

?
Abstract—Field Programmable Gate Array (FPGAs) are usually
programmed using languages and methods inherited from the domain
of VLSI (Very Large Scale Integration) synthesis. These methods,
however, have not always been adapted to the new possibilities
opened by FPGA, nor to the new constraints do they impose on a
design. For FPGA circuit we can use the VHDL language as
hardware description (acronym for Very High Speed Integrated
Circuits Hardware Description Language). The key of the art design
is focused around high level synthesis which is a top down design
methodology that transforms an abstract level using VHDL
description. the synthesis tools allow designers to realize the mainly
reasons: the need to get a correctly working systems at the first time,
technology independent design, design reusability, the ability to
experiment with several alternatives of the design, and economic
factors such as time to market. VHDL allows for the description of
hardware behavior from system to gate levels . To fit this level of
description, the language has to offer lager degrees of abstraction,
powerful algorithmic, wide capabilities for merging different
description levels, and an easiness expression of causality, and also
the possibility of introducing non determinism, which may be an
interesting feature. To date, this level of description has not been
synthesizable: no explicit architecture is described and no tool on the
market offers a real and an efficient architectural synthesis (except for
some specific target architecture. In this paper we present some
useful notes of VHDL: main hardware concept of VLSI.

Keywords— Field Programmable Devices (FPD), (FPGAs) Field
Programmable Gate Arrays, ASICs (Application Specific Integrated
Circuits), VLSI (Very Large Scale Integration), VHDL (acronym for
Very High Speed Integrated Circuits Hardware Description
Language).

I. INTRODUCTION

 ield Programmable Gate Array (FPGAs) are usually
programmed using languages and methods inherited from
the domain of VLSI (Very Large Scale Integration)

synthesis [7,8,9,10]. These methods, however, have not always
been adapted to the new possibilities opened by FPGA, nor to
the new constraints do they impose on a design. For FPGA
circuit we can use the VHDL language as hardware description
(acronym for Very High Speed Integrated Circuits Hardware
Description Language) [1, 2,3,4,5] .

The key of the art design is focused around high level
synthesis which is a top down design methodology that
transforms an abstract level using VHDL description. the

synthesis tools allow designers to realize the mainly reasons:
the need to get a correctly working systems at the first time,
technology independent design, design reusability, the ability
to experiment with several alternatives of the design, and
economic factors such as time to market.

VHDL allows for the description of hardware behavior from
system to gate levels. The system level focuses on the
description of the functionalities of the system (what is does)
and tries to avoid it implementation description (how it is
constituted).

The notion of time is essentially a notion of causality: one
action implies another. A constant is to forge useless details,
which would imply architectural choices too early in the
design methodology. Too detailed a system description is a
drawback for it restricts further architectural choices or implies
a given technology. Therefore, hiding the information structure
is desirable and the notion of concurrency may not be
necessary at this phase.

A VHDL description is never monolithic, modularity is
everywhere. The first structuring level is the design unit. When
compiling a VHDL source file, this file notion does not exit
after compilation: each contained design unit once successfully
analyzed is independently stored within a VHDL library.

The only structuration of the original file which exists after
compilation in the VHDL world is the notion of design unit. A
VHDL source file is seen a collection of design units. A design
unit link between design units written in the same source files,
and there is no implicit link between design units written in the
same source file.

The kinds of design unit can be roughly split into two parts:
those that describe the hardware hierarchy (i.e., the structure of
the model) and those that are more of software oriented. This
operation is very important. An orthogonal classification
shows that three deign unit are the external world. A secondary
unit is the implementation (internal view) of its primary. A
varying number of design unit, possible of different kinds,
constitute a library each design unit is self –compilable but
may use objects of other design unit, possibly stored in other
libraries. In this present work we present some useful notes of
VHDL concepts.

In this paper we present some useful notes of VHDL: main
hardware concept of VLSI. We present the main description
and the advantages of using this language. We discuss some

VHDL Circuits Hardware Description

Language: Notes

 Hachour Ouarda

F

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 537

examples of structure of the language and we clarify why the
importance of using this VLSI describe language.

