machine, Digital Signal Processor,

Image processing.

I. INTRODUCTION

MAGE processing is one of the most important research

topics in recent years. It is widely used in areas such as

military, security, health, biology, astronomy, archeology and

industry [1-13]. For an image to be processed, it should be

presented in a format that a computer can understand, this

means it should be converted into its related digital form. In

the digital form, each of its pixel is expressed by means of the

corresponding element of a matrix.

Manuscript received April 29, 2011.

This work was supported by Scientific Research Projects Coordination

Unit of Istanbul University. Project number: 14586.

Emel Arslan is with the Research and Application Center for Computer

Sciences, Istanbul University, Istanbul, Beyazıt, 34452, Turkey (phone: +90-

212-4400093; fax: +90-212-4400094; e-mail: earslan@istanbul.edu.tr).

Zeynep Orman is with the Computer Engineering Department, Istanbul

University, Istanbul, Avcilar, 34320, (e-mail: ormanz@istanbul.edu.tr).

Sabri Arik is with the Computer Engineering Department, Istanbul

University, Istanbul, Avcilar, 34320, (e-mail:ariks@istanbul.edu.tr)

Algorithms that are developed for digital image processing

require fast systems due to their processing load. These

computers cannot satisfy the need for speed, when we

especially consider the implementation of real-time moving

image processing algorithms that require at least 15-25 frames

to be processed in seconds.

Cellular Neural Network (CNN) theory that was proposed

by Chua and Yang in 1988, is an analog, nonlinear and real-

time processing neural network model [14]. CNNs also have

advanced features for image processing applications. In 1993,

Roska and Chua have presented the CNN Universal Machine

[15, 16]. This analogical array computer has cellular

processors (ACE4k, ACE16k, etc.) which are the hardware

implementation of CNNs and it is very suitable for image

processing applications with its advanced computing

capabilities. Bi-i Cellular Vision System is a CNN Universal

Machine that can process high-speed and real time transactions

and can be defined as a compact, independent and intelligent

camera. This system has high-resolution sensors and two

different processors named as CNN (ACE16k) and Digital

Signal Processor (DSP) that can communicate with each other

[17].

In this study, we will first discuss how to detect certain

objects in a colored image and propose a new purification

algorithm that is used to purify the remains of each object.

This algorithm as a whole combines the preprocessing and the

purification phases to remove false minutiae such as holes,

spikes as well as the remains of the object. These remains are

actually the parts of other objects that can stay within the

boundary of the frame. Then, we will present an

implementation of this algorithm on the Bi-i Cellular Vision

System and evaluate the results that are obtained.

The remainder of this letter is organized as follows. Section II

introduces fundamental concepts about CNN architecture,

CNN Universal Machine, ACE16k processor, Bi-i Vision

System and Bi-i programming, respectively. In Section III, an

algorithm that detects certain objects in moving images and

purifies each object from its remains is proposed. In Section

IV, a real implementation of the purification algorithm is

provided to compare the obtained results and finally, Section

V evaluates the results and concludes the paper.

Feature extraction of objects in moving images

and implementation of the purification

algorithm on the CNN Universal Machine

Emel Arslan, Zeynep Orman, Sabri Arik

I

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 488

II. CNN ARCHITECTURE AND BI-I CELLULAR VISION

SYSTEM

This section provides fundamental concepts about CNN

architecture and Bi-i Cellular Vision System.

A. Architecture of the Cellular Neural Networks

Cellular Neural Networks (CNNs) derived from Hopfield

Neural network is introduced in [16]. The two most

fundamental components of the CNN paradigm are the use of

analog processing cells with continuous signal values, and

local interaction within a finite radius.

