
 

 

 

Abstract—Two algorithms are investigated for the Sampling -  

Reconstruction Procedures of non Gaussian processes. The optimal 

algorithm is analyzed on the basis of the conditional mean rule and 

cumulant functions. The non optimal algorithm is based on the 

covariance function of the output process. Using this algorithm we 

obtain the total approximate reconstruction error function. We 

investigate the Rayleigh processes and the non Gaussian processes on 

the output of exponential and polynomial converters driven by the 

Gaussian Markov process. Comparison of both algorithms is given. 

 

Keywords—Conditional mean rule, Non Gaussian process, Non 

linear converter, Sampling – Reconstruction Procedure. 

I. INTRODUCTION 

HE classical sampling theorem, usually associated with the 

names of Whittaker, Kotelnikov and Shannon, is valid for 

deterministic functions with a restricted amplitude and 

phase density spectrum. This theorem has been generalized by 

A. Balakrishnan for stationary random processes with a 

restricted power spectrum [1]. Balakrishnan’s theorem (BT) is 

characterized by some drawbacks: the probability density 

function (pdf) of a sampled process is not used; the model of the 

sampled process is no realizable; the number of samples is equal 

to infinity; the reconstruction procedure is linear and the same 

for all types of random processes; the reconstruction error is 

equal to zero for all types of processes.  

In order to overcome these drawbacks, we use the 

conditional mean rule (CMR) [2, 3]. This rule has been applied 

to the statistical description of the Sampling – Reconstruction 

Procedure (SRP) of various types of random processes [4-12]. 

On the basis of CMR one can analyze the SRP of random 

processes with different types of pdf, taking into account the 

following aspects: the process can be stationary or non 

stationary; the number of samples is arbitrary and limited; the 

intervals between neighbor samples can be arbitrary or 

periodical; etc. Generally, one can declare: any random process 

has its own optimal reconstruction algorithm and 

reconstruction error function. In the case of Gaussian 

processes the reconstruction function is a linear function of 

samples and the reconstruction error function does not depend 

on the samples. If the sampled process is non Gaussian then the 

reconstruction function is a non linear function of samples and 
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the reconstruction error function depends on the samples. 

The present paper is devoted to the statistical SRP 

description of non Gaussian stationary processes. First, we 

investigate the SRP of a Rayleigh process, and then we give 

the SRP analysis of some output processes of non linear 

converters, driven by the Gaussian Markov process. In this part 

we designate the output process  t  of a non linear converter 

driven by the given input process  t . The types of non 

linearity are exponential and polynomial.  

We analyze the SRP of non Gaussian processes by using two 

different reconstruction algorithms. The first algorithm is 

optimal. Using CMR, we obtain the reconstruction function 

and the reconstruction error function. The CMR estimation 

provides the minimum of the mean square error automatically. 

The second algorithm is non optimal, but is simple. The 

reconstruction function is formed by using the covariance 

function  K  and the mean  tm  of the output process. It 

means that we apply the reconstruction algorithm which is 

optimal for Gaussian processes. We compare both algorithms.  

II. THE OPTIMAL RECONSTRUCTION ALGORITHM  

A. Generals Remarks 

The methodology of this work is based on the conditional 

mean rule. The principal idea of the application of this 

algorithm for the SRP has been proposed in [4]. We consider a 

stochastic process  t  characterized by its multidimensional 

probability functions       mm tttw  ,...,, 21 . One realization 

of this process is discretized in time instants  NTTTT ,...,, 21 . 

Therefore, we form a set of samples 

     NTTTT  ,...,,, 21 , where the number of samples N  

and their times of occurrence T  are arbitrary. This means that 

the initial and central moment functions and their probability 

densities are modified. Now, they are conditional, and depend 

on the value of each sample      NTTT  ,...,, 21  [3]. In this 

way, the probability density function, the reconstruction 

function, and the reconstruction error function are: 

           NTTTtwTtw  ,...,,, 21 ,     (1) 
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It is evident that the SRP depends on the set of samples 

T,  and the pdf mw . One cannot know exactly the sampled 

realization, but it can get a statistical approach for each 

moment of time t . We use the conditional mean rule, because 

it provides the minimum estimation error for random variables 

with an arbitrary pdf.  