II. VHDL CONCEPT

VHDL language as hardware description (acronym for Very
High Speed Integrated Circuits Hardware Description
Language). The key of the art design is focused around high
level synthesis which is a top down design methodology that
transforms an abstract level using VHDL description. the
synthesis tools allow designers to realize the mainly reasons:
the need to get a correctly working systems at the first time,
technology independent design, design reusability, the ability
to experiment with several alternatives of the design, and
economic factors such as time to market.

VHDL allows for the description of hardware behavior from
system to gate levels. The system level focuses on the
description of the functionalities of the system (what is does)
and tries to avoid it implementation description (how it is
constituted). The notion of time is essentially a notion of
causality: one action implies another. A constant is to forge
useless details, which would imply architectural choices too
early in the design methodology. Too detailed a system
description is a drawback for it restricts further architectural
choices or implies a given technology. Therefore, hiding the
information structure is desirable and the notion of
concurrency may not be necessary at this phase.

To fit this level of description, the language has to offer
lager degrees of abstraction, powerful algorithmic, wide
capabilities for merging different description levels, and an
easiness expression of causality, and also the possibility of
introducing non determinism, which may be an interesting
feature. To date, this level of description has not been
synthesizable: no explicit architecture is described and no tool
on the market offers a real and an efficient architectural
synthesis (except for some specific target architecture).

A VHDL design begins with an ENTITY block that
describes the interface for the design. The interface defines the
input and output 1ogic signals of the circuit being designed.
The ARCHITECTURE block describes the internal operation
of the design, see the figure 1. Within these blocks are
numerous other functional blocks used to build the design
elements of the logic circuit being created.

The IEEE STD_LOGIC_1164 standard includes additional
definitions for VHDL data types. For the bit type, the IEEE
type is STD_LOGIC and for a bit_vector it is
STD_LOGIC_VECTOR. The use of the IEEE standard types
assures that your VHDL code will be portable. That is it can
be used by any vendors implementation software. Bit and bit-
vector are types which are not universally accepted and may
not be recognized by some application programs.

After the design is created, it can be simulated and
synthesized to check its logical operation. SIMULATION is a
bare bones type of test to see if the basic logic works
according to design and concept. SYNTHESIS allows timing

factors and other influences of actual FPGA devices to effect
the simulation thereby doing a more thorough type of check
before the design is committed to the FPGA or similar device.

Many software packages used for VHDL design also
support schematic capture which takes a logic schematic or
state diagram and translates it into VHDL code. This, in turn,
makes the design process a lot easier. However, to fine tune
any design, it helps to be familiar with the actual VHDL code.
VHDL is a very strongly typed language. It does not allow a
lot of intermixing of data types. The idea here is that since we
are describing a piece of hardware, you need to keep things
like signals and numbers separate. We shall start by looking at
the different types of data that can be used with VHDL which
include bits, buses, Boolean, strings, real and integer number
types, physical, and user defined enumerated types.

A. Entity block

An entity block is the beginning building block of a VHDL
design. Each design has only one entity block which describes
the interface signals into and out of the design unit. An entity
is the external view of a model: ports (inputs/outputs) and
parameter (named generic), as well as static check on
parameter values (such a range or minimal value verification)
and dynamic check on port (such a set –up or hold time
verification) are described in this design unit

The syntax for an entity declaration is:

entity entity_name is

 port (signal_name, signal_name : mode type;

 signal_name,signa l_name : mode type);

 end entity_name;

 Port instruction

entity

architecture

input Output

Description of intern structure Generic instruction

parameters

Fig. 2 A VHDL language description

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 538

An entity block starts with the reserve word entity followed
by entity_name. Names and identifiers can contain letters,
numbers, and the underscore character, but must begin with an
alpha character. Next is the reserved word is and then the port
declarations. The indenting shown in the entity block syntax is
used for documentation purposes only and is not required
since VHDL is insensitive to white spaces.