The structural design of CNN is formed with basic circuits

called cells. Each cell containing a linear capacitor, a non-

linear voltage controlled current source, and a few resistive

linear circuit elements is connected to its neighboring cells;

therefore direct interactions take place only among adjacent

cells. Mathematical expression of the standard CNN model is

described by the set of linear differential equations given by

(1) which are associated with the cells in the circuit. The

activation function of the CNN cell can be expressed by the set

of nonlinear equation (2).

ij

jiSlkC

kl

jiSlkC

klijij

ztulkjiB

tylkjiAtx
R

tx
dt

d
C

r

r













)(),;,(

)(),;,()(
1

)(

),(),(

),(),(
 (1)

  11
2

1
)( ijijjiij xxxfy

(2)

where,

Rxij  ; State variable of cell C(i,j),

Rykl  ; Outputs of cells,

 Rukl  ; Inputs of cells,

 Rzij  ; Threshold,

A(i, j ; k, l) ; Feedback operator,

B(i, j ; k, l) ; Control operator.

ijy

; Output equation.

Without loss of generality, linear resistor (R) and linear

capacitor (C) values can be set to 1. The block diagram of a

cell C(i, j) is shown in the Fig. 1.

Fig. 1 The block diagram of a cell C(i, j)

In this way CNNs have provided an ideal framework for

programmable analog array computing. It means that the CNN

can be used as a programmable device where the instructions

are represented by the templates which define the connections

between a cell and its neighboring cells. In general, the CNN

templates consists of the feedback template (B), control

template (A) and bias value. Basically, three different images

can describe a CNN layer, that is, the input U, the state X and

the output Y.

Each cell of a CNN is represented by a square and shown in

Fig. 2. In this CNN architecture, each cell is linked only to its

neighbors.

Fig. 2 A 4x4 cell two-dimensional CNN

Let us assume a CNN with MxN cells are arranged in M

rows and N columns and the cell in row i and column j is

denoted as C(i,j)[16]. r-neighborhood of a C(i,j) cell is defined

with the following definition (3) provided that r is a positive

value [18].

 

















 rj|i|,|l|k

NlM,k

C(k,l)(i,j)
r

N

11

max

(3)

B. CNN Universal Machine

The hardware implementation of CNN is easier compared to

the Artificial Neural Networks as there is only connection

between the neighbor cells and the cell structure. Analogical

Cellular Engines (ACE4k, ACE16k etc. [19, 20]) are based on

CNN Universal Machine architecture. CNN Universal

Machine(CNN-UM) architecture has been called by Roska and

Chua as analogical computation since it can both perform the

analog array operations and the logical operations together

[17].

Fig. 3 The architecture of the CNN Universal Machine

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 489

Fig. 3 denotes the CNN-UM architecture which is based on

the dynamic computing of a simple CNN. This figure shows

the elements in the complex CNN Nucleus and the functional

blocks of the Global Analogic Programming Unit[21].

C. ACE16k Processor

ACE16k, is a CNN based processor of CNN Universal

Machine which can perform analog operations. ACE16k which

is used to perform various image processing operations contain

low resolution (128 x 128) CMOS gray level image sensor and

analog processor arrays. This processor array is much faster

(30000 frames per second) than the conventional processors in

image processing applications since it can processes the whole

image in parallel.

D. Bi-i Cellular Vision System

The Bi-i Cellular Vision System which contains two

different processors, a CNN based ACE16k and a DSP that

can be defined as a compact, standalone and intelligent camera

capable of real time operations at very high speed [2, 21]. The

images are stored in local memories with the help of two

different sensors as a (1280x1024) color CMOS sensor, and a

(128x128) ACE16K sensor [22, 23].

The block diagram of the Bi-i V2 Cellular Vision System is

given in Fig. 4. As seen from the figure, this system has a color

CMOS sensor array (IBIS 5-C) and two high-end digital signal

processors (TX C6415 and TX C6701). This system runs an

embedded Linux on the communication processor and has

complex external interfaces like USB, FireWire and a general

digital I/O in addition to the Ethernet and RS232[21].