In order to obtain both principal SRP characteristics  tm~  

and  t2~ , it is necessary to know a multidimensional pdf. 

However it is impossible for the majority of non Gaussian 

processes. Below we investigate the SRP of the realizations of 

two types of non Gaussians processes. The first type is a non 

Gaussian Markov process. In this case, the interpolation SRP 

depends on two neighbor samples only. So, we need to express 

the required conditional pdf     21 ,, TTtw   by the given 

conditional pdf  jjii ttw ,,  . The second type of non 

Gaussian process is formed on the output of non linear 

converters driven by a Gaussian process. In this case, it is not 

necessary to know the multidimensional pdf of the output 

sampled process. There is a method for the recalculation of the 

output conditional characteristics by the conditional 

characteristics of the input process [4]. Let us consider the 

general expressions for both methods.  

B. The SRP of Non Gaussian Markov Process Realizations 

Taking into account the main property of the Markov 

processes, we have to use one  1T  or two    21 , TT   

samples only for shaping the optimal reconstruction function in 

the Markov case. It is possible to fully describe the conditional 

process between two given samples knowing the conditional 

pdf     21 ,, TTtw  . At this point highlights the fact that the 

process  t
~

 between two samples of a Markov process  t  

is non Markov, but it is correct to represent its conditional pdf 

on the basis of the transitional pdf  jjii ttw ,,   of the given 

Markov process. If there are three sections of the process  t  

at the times 21 ttt  , in the non Markov general case the 

three-dimensional pdf is presented by [6]: 
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In the last equation there are three different types of pdf. 

The most difficult to obtain is the third. In the Markov variant 

this three-dimensional pdf could be represented as a product of 

an one-dimensional pdf and a bi- transitional pdf: 
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Thus, the required conditional pdf can be expressed by the 

transitional pdf  jjii ttw ,,   of the given Markov process. 

Namely, one can see that: 
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With this expression, one can obtain the conditional 

moments of i-th order [3]: 

       21 ,~ TTttm j
i 

 .       (7) 

When 1i  we have the reconstruction function or 

conditional mathematical expectation  tm
1

~ , when 2i  the 

second moment function  tm
2

~ . Then using: 

      212
2 ~~~ tmtmt


  ,        (8) 

one can find the conditional variance or reconstruction error 

function  t2~
 .  

C. The SRP of Non Gaussian Markov Process Realizations 

on the Output of Non Linear Converters 

Let us consider a non linear non inertial converter with the 

direct function     tgt   . This function has its inverse 

function     tht   . There is a restriction: the inverse 

function must be simple. We form an arbitrary set of samples 

      NTTTT  ,...,,, 21 . Using the inverse function, we 

find the corresponding set of samples of the input process 

      NTTTT  ,...,,, 21 . Then one can express the 

conditional moment function    tmTtm ii
  ~,~   of the output 

process by the conditional moment functions of the input 

process    tmTtm ii
 ~,~   [4]: 

      Ttgtm i
i  ~ .        (9) 

Using (2) and (9) we apply the statistical conditional average 

operation to both parts of the non linear function for obtain the 

reconstruction function or the first conditional moment  tm
1

~ : 

      Ttgtm  
1

~ .       (10) 

Based on (9), we obtain the second conditional moment 

 tm
2

~ . Now, by (3) it is possible to find the conditional 

variance or the reconstruction error function  t2~
 : 

      212
2 ~~~ tmtmt


  .       (11) 

It is clear that the reconstruction function and the 

reconstruction error function depend on the samples.   