A single PORT declaration is used to declare the interface
signals for the entity and to assign MODE and data TYPE to
them. If more than one signal of the same type is declared,
each identifier name is separated by a comma. Identifiers are
followed by a colon (:), mode and data type selections.

In VHDL, ALL STATEMENTS are terminated by a
semicolon. The entity declaration is completed by using an
end operator and the entity name. Optionally, you can also use
an end entity statement. In general, there are five types of
modes, but only three are frequently used. These three will be
addressed here, they are in, out, and inout setting the signal
flow direction for the ports as input, output, or bidirectional.
Signal declarations of different mode or type are listed
individually and separated by semicolons (;). The last signal
declaration in a port statement and the port statement itself are
terminated by a semicolon on the outside of the port's closing
parenthesis.

We can define a literal constant to be used within an entity
with the generic declaration, which is placed before the port
declaration within the entity block. Generic literals than can be
used in port and other declarations. This makes it easier to
modify or update designs. For instance, if we declare a number
of bit vector bus signals, each eight bits in length, and at some
future time you want to change them all to 16-bits, you would
have to change each of the bit vector range. However, by using
a generic to define the range value, all you have to do is
change the generic's value and the change will be reflected in
each of the bit vectors defined by that generic. The syntax to
define a generic is presented as follow:

generic (name : type := value);

The reserved word generic defines the declaration
statement. This is followed by an identifier name for the
generic and a colon. Next is the data type and a literal
assignment value for the identifier. : = is the assignment
operator that allows a literal value to be assigned to the generic
identifier name. This operator is used for other assignment
functions. For example, here is the code to define a bus width
size using a generic literal.

entity my processor is generic (bus Width: integer := 7);

B. Architecture block

The structure of a model, its behavior, or any mixture of
both structure and behavior are described within it
architecture. The syntax of such a design unit is

Architecture A of entity-b is
Architecture _Declarative_part
Begin

….
End

The architecture block defines how the entity operates.
This may be described in many ways, two of which are most
prevalent: STRUCTURE and DATA FLOW or BEHAVIOR
formats. The BEHAVIOR approach describes the actual logic
behavior of the circuit. This is generally in the form of a
Boolean expression or process. The STRUCTURE approach
defines how the entity is structured - what logic devices make
up the circuit or design. The general syntax for the architecture
block is:

III. LEVEL DESCRIPTIONS

The language must allow a description of the model at this
level with a sufficient level of abstraction toward the physical
level. Clock, sequentiality, dataflows, and combinational art
have to be easily expressed. A large degree of
parameterization is also required. The figure 2 shows the
different possible description levels presented as follow:

A. The system level

This system focuses on the description of the functionality
of the functionality of the system (what is does) and tries to
avoid its implementation description (how it is implies
another). The notion of time is essentially a notion of
causality: one action implies another.
A constant concern is to forget useless details, which would
imply architectural choices too early in the design
methodology.
Too detailed a system description is a drawback for it restricts
further architectural choices or implies a given technology.
Therefore, hiding the information structure is desirable and the
notion of concurrency may not be necessary at this phase.

B. The synthesizable level

This level is the potential input for synthesis tools. Here ,
some implementation choices have already been made

-an architecture, or at least an architecture family is targeted
and is implied by the code structure.
-the widths of data paths are known.
Time can be expressed in terms of clock or sequentiality is
executed after the previous one).

architecture arch_name of entity_name is

declarations;

begin

statements defining operation ;

end arch_name;

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 539

C. The netlist level

The netlist level is the potential output of synthesis output of
synthesis tool. It is structural view appearing as a collection of
model instantiation. This kind of description involves the
existence of model libraries.

IV. VHDL STRUCTURAL

A. Describing structural

A digital electronic system can be described as a module
with inputs and/ or outputs. The figure 5.7.a shows an
example of this view of a digital system. The module F has
two inputs a and b and an output Y using VHDL terminology.
We call the module F the design entity and the inputs and
outputs are called ports.

