
 

 

  
Abstract—This paper deals with an approach to control of single-

input single-output first-order time-delay systems with parametric 
uncertainty. The presented method consists of an algebraic synthesis 
of control systems in the ring of proper and stable rational functions 
and subsequent graphical robust stability analysis. The applied robust 
stability tests are based on combination of plotting the value sets of a 
family of closed-loop characteristic quasi-polynomials with the zero 
exclusion principle. Three successive cases of controlled plants with 
uncertain gain, uncertain time constant and uncertain time-delay term 
are analyzed in the illustrative example. All of these systems are 
controlled using two differently tuned realistic PID controllers. 
Obtained results are visualized and discussed. 
 

Keywords—Robust stabilization, time-delay systems, parametric 
uncertainty, value set concept, zero exclusion condition.  

I. INTRODUCTION 
 time delay represents very frequent and significant 
phenomenon which affects many areas of control 

engineering [1] – [9]. Typically it causes serious 
complications during the synthesis process. Although it has 
been deeply studied during many decades, there are still 
number of attractive topics for future research [10]. 

The principal requirement for control loops is their stability. 
Provided there is an uncertainty in description of (typically) 
controlled plants, the robust stability should be investigated. 
An array of methods and tools for analysis of robust stability 
of systems with parametric uncertainty can be found e.g. in 
[11] or subsequently in [12], [13]. For the purpose of this 
contribution, the combination of very universal tools known 
as the value set concept and the zero exclusion condition [11] 
has been employed. Besides, the synthesis method, which is 
applied within this paper for controller design, is based on an 
algebraic approach adopted from [14], [15] and elaborated e.g. 
in [16] – [18]. 

The main aim of the contribution is to present a technique 
for robust stabilization of first-order time-delay systems with 
parametric uncertainty by means of an algebraic approach to 
control design, plotting the value sets for a family of closed-
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loop quasi-polynomials and applying the zero exclusion 
condition. A comparison of parametric and unstructured 
approach to uncertainty modelling and robust stability analysis 
for time-delay systems has been shown in [19], [20]. This 
paper deals only with parametric uncertainty case, but 
elaborates the problem in more detail. Actually, the 
contribution extends the previous works [21], [22] where the 
partial issues have been tentatively solved. 

The paper is the improved version of the conference 
contribution [23]. 

The work is organized as follows. In section II, the essence 
of the problem is adumbrated. The section III then outlines the 
applied control synthesis method. The following section IV 
briefly presents the issue of robust stability. Further, the 
illustrative example with analyses of robust stability and 
control simulations can be found in the extensive section V, 
which consists of 3 partial subsections. Finally, section VI 
offers some conclusion remarks. 

II. PROBLEM FORMULATION 
As it has been already indicated, the principal problem 

discussed in the contribution is to analyze robust stability of 
the closed control loop with a fixed controller and a first-order 
time-delay plant with parametric uncertainty. Thus, the 
controlled system is supposed to be described by the transfer 
function: 

 

( , , , )
1

sKG s K T e
Ts

− ΘΘ =
+

 (1) 

 
where one of the parameters K (gain), T (time constant) or Θ 
(time-delay term) can vary within a given interval while the 
other two remain fixed. Three various combinations have been 
considered in the analyses within the future section V, i.e. 

 
1; 3 ; 3; 5K T∈ = Θ =  (2) 

 
2; 1; 5 ; 5K T= ∈ Θ =  (3) 

 
2; 3; 1; 9K T= = Θ ∈  (4) 

 
The nominal system (used for the controller design) is 

assumed as: 
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More precisely, an approximation of this nominal system has 
been utilized in the controller design itself as will be shown 
later. 

III. OUTLINE