Fig. 4 The block diagram of the Bi-i V2 Cellular Vision System

E. Bi-i Programming

CNN Universal Machine has two different programming

methods. One of them is AMC (Analogical Macro Code)

language which is a conventional Bi-i programming method.

The codes written in AMC language are converted to binary

basis and run on Bi-i. Another method is the Bi-i (Software

Development Kit - SDK) which is used to develop more

complex applications. Bi-i SDK, consists of the C++

programming library which is a group used to develop

applications. These libraries can also used for the Digital

Signal Processor (DSP) with the development unit Code

Composer Studio and they contain many functions to control

the whole ACE16k circuit [2].

III. AN ALGORITHM THAT DETECTS OBJECTS IN

MOVING IMAGES AND PURIFIES THE REMAINS OF

EACH OBJECT

An algorithm that detects objects in moving images and

extracts their features is developed by using the Bi-i Cellular

Vision System. We named this algorithm as the purification

algorithm because it is also used for purifying the remains of

certain objects that are detected in moving images and for

saving each purified object as a separate image file. These

remains can be the parts of other objects that stay within the

frame of a certain object and/or be the background of the

object itself. This kind of remains problem inevitably occurs in

image processing applications because each pixel of an object

is expressed as an element of a matrix. Therefore, within the

frame of a certain object, there can be some remains that

belong to other objects of the moving image.

The algorithm that we developed provides a solution to this

problem for especially colored and moving images. A block

diagram of the purification algorithm is shown in Fig. 5.

As clearly seen from Fig. 5, this algorithm gets a colored

moving image as an input. For each frame of the moving

image, two phases are applied generally which are the

preprocessing phase and the purification phase, respectively.

In the preprocessing phase, some processes are performed on

the DSP while some others are run on the analog processor.

The first operation with the preprocessing phase is to convert

the colored frame into a gray level image on the DSP. The

obtained gray level frame is then transferred to analog

processor (ACE16k) to apply low pass filtering. Thus, sharp

color transitions and spikes are partly softened to reduce the

noise on the image. The filtered image is again transferred on

the DSP to apply the thresholding process and the gray level

image is converted to a binary image. After this process, in the

obtained binary image, the background is represented with the

white color and the objects are represented with the black

color because of the luminosity of the gray level image.

However, the Bi-i V2 that is used to develop our

implementation evaluates white colors as the objects and black

parts as the background of the image while it determines the

objects and it processes the image in this manner. Therefore,

there is a need to apply a negation process to the binary image

so that the Bi-i V2 can process it. After the image is converted

to the appropriate format, it is given as an input to the Feature

Extraction function that is implemented on the DSP. As a

result of this process, the objects in the image and their

features are extracted.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 490

Segmentation;
Thresholding

Morphological operations

a
p

p
li

e
d

 t
o

 t
h

e
it

h
fr

a
m

e

Feature Extraction

j=0; j<ObjectNumber;
j++

Sub-object number of
jth object > 1

NO

Purification of Object

YES

P

u
r

 i
f

 i
c

 a
t

 i
o

n

Low Pass Filter

Feature Extraction

Matrix of jth Object

A
C
E
1
6
k

D
S
P

input moving
image

i=0; i<FrameNumber; i++

OUTPUT

gray level
transformationD

S
P

Fig. 5 A block diagram of the purification algorithm

After the feature extraction process, the purification phase is

applied to the objects that are detected within the image. In

this phase, each object is given to the Feature Extraction

function as an input and as a separate image by using the

bounding box features of the objects. The next step in this

phase is to determine if there are any other objects or remains

of other objects within the boundary of the frame. After the

feature extraction process, if the number of objects determined

is one in the bounding box, this means there is no overflow of

other objects and the algorithm continues with the next object

for feature extraction. On the other hand, if the number of

objects determined is greater than one, this means there are

some remains that belong to other objects within the boundary

of the frame and the purification process is applied. This

purification phase is applied to all objects in each frame. After

this process is completed, the objects are all cleared from the

remains in the moving image.