One way of describing the function of a module is to
describe how it is composed of sub-modules. Each of the sub-
modules is an instance of some entity, and the ports of
instances are connected using signals. Figure 3 shows how the
entity F might be composed of instances of entities G, H and I.
This kind of description called a structural description. Not
that the entities each G, H and I might also have a structural
description.

B. Description behavior

In many cases, it is not appropriate to describe a module
structurally. One such case is a module which is at the bottom
of the hierarchy of some other structural description.

For example if you have describing a system using IC
package bought from an IC shop we do not need to describe
the internal structure of IC. In such cases, a description of the
function performed by the module is required, without
reference to its actual internal structure. Such a description is
called a functional or behavioral description.

To illustrate this, supposed that the function of the entity in
Figure 3 is the exclusive or function. Then the a behavioral
description of F could be the Boolean function

More complex behaviors cannot be described purely as a

function of inputs. In such system with feedback, the outputs
are also a function of time. VHDL solves this problem by
allowing description of behavior in the form of an executable
program.

More than one architecture can be associated with a given
entity but only one is selected for each model instantiation at
simulation time. Allowing multiple architecture for the same
entity is of great interest.

For example, after synthesis, it is possible to compare the
two architectures (before and after synthesis) by instantiating
them (taking a copy of them) in two different instances.
Certain synthesis tools even propose different architectures as
output of the synthesis process. Each one is optimized for a

System level

Synthesizable level

Netlist level

Specification

Technology

Dependent

Library

Architectural

Fig. 2 Different level of Description

Fig. 3 Example of a structural description

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 540

given purpose: accurate simulation, quick simulation, or
hardware acceleration.

An architecture is implicitly dependent on its associated
entity: all objects defined in the entity are known within the
architecture. Therefore, as shown in figure 4 ports (here NQ
and Q) are seen as signals and can be assigned within the
architecture.

To fit this level of description, the language has to offer
lager degrees of abstraction, a powerful algorithmic, wide
capability for merging different description levels, an easy
expression of causality, and also the possibility of introducing
non determinism, which may be an interesting feature

 To date, this level of description has not been
synthesizable: no explicit architecture is described and no tool
on the market offer a real and efficient architectural synthesis

(except for some specific target architecture).

The synthesizable level is the potential input for synthesis
tools.

Architecture, or at least an architecture family is targeted
and is implied by the code structure.

The widths of datapath are known.
Time can be expressed in term of clock or sequentially (one

statement is executed after the previous one).

V. VHDL NOTES

We note that in the VHDL, the notion of time is often
present in the description of these models, from the notion of
propagation delay trough a gate to very sophisticate delays

(using slopes, temperature, etc.). These delays are either
provided by the library and are therefore only indicative, or are
relevant to a given technology and therefore more accurate.
They can even be deduced from the enlist using a back
notation mechanism probably outside the VHDL world). At
this step, the language has to offer an optimal flexibility in
terms of timing configuration or technology. These two aspects
are most often linked. The following sections describe more.

A. The notion of time
The notation of time, which is carefully described in the

LRM, is only related to simulation. This time is discrete: Only
event have a date. Indeed, the notion of time does not exist
between two of these date. The simulator is event driven: it kip
from one event to the following one without exploring what
happen in between.

No synthesis semantic is defined in the VHDL LRM.

Therefore, it is not possible to directly express implementation
timing constraints using the language. The only exiting notion
is the delay: “this output takes this value after this exact
delay”. Moreover, no MIN / MAX simulation mechanism is
deduced in the language.

B. Modularity

A VHDL description is never monolithic, modularity is
everywhere. The first structuring level is the design unit. When
compiling a VHDL source file, this file notion does not exit
after compilation: each contained design unit once successfully
analyzed is independently stored within a VHDL library [6,
11].

The only structuration of the original file which exists after
compilation in the VHDL world is the notion of design unit. A
VHDL source file is seen a collection of design units. A design
unit link between design units written in the same source files,
and there is no implicit link between design units written in the
same source file .The kinds of design unit can be roughly split
into two parts: those that describe the hardware hierarchy (i.e. ,
the structure of the model) and those that are more of software
oriented. This operation is very important.