III. THE NON OPTIMAL RECONSTRUCTION ALGORITHM 

We describe a non optimal reconstruction algorithm by using 

a Gaussian approximation. It means that we determine the 

reconstruction function and the reconstruction error function 

on the basis of the mathematical expectation, the variance and 

the covariance function of the non Gaussian process. So, we 

form the reconstruction function  tm
1

ˆ  for the non Gaussian 
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process as a conditional mathematical expectation function of 

the Gaussian process [13]: 
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This choice generates a special deterministic part of the 

reconstruction error function: 

      211
2 ~ˆ tmtmtd

  .        (13) 

We call it as the first part of the reconstruction error. 

Besides this, there is the second part of the reconstruction 

error function. This is a random component of the 

reconstruction error. We describe this second part of error on 

the basis of the Gaussian approximation: 
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j
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Here  tm  is the mathematical expectation,  t2
  is the 

variance,  K  is the covariance function and, ija  is an 

element of the inverse covariance matrix  ji TTKA ,1   of 

the Gaussian process. Then, the total approximate 

reconstruction error function  tt
2  is determined by: 

     ttt dt
222 ˆ  .        (15) 

This error depends on the samples. It is important to 

mention that if we consider a non Gaussian process on the 

output of a non linear converter, we must change all these 

parameters according the output process  t . It means that 

now we have  tm
1

ˆ  as the reconstruction function. 

IV. SRP OF A RAYLEIGH PROCESS 

We start with a popular case of all non Gaussian processes, 

a Rayleigh process. The probability density function is: 
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where 12   is a parameter. Fig. 1 shows this pdf (16). SRP 

analysis of Rayleigh random processes is based on expressions 

of the transitional pdf. From (4) – (6) and considering a 

Rayleigh Markov process, the transitional pdf is [13]: 
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where 0I  is the modified Bessel function of zero order, and 

  expQ  is the auxiliary function used as covariance 

function. Having the transitional pdf, we can obtain the 

reconstruction function for the optimal algorithm  tm
1

~ : 

    




 
dTtwtm ,,~

1 .       (18) 

 With (7) we find the second conditional moment  tm

2

~ . The 

reconstruction error function  t2~
  is given in (8). 

 The covariance function  K  is [13]: 
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 The covariance function (19) is presented in Fig. 2. 

Substituting (19) in (12) and (14) we obtain the reconstruction 

function  tm
1

ˆ , and the second part of the reconstruction error 

 t2ˆ  for the non optimal algorithm respectively. 

1 2 3 4 5
0

0.2

0.4

0.6

0.8



w
(

)

 
Fig. 1 Pdf of the Rayleigh process 
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Fig. 2 Covariance function of the Rayleigh process 

As example we consider two samples with a separation of 

0.5 seconds. The reconstruction succeeds in the interpolation 

region. The values of the samples are presented in Table I. We 

show two cases (A and B) for both algorithms.  

TABLE I 

SAMPLES FOR THE RAYLEIGH PROCESS 

 ξ (T1) ξ (T2) 

A 0.5 1 

B 1 2 

The results of the reconstruction functions are presented in 

Fig. 3. It is clear that the curves in the optimal algorithm 
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(continuous lines) and the non optimal algorithm (dotted lines) 

are almost equals. The reason is that the Rayleigh conditional 

pdf is closely linked to the Gaussian conditional pdf.  

The difference is the reconstruction error function, which is 

illustrated in Fig 4. There is one error curve for each case or 

pair the samples in both algorithms. However, the total 

approximate reconstruction errors for A and B have the same 

behavior. That is because the difference between the 

reconstruction functions of both algorithms is minimal. Also, 

there is a set of samples in the optimal algorithm with a smaller 

error than the curves in the non optimal algorithm. It is 

necessary to emphasize that we use the same covariance 

function, the same values of samples, and the same sampled 

interval in both algorithms.  
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Fig. 3 Reconstruction functions for the Rayleigh process 
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Fig. 4 Reconstruction error functions for the Rayleigh process 

V. SRP ON THE OUTPUT OF AN EXPONENTIAL CONVERTER 

Now we can explain the non Gaussian processes which are 

formed by a non linear converter driven by a Markov Gaussian 

process. The exponential non linearity is: 

       tatgt  exp0 ,       (20) 

where 0a  y   are constants. Let us assume that the input 

process  t  is Gaussian Markov with characteristics 

  0t , 12   and      expK . Putting 1  one 

can find the expressions for the output process  t . 