A. Preprocessing

Each frame of a moving object which is an input to the

algorithm, is processed as a separate image. The first operation

is to transform the frame to be processed into its relevant gray

level image that runs on the DSP processor by using the

RGB2ByteMatrix function. This function is located in Utils.h

library under Instant Vision BaseData. The command line that

is used for this transformation is given below:

RGB2ByteMatrix(sourceGRAY,sourceRGB,CH_RGB);

The moving image matrix that is transformed to a gray level

image is then transferred to the ACE16k processor for

morphological operations. Here, the aim is to detect objects in

a moving image as close as possible. The morphological

operations are Low Pass Filtering [2, 24], Thresholding,

Negation, Point Removing, Hole Filling and Opening,

respectively. For thresholding, we use the ConvLAMtoLLM

function that is located in TACE.h library. For other

operations we use the functions in TACE_IPL.h library. These

are all ACE16k libraries that are under Instant Vision

BaseData.

For morphological operations, the first step is to pass the

moving image through a linear Low Pass Filter to remove the

noise. This filter is used to get rid of some little details known

as minutiae and fill the holes in lines before detecting the

objects.

For filtering a moving image, we use the following

command lines in our implementation:

ace << C_LAM1 << sourceGRAY;

ace.LowPassFilter (C_LAM2, C_LAM1,1, 0.05);

ace.ReadLAM(sourceGRAYFiltered, C_LAM2);

A gray level image that is sourceGray, is loaded to a local

analogical memory (C_LAMI) that is on the ACE16k

processor to be processed by using the first command line. The

second command line applies low pass filtering to an image

matrix that is on the C_LAM1 by using the LowPassFilter()

function and passes the resulting image to another local

analogical memory (C_LAM2). Finally, the last line assigns

the resulting image to a variable named sourceGRAYFiltered.

By applying the low pass filtering, we now have a smoother

image. Afterwards, this image is converted to a binary image

by applying thresholding process. The command lines that are

used for this conversion is given below:

ace.ConvLAMtoLLM(C_LLM2,C_LAM2,50);

ace.ReadLLM(sourceBit, C_LLM2);

In the first line, the image matrix that is on C_LAM2, is

converted into a binary image and transferred to another local

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 491

analogical memory (C_LLM2) by using ConvLAMtoLLM()

function. The second line assigns the resulting matrix to a

variable named sourceBit.

To perform thresholding by using ByteMatrix2BitMatrix()

function that runs on the DSP, we use the following command

line:

ByteMatrix2BitMatrix(sourceBit, sourceGRAY,50);

After thresholding, the objects are represented as black and

other parts are represented as white in the resulting image

matrix. However, our algorithm detects groups of white pixels

as objects and carries out its operations in this manner. To

solve this problem, we need to negate the resulting image. This

means, we should replace 0s with 1s and 1s with 0s in the

image matrix by applying a negation process. This binary

negation process is performed by the following command line:

ace.Not(sourceBitNegation,C_LAM2);

The same process can be run on the DSP processor with a

Negation() function that is written in C++ programming

language. This function is used with the following command

line:

Negation(sourceBitOut, sourceBit);

After the negation process, the morphological operations

that are given with the following command lines, are applied to

the resulting image, respectively.

ace.SetIPLMode(IPL_MORPH);

ace.Calibrate();

ace.PointRemove();

ace.HoleFiller(1);

ace.Opening8(1);

ace.Dilate8(1);

All these morphological operations are run on the ACE16k

processor. Before going on with other morphological

operations, the SetIPLMode() function should be used to set

up the ACE16k processor to carry out these procedures. Then,

before each morphological operation, the Calibrate() function

is used to calibrate the ACE16k processor for morphological

operations. It is very important to use this function and repeat

it in every 10-20 milliseconds if the processor works in an IPL

mode constantly because the ACE16k processor can forget this

calibration process. This process is not important for gray

level images.