An orthogonal classification shows that three deign unit are
the external world. A secondary unit is the implementation
(internal view) of its primary. A varying number of design
unit, possible of different kinds, constitute a library each
design unit is self –compilable but may use objects of other
design unit, possibly stored in other libraries.

C. Portability

Portability was one of the main guidelines during the VHDL
language design phase. The widespread uses of this language
is mainly due to the fact that it is a standard. A standard is the
only way for users to be free of the potential precariousness of
a proprietary language.

NAND

NAND

 LQ

LNQ

R

S NQ

Q

Architecture A1 of RS is
Signal LQ: BIT :=’1’;
Signal LNQ : BIT :=’0’;
Begin
LNQ<= S nand LQ;

Fig. 4 . An example of Structural architecture at Gate-level

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 541

New prospect in the next new years; new synthesis
techniques will have more and more impact on system design
methodology. The synthesis process by itself is not the source
of such a modification. Synthesis is only of the potential
targets of a hardware description.

Modeling (“modelware”, that is the act to describe the
behavior of a system as a whole) , is really be changing design
methods. The remarkable points is that a single language.
VHDL, is now able to cover the entire design cycle from
functional specification to low—level structural design

D. Notion of component

To be more general, VHDL offers a general and flexible
mechanism: the instantiation is applied to the idea we have of
a model in the case of direct instantiation to the model itself.

It is therefore possible, either to directly instantiated a pair
entity/ architecture or to initiate an intermediate object called
component. Indeed, this notion of component represents the
external view of a desired model. This desire may be quite
different from the actual external view of the model we will
finally use, and adaptation mechanisms are provided.

There is no behavior attached to the notion of component,
but it has on be great advantage: it allow compilation. So,
many static checks may be performed even if the entity/
architecture pair that will finally be used is not known (or does
not even exist yet).

This mechanism allows for a top-down methodology with
real decoupling between the component library (what is
desired) and the model library (what we have).

Using the notion of component implies three fundamental
operations: declaration, instantiation, and configuration of the
component. Fortunately, and especially in the logic synthesis
domain, any tool generate this source code automatically.

Nevertheless, considering the component declaration as a
simple redundancy of the entity declaration error. When using
already exiting libraries or design units written by somebody
else, the power of the component notion appears obvious
adaptation is possible.

Continuing our analogy, this operation can be seen a
plugging a circuit into a socket. Each socket corresponds to a
component instantiation. Adapting the socket to the circuit is
possible during this operation.

The flexibility provided by the notion of component is very
powerful. Selecting an entity / architecture pair is possible very
late in the design cycle (just before simulation or synthesis)
and switching from one library to another to change one model
into another is a straightforward operation.

E. Library

Libraries are a convenient way to store and retrieve designs,
functions, procedures, and other commonly used items. The
IEEE STD_LOGIC_1164 LIBRARY contains definitions for
many of the VHDL IEEE standard data types and logic
functions. However, the use this library to create a logic
design. VHDL has a built in library that is automatically
accessed without a library or use statement. This library is

specified by IEEE as VHDL 1076 and contains some of the
basic definitions of VHDL reserve words and operators.To
access an existing library, we must declare the location of the
library and which parts of it you want to use. The syntax for
access the entire contents of the IEEE.STD_LOGIC_1164 is:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

The library statement denotes the parent library of files
which contains defined functions, procedures, operators, and
processes.

This declaration must precede your design. The use
statement selects which groups of files from the parent library
you want to use in your design. Each entity in your design
must be preceded by the use clause if that section of the design
file is to use the contents of the 1164 library. When you
compile your design, the requested files from the library are
accessed and added to your design.