The one dimensional pdf  w  is found in [10]: 
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According to “C”, we establish the expressions for the 

reconstruction function  tm
1

~  and the second conditional 

moment  tm
2

~  for the optimal algorithm [13]: 
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where  tm
1

~  is the conditional mathematic expectation and 

 t2~
  is the conditional variance: 
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The reconstruction error function  t2~
  is obtained 

substituting (22) and (23) in (11). 

Now we need to know the covariance function  K  [14]: 

       1expexp 222
0    RaK .     (26) 

Taking the non optimal algorithm, the reconstruction 

function  tm
1

ˆ  and the second part of the approximate 

reconstruction error function  t2ˆ  are obtained substituting 

(26) in (12) and (14). 

As example, we use the next type of exponential non linear 

function, where 10  a : 

    tt  exp .         (27) 

The non linearity, pdf and covariance function for (27) are 

presented in Fig. 5, Fig. 6, and Fig. 7 respectively.  
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Fig. 5 Non linearity for     tt  exp  
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Fig. 6 Pdf of the process on the output of the 

exponential converter     tt  exp  
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Fig. 7 Covariance function of the process on the output of the 

exponential converter     tt  exp  

We consider the case with two samples separated 0.1 

seconds. The values are given in Table II for A and B. 

TABLE II 

SAMPLES FOR THE EXPONENTIAL NON LINEARITY 

   ξ (T1)  ξ (T2)  η (T1)  η (T2) 

 A   1.5     0   4.4     1 

 B   0.5     1   1.6   2.7 

The calculation results of the reconstruction functions are 

illustrated in Fig. 8. It is clear that the curves of the optimal 

algorithm (continuous lines) are more precise in comparison 

with the curves of the non optimal algorithm (dotted lines). 

The difference is more evident by increasing the value of 

samples or the sampling interval. 

In Fig. 9 we can see the calculation results of the 

reconstruction error functions. There are various types of 

curves. As in the Rayleigh examples, the error reconstruction 

function of both algorithms depends on the samples values. In 

other words, any couple of samples has its own error function. 

This effect occurred owing to the non Gaussian character of 

the sampled process  t . In the non optimal algorithm the 

total error curves reflect the approximated error. These curves 

are bigger than the error curves in the optimal algorithm 

because there is a considerable difference in the reconstruction 

function. Equally, some set of samples in the optimal algorithm 

have a lower error than the non optimal algorithm. 
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Fig. 8 Reconstruction functions for     tt  exp  
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Fig. 9 Reconstruction error functions for     tt  exp  

VI. SRP ON THE OUTPUT OF A POLYNOMIAL CONVERTER 

Finally we describe the SRP of the process on the output of 

a polynomial converter. The non linearity is: 

          tatataatgt n
n  ...2

210 ,  (28) 

where  niai ,...,2,1,0  are constant. In the same form that in 

the exponential converter, the input process  t  is Gaussian 

Markov with   0t , 12   and      expK . 

The expression for the one dimensional pdf  w  can be 

determined by: 
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Following “C” we obtain the reconstruction function  tm
1

~  
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and the second conditional moment  tm
2

~  for the optimal 

algorithm [4]: 
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These equations show that the conditional output moments 

require the knowledge of the input conditional moments of 

high orders. The Gaussian input process  t  is only 

characterized by the cumulant functions of the first and second 

orders:  tk


1

~
,  tk 

2

~
 and its covariance function. The 

cumulants of higher order are equal to zero. Following [10] we 

write the relations between conditional moment functions 

   Nitmi ,...,2,1~   and conditional cumulant functions 

   2,1
~

itki
  [13]: 
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As the input process  t  is stationary, both input 

conditional cumulant functions are [9]:    tmtk 
11

~~
  

expressed by (24) and    ttk 2
2

~~


   by (25). The 

reconstruction error function  t2~
  is obtained substituting 

(30) and (31) in (11) 

The covariance function  K  is expressed by [14]: 
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where n  is determined by   nn anm !, 2   . The 

reconstruction function  tm
1

ˆ  and the second part of the 

approximate reconstruction error function  t2ˆ  for the non 

optimal algorithm are obtained substituting (33) in (12) and 

(14) respectively. 