After the calibration process, the PointRemove() function

that cleans the minor pixels from the image, the HoleFiller()

function that fills the holes of the image, the Opening8()

function that performs the opening process and finally the

Dilate8() function is applied to the image, respectively [21].

The command lines that perform these morphological

operations on the DSP processor are as follows:

PointRemove(sourceBitOut,sourceBitOut);

HoleFiller(sourceBitOut, sourceBitOut, 1);

Opening8(sourceBitOut, sourceBitOut, 1);

Dilate8(sourceBitOut, sourceBitOut, 1);

 (a)

Original images

(b)

Gray level images

(c)

Filtered images

1
0

th
 F

ra
m

e

1
4

4
th

 F
ra

m
e

2
4

0
th

 F
ra

m
e

Fig. 6 Low pass filtering steps for different frames

 (a)

Thresholding images

(b)

Negated images

1
0

th
 F

ra
m

e

1
4

4
th

 F
ra

m
e

2
4

0
th

 F
ra

m
e

Fig. 7 Intermediate results for different frames

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 492

Sample output images that are obtained after the

preprocessing phase, are shown in Fig. 6 and Fig. 7,

respectively for different frames that belong to a specific

moving image. Fig. 6 denotes the original images, the gray

level images and the filtered images for frames 10, 144 and

240. For the same frames, Fig. 7 denotes the obtained images

after applying the processes thresholding and negation.

B. Extracting the Objects and their Features

The binary image that is preprocessed depending on the

input moving image is now available for object detection and

is an input parameter to the CalcFeatures() function. This

function is used as follows:

CalcFeatures(ObjNum, Features, sourceBitOut, FEAT_ALL);

After this process, the objects in a moving image are

detected and their features are extracted. These features can be

given as follows:

• Bounding Box: It draws a minimal rectangle around the

object by using its upper-left and lower-right coordinates.

• Extremes: These are the extreme points on the bounding

box of the object. These points are: Upper-Left, Upper-Right,

Right-Upper, Right-Lower, Lower-Right, Lower-Left, Left-

Lower and Left-Upper.

• Eccentricity: It is the proportion between the focus distance

and the length of the longest axis of the current ellipse of the

object. The eccentricity of a circle is 0 whereas the eccentricity

of a line is 1.

• Diameter: It is the diameter of the circle which has the same

area with the object.

• Orientation: It is the angle of the largest axis value of the

current ellipse as the object to the positive direction of the

horizontal axis.

• Extent: It is the proportion between the area of the object

and the area of the bounding box.

• Center: It denotes the coordinates of the geometric

coordinates of the object according to the upper left corner of

the image.

In this implementation, to determine the handgun object in

each frame, the features that are extremes, bounding box,

center, eccentricity, diameter and orientation are taken into

account primarily.

Some of the statistics like minimum (Min), maximum (Max)

and average values obtained as a result of these features are

presented in Table I.

Feature Min. Max. Average

Area 229 1546 733.93

Eccentricity 0.50 0.99 0.96

Diameter 17.08 44.37 30.31

Orientation 0.01 179.99 92.88

Extent 0.32 0.87 0.66

Center x value 17.42 108.23 60.98

Center y value 12.58 76.70 48.36

Table I. Statistical values of certain features of the objects

All of these statistical information have been computed by

processing the whole moving image (1394 frames). Since the

object does not have exactly the same shape and the same

position in every frame of the moving image, the average

values should be used to describe the certain object to

facilitate the identification process.

After the objects and their features are extracted as the last

step of the preprocessing phase, the resulting image is then

saved to be purified from its remains.