In turn, at the completion of the compile function, the
design is added to a working library, aptly referenced to by the
reserved word WORK. The contents of this library are
accessible by any design in the current open project as long as
you indicate it use with the statement:

use work.package_name.all

PACKAGES are units that are defined at the beginning of
the design to hold commonly used functions, procedures,
constants, etc. Additionally, designs in the current file can be
accessed from the library that the compile process stores
completed designs into when they are successfully compiled.

As briefly mentioned earlier, packages are a way of storing
commonly used items in a library file. If the package is to hold
basic items like constants and type declarations then it is only
required to define the package at the beginning of a design.

The package will be added to that design's library when it is
compiled. To create a library strictly for holding packages,
then do not include any designs (entity declarations). When it
is compiled, the defined packages will be saved in the created
library file. The syntax for a simple package declaration is:

package package_name is
package_contents;
end package_name

F. Consistency between simulation and synthesis

One of the main objectives of all methodology is to make

the transformation between two steps as safe as possible for
this. Synthesis consists of the transformation of an initial
description, as abstract as possible, into a structural description
using well identified hardware resources.

The power of description of VHDL is able, without any
constraints, to support the two levels of description.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 542

Indeed, there is no real problem at this stage, but much more
trouble is related to the transformation technology

G. Synthesis Design Cycle

The synthesis modeling style is mainly characterized by
reducing the VHDL possibilities to a subset in which:
-Delay expressions (after clauses, wait for statements) are
ignored
-Certain restrictions on the writing of process statement occur
-Only a few types are allowed
-Description is oriented towards synchronous styles by
explicating clocks.

Three phases may be distinguished in this design cycle:
modeling for synthesis, synthesis process, and final validation

When performed well, these steps lead to an efficient
design, they may be divided into design steps and validation
steps. Validation steps are essential to ensure that the inferred
hardware has the desirable properties whatever the quality of
the synthesis tools. Indeed, differences may appear between
the before-synthesis and after –synthesis tools. Indeed,
differences may appear between the before-synthesis and after-
synthesis behaviors.

The figure 5 illustrates the design cycle. Such a cycle may
be used for ASIC design as well as for programmable circuit
(FPGA, EPLD) design.

Three phases may be distinguished in this design: modeling
for synthesis, synthesis process, and final validation

H. Modeling for synthesis
Modeling fir synthesis is the first phase at this level, the

specifications have to be clear and are coded in VHDL. The
modeling style used is important, and this modeling task
consists mainly in finding a good tradeoff between the
abstraction level and the accuracy of the description.

The choice of data types (integers, enumerated types,
composite types, and so on) and the choice of VHDL
constructs (subprograms, loop statements, and so on) are
essential.

The most abstract is the description, and the easiest are its
validation, its main trainability, and its understanding by
somebody else. A more accurate description involves more
details. These details usually have a negative effect on the
reach ability and maintainability of the description but may
significantly increase the control of the inferred hardware.

I. Final validation
This validation takes place after the place - and- route

operation has been performed. Its goal is to check that the
original functionality has been respect ted and that the timing
characteristics of the generated hardware meet the timing
constraints. Two methods of achieving this goal are possible:

-Performing the simulation within the proprietary environment.
In this case, the simulator uses the values of the net loads
computed after the place - and- route operation.

-Back annotating the VHDL netlist resulting from the synthesis
process the characteristics deduced from the place - and- route
operation. The great advantage of this second method is to be
able to remain in the VHDL simulation framework.

It is interesting to note that information provided by place -
and- route tools may be useful for synthesis tools. For
example, more accurate information on the goal of a given port
may allow an extra optimization.

To avoid synthesis routing cycles, which may possibly not
coverage, a new approach is now proposed by the latest
synthesis tools.

Their strategy mainly consists in heavily coupling synthesis
and place - and- route tools. Place - and- route evaluations are
available throughout the synthesis process and are taken into
account during synthesis tool optimizations

The figure 5 illustrates the design cycle. Such a cycle may
be used for ASIC design as well as for programmable circuit
(FPGA, EPLD) design.