As one example, we consider a polynomial transfer function 

of third order: 

   tt 3  .         (34) 

The non linearity, pdf and covariance function for (34) are 

represented in Fig. 10, Fig. 11, and Fig 12 respectively. 

We use two samples in the output realization. The values are 

in Table III for A and B. They are separated 0.1 seconds.  

TABLE III 

SAMPLES FOR THE POLYNOMIAL NONLINEARITY 

   ξ (T1)  ξ (T2)  η (T1)  η (T2) 

 A   1.6     0  -4.1     0 

 B   1.9     0  -6.8     0 
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Fig. 10 Non linearity for    tt 3   
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Fig. 11 Pdf of the process on the output of the 

polynomial converter    tt 3   
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Fig. 12 Covariance function of the process on the 

output of the polynomial converter    tt 3   

Fig. 13 shows the reconstruction functions for both 

algorithms. In this graph is more noticeable the difference 

between the optimal algorithm (continuous lines) and the non 

optimal algorithm (dotted lines). The curves in the optimal 
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algorithm have a non linear behavior according to their transfer 

function.  

The curves forms of the reconstruction error functions are 

illustrated in Fig. 14. There is one curve for each pair of 

samples in both algorithms. The curves have an inclination 

toward the side where the sample is higher. The inclination 

grows if the sample is bigger. This effect is more appreciable in 

the optimal curves. It is possible that some curves in the 

optimal methodology have a lower error than the curves in the 

non optimal calculation in some parts of time. It depends on 

the value of the samples and their separation.  

It is important to mention that in the non optimal algorithm 

we can obtain two error curves. The first curve is the first part 

of the reconstruction error  td
2 . This curve is symmetrical 

like in Gaussian case, and it does not depend on the samples. 

For that reason there is one curve in each process only. The 

form of this curve is strange, taking into account that we are 

reconstructing non Gaussian processes. The second curve 

represents the total approximate reconstruction error function 

 tt
2 . One can see that the total error for all examples is 

bigger. This is a natural effect.  
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Fig. 13 Reconstruction functions for    tt 3   
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Fig. 14 Reconstruction error functions for    tt 3    

In order to have an unique total approximate reconstruction 

error function curve, it is necessary to use the statistical 

operation with respect of two dimensional pdf of both samples 

    21 , TTw  . It means that we have to find the average of 

the conditional variance on the output  tt
2 . 

Analysis of curves in Fig. 14 shows the great difference 

between two algorithms under consideration. The precise 

calculations of the reconstruction error functions of the optimal 

algorithm give the family of various dependences. We need to 

take into account that there is a big difference in the physical 

interpretation of both curves: one curve describes the 

approximate error of the non optimal algorithm, and the 

second curve illustrates the result of the statistical description 

of the optimal algorithm. 

The real situation is: the optimal reconstruction functions of 

non Gaussian processes are generally non linear function of 

samples. 

VII. CONCLUSION 

Two different reconstruction algorithms for some non 

Gaussian processes are analyzed. They describe the SRP for 

Rayleigh process realizations and for realizations of processes 

on the output of two non linear converters (exponential and 

polynomial) driven by a Gaussian Markov process. The 

principal characteristics, reconstruction function and 

reconstruction error function are obtained. The results of the 

investigation demonstrate that the reconstruction error function 

of non Gaussian processes depends on the samples and must be 

calculated by the average operation. Also we obtain the total 

approximate reconstruction error function. This curve has a 

highest error. So, the optimal algorithm throws the lowest 

error for a correct reconstruction. Comparison of these 

algorithms shows that it is necessary to take into account the 

pdf of the sampled process and more statistical characteristics 

of the process for an optimal reconstruction. 
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