C. Purifying Certain Objects from its remains

Each pixel of an image is expressed by means of the

corresponding element of a matrix, so even no remains of

other objects are detected, a part of the background will still be

within the boundary of the certain object that is detected in the

image. That is why we should purify the detected objects from

the remains of other objects and/or from the background of the

frame. The input moving images that we are working on are

colored images and this makes the purification process easier

because we can use the color codes of the objects. In our

implementation, we will consider the moving image given in

Fig. 6 and try to purify the most distinct object in that certain

image - which is the handgun.

 (a)

Original image

(b)

Output image
3

1
th

 F
ra

m
e

1
5

8
th

 F
ra

m
e

3
3

0
th

 F
ra

m
e

Fig. 8. Original and output images after the purification process

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 493

 Purified image

3
1

th
 F

ra
m

e

1
5

8
th

 F
ra

m
e

3
3

0
th

 F
ra

m
e

Fig. 9 Purified images after the purification process

For this implementation, we first obtain a matrix that

represents the object by using the extreme points. This object

is then saved as a separate image file with the help of the

related matrix and purified from its remains that belong to

other objects and from the background image by using the

color codes. This function that performs this process is coded

in C++ programming language.

Because the image to be processed is colored, we can get the

Red-Green-Blue(RGB) values of each pixel of the handgun

object and with these values, we call the ForMask() function.

This function gets three input parameters. These are the matrix

that represents the colored image, the [x,y] coordinate values

of the pixel that is to be processed and the upper and lower

values of the image that is to be purified. ForMask() function

examines each element of the input matrix in accordance with

the constraint generated by the color codes. After the

completion of this process, the extracted object is all freed

from the colors that do not belong to it. Finally, the last step of

this purification process is to resave the detected object with a

pre-determined plain background color. Some example results

for different frames from our implementation are shown in Fig

8 and Fig 9.

In Fig.8 (a), some sample original images that are taken from

the input moving image to be processed are given for frames

31, 158 and 330. Fig.8 (b) shows the separate image files that

contain the detected handgun object by using the bounding box

values of the object for the same frames.

Finally, Fig.9 shows the resulting images in which the

detected handgun object is purified from its remains that are

overflow within the frame. As a result of this process, the

handgun object is all freed from its remains and also from its

background image to be obtained just itself.

IV. EXPERIMENTAL RESULTS

In this algorithm, the filtering and the segmentation

processes that are applied to the image in the preprocessing

phase, can be run on the ACE16k processor. For this

implementation, we write two different program codes that one

of them is just run on the DSP and the other one is run both on

the ACE16k and the DSP interactively. The results obtained

from the implementation are evaluated as run-time of the

purification algorithm and shown in Table II.

When we compare these results, one can easily notice that

processing the algorithm on both processors is 37122 µs faster

than processing it only on the DSP. Although, the ACE16k

processor is just used for the morphological operations of the

preprocessing phase, we obtained a significant improvement

for the total run time of the purification algorithm.

Experimental results also show that the performance of the

proposed algorithm is good because the total serial run-times

of the algorithm are in admissible ranges on both processors.

Process DSP DSP+ACE16k

Filtering and

Segmentation
65312 s 28190 s (ACE16k)

Feature Extraction 327703 s 327703 s (DSP)

Purification of object 42654 s 42654 s (DSP)

TOTAL 435669 s 398547 s

Table II. Serial Run-Time of the Purification Algorithm

V. CONCLUSION

In this paper, we have studied on the detection of certain

objects in moving images and the extraction of their features

by using the Bi-i Cellular Vision System. We have also

implemented an algorithm that purifies the remains of each

object that we have detected by using the extracted features.

The filtering and the segmentation processes of the algorithm

are implemented on the ACE16k processor. The other

processes like gray level transformation, feature extraction and

purification of objects are implemented on the Digital Signal

Processor (DSP). After the implementation of this algorithm,

each purified object that is detected in a moving image is

saved as a separate image file with a predetermined plain

background color.

The results given in Table II have shown that when the

algorithm is implemented both on the DSP and the ACE16k

processors, the run-time is faster than when it is just

implemented on the DSP processor.