Three phases may be distinguished in this design: modeling
for synthesis, synthesis process, and final validation
VHDL allows for the description of hardware behavior from
system to gate levels. The system level focuses on the
description of the functionalities of the system (what is does)
and tries to avoid it implementation description (how it is
constituted).

The notion of time is essentially a notion of causality: one
action implies another. A constant is to forge useless details,
which would imply architectural choices too early in the
design methodology.

Too detailed a system description is a drawback for it
restricts further architectural choices or implies a given
technology. Therefore, hiding the information structure is
desirable and the notion of concurrency may not be necessary
at this phase.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 543

J. CONCLUSION
In this present work we have presented the main concept of

VHDL acronym for Very High Speed Integrated Circuits
Hardware Description Language. The key of the art design is

focused around high level synthesis which is a top down
design methodology that transforms an abstract level using
VHDL description. the synthesis tools allow designers to
realize the mainly reasons: the need to get a correctly working
systems at the first time, technology independent design,
design reusability, the ability to experiment with several
alternatives of the design, and economic factors such as time to
market.
VHDL allows for the description of hardware behavior from
system to gate levels. The system level focuses on the
description of the functionalities of the system (what is does)
and tries to avoid it implementation description (how it is
constituted). The notion of time is essentially a notion of
causality: one action implies another. A constant is to forge
useless details, which would imply architectural choices too
early in the design methodology.

One of the main objectives of all methodology is to make
the transformation between two steps as safe as possible for
this. Synthesis consists of the transformation of an initial
description, as abstract as possible, into a structural description
using well identified hardware resources. The power of
description of VHDL is able, without any constraints, to
support the two levels of description.

This mechanism allows for a top-down methodology with
real decoupling between the component library (what is
desired) and the model library (what we have).

REFERENCES

[1] O.Hachour, “The Proposed Genetic FPGA Implementation For Path
Planning of Autonomous Mobile Robot”, International Journal of
Circuits , Systems and Signal Processing, Issue 2, vol2 ,2008,pp151-
167.

[2] O. Hachour AND N. Mastorakis, Avoiding obstacles using FPGA –a
new solution and application ,5th WSEAS international conference on
automation & information (ICAI 2004) , WSEAS transaction on systems
, issue9 ,vol 3 , Venice , Italy , , ISSN 1109-2777, November 2004,
pp2827-2834

[3] G.R.Goslin, “using Xilinx field programmable Gate
Array’s (FPGA’s) for Application –Specific Digital Signal
Processing Performance”, Xilinx Coprporate Application
Group,pp150-153

[4] S.K.Knapp, INC & the ASM group, “using
Programmable Logic to accelerate DSP functions”
,Xilinx, 1995,pp1-8

[5] XAPP 057 july7, 1996(version1.0)
[6] R. Airiau, J.M Berger, V. Olive, Circuit synthesis with VHD , Kluwer

Academic Publishers, 1994.
[7] S.D.Brown, R.J., J.Francis Rose, and Z.G.Vranesic : Field-

Programmable Gate Array , Kluwer Academic Publishers , 1997.
[8] M.Cummings and S.Haruyama, FPGA in the soft radio, IEEE

Communication Magazine , 0163-1999, pp.108-112.
[9] GALILEO HDL Synthesis Manual, Exemplar Logic,1995.
[10] A.Gonzalez and R.Perez. : SLAVE : A genetic learning System Based

on an Iterative Approach, IEEE, Transaction on Fuzzy systems , Vol 7,
N.2, April 1999, pp.176-191.

[11] J.Legenhausen, R.Wade, C.Wilner, and B. Wilson,: VHDL for
programmable logic , Addison- Wesley, 1996

 VHDL Modeling

Validation using
simulation

Synthesis constraints

(speed,area,…)

Synthesis Process :

? Resource
allocation

VHDL

Validation using
simulation

EDIF Netlist or

Specific Format

Routing

Layout Format

Validation using simulation

Modeling

Synthesis

Synthesis

Final
Back annotation

Fig. 5 Design cycle flow chart

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 5, 2011 544