This algorithm can also be applied to other various moving

images. For example, removal of objects that could constitute

advertising or that are thought to negatively affect children's

psychological development from visual broadcasts are very

common applications. In all these cases, the objects that are

wanted to be removed from the broadcasts can be determined

as the objects to be purified in our implementation.

 For a future work, the purification algorithm that we

proposed can be improved to develop applications that can

totally remove certain objects or replace objects with other

objects in a moving image.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 494

REFERENCES

[1] C. Gonzales and R.E. Woods, “Digital Image Processing”, Prentice Hall,

New Jersey, 2002

[2] T. Acharya and A.K. Ray, “Image Processing: Principles and

Applications”, Wiley and Sons, 2005

[3] Cs. Rekeczky, B. Roska, E. Nemeth, and F. Werblin, ”The Network

Behind Spatiotemporal Patterns: Building Low-complexity Retinal

Models in CNN Based on Morphology, Pharmacology and Physiology”,

International Journal of Circuit Theory and Applications, Vol. 29, pp.

197-239, March-April 2001.

[4] F. S. Werblin, T. Roska, and L. O. Chua, "The Analogic CNN Universal

Machine as a Bionic Eye", International Journal of Circuit Theory and

Applications, Vol. 23, pp. 541-569, 1995.

[5] ARENA, P., FORTUNA, L., FRASCA, M., PATANÈ, L. and

POLLINO, M., An autonomous mini- hexapod robot controlled through

a CNN-based CPG VLSI chip, Proc. of CNNA, 2006, Istanbul.

[6] WARCHOL, W. , WARCHOL, J. B., FILIPIAK, K., KARAS, Z. and

JAROSZYK, F. , 1996, “Analysis of spermatozoa movement using a

video imaging technique” , Histochemistry and Cell Biology, 106(5).

[7] STOFFELS, A., ROSKA, T. And CHUA, L. O., 1997, Object-oriented

image analysis for very-low-bitrate video-coding systems using the

CNN Universal Machine, Int. J. Circuit Theory Applic., 25, 235-258.

[8] D. Ginhac, J.Dubois, M. Paindavoine, and B. Heyrman, “An SIMD

Programmable Vision Chip with High-Speed Focal Plane Image

Processing”, Hindawi Publishing Corporation EURASIP Journal on

Embedded Systems, Vol. 2008, Article ID 961315, 13 pages, 2008

[9] N.LI, D. XU, B. LI “A Novel Background Updating Algorithm Based

On the Logical Relationship”, Proceedings of the 7th WSEAS

International Conference on Signal, Speech and Image Processing,

Beijing, China, September 15-17, 2007

[10] P. Kumsawat, K. Attakitmongcol, A. Srikaew, “An Optimal Robust

Digital Image Watermarking Based on Genetic Algorithms in

Multiwavelet Domain”, WSEAS Transactions on Signal Processing,

Issue 1, Volume 5, January 2009

[11] H. Furuya, S. Eda, T. Shimamura, “Image Restoration via Wiener

Filtering in the Frequency Domain”, WSEAS Transactions on Signal

Processing, Issue 2, Volume 5, February 2009

[12] A. V. Baterina, C. Oppus, “Image Edge Detection Using Ant Colony

Optimization”, ”, WSEAS Transactions on Signal Processing, Issue 2,

Volume 6, April 2010

[13] A. Morar, F.Moldoveanu, A.Moldoveanu, V.Asavei, A. Egner,

“Medical Image Processing in Hip Arthroplasty”, WSEAS Transactions

on Signal Processing, Issue 4, Volume 6, October 2010

[14] L. O. Chua and L. Yang, ” Cellular neural networks: Theory and

applications”, IEEE Trans. on CAS, vol. 35 no. 10, pp.1257–1290,

1988

[15] T. Roska and L. O. Chua, “The CNN universal machine: an analogic

array computer”, IEEE Trans. on CAS-I, vol.. 40 no.3, pp. 163–173,

1993

[16] T. Roska and A. Rodriguez-Vazquez, “Towards visual

microprocessors”, Proceedings of the IEEE, vol. 90 no.7, pp. 1244–

1257, 2002

[17] A. Zarandy and C. Rekeczky, “Bi-i: a standalone ultra high speed

cellular vision system.”, IEEE Circuit and Systems Magazine, vol. 5,

no.2, pp. 36–45, 2005

[18] L. O. Chua and T. Roska, “Cellular neural networks and visual

computing Foundation and applications”, Cambridge University Press,

2004

[19] AnaLogic Computers Ltd http://www.analogic-computers.com /Support

[20] Eutecus Inc: http://www.eutecus.com/, Berkeley 2005.

[21] A.R. Vazquez, G. L. Cembrano, L. Carranza, E.R.Moreno, R.C. Galan,

F.J. Garrido , R.D. Castro and S. E. Meana, “ACE16k: the third

generation of mixed-signal SIMDCNN ACE chips toward VSoCs”,

IEEE Trans. CAS-I, vol. 51,no.5, pp. 851– 863, 2004

[22] S. Espejo, R. Carmona, R. Domingúez-Castro, and A. Rodrigúez-

Vázquez, "CNN Universal Chip in CMOS Technology", International

Journal of Circuit Theory and Applications, Vol. 24, pp. 93-111, 1996.

[23] G. Liñán, R. Domínguez-Castro, S. Espejo, A. Rodríguez-Vázquez,

“ACE16k: A Programmable Focal Plane Vision Processor with 128 x

128 Resolution”, ECCTD ’01 - European Conference on Circuit Theory

and Design, pp. 345-348, August 28-31, Espoo, Finland, 2001.

[24] Cs. Rekeczky, T. Roska, and A. Ushida, "CNN-based Difference-

controlled Adaptive Nonlinear Image Filters", International Journal of

Circuit Theory and Applications, Vol. 26, pp. 375-423, July-August

1998.

Emel Arslan received the B.Sc. and M.Sc. degrees

from Trakya University, Edirne, Turkey, and Ph.D.

degree from Istanbul University, Istanbul, Turkey, in

2001, 2004 and 2011, respectively. She is currently

working as a Computer Engineer in the Research and

Application Center for Computer Sciences, Istanbul

University. Her research interests are artificial neural

networks, natural language processing, image

processing applications and intelligent systems.

Zeynep Orman received the B.Sc., M.Sc. and Ph.D.

degrees from Istanbul University, Istanbul, Turkey, in

2001, 2003 and 2007, respectively. She has studied as

a postdoctoral research fellow in the Department of

Information Systems and Computing, Brunel

University, London, UK in 2009. She is currently

working as an Assistant Professor in the Department

of Computer Engineering, Istanbul University. Her

research interests are artificial neural networks,

nonlinear systems, image processing applications and

intelligent systems.

Sabri Arik received the Dipl.Ing. degree from Istanbul

Technical University, Istanbul, Turkey, the Ph.D.

degree from the London South Bank University,

London, UK, and the Habilitation degree from

Istanbul University, Istanbul, Turkey. He is now with

the Department of Computer Engineering, Istanbul

University as a Professor. His major research interests

include cellular neural networks, nonlinear systems

and matrix theory. He has authored and coauthored

some 50 publications. Dr. Arik is a member of the

IEEE Circuits and Systems Society Technical Committee of Cellular Neural

Networks and Array Computing. He was the recipient of the Outstanding

Young Scientist Award in 2002 from the Turkish Academy of Sciences,

Junior Science Award in 2005 from the Scientific and Technological

Research Council of Turkey and the Frank May Prize (Best Paper Award) in

1996 from the London South Bank University.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 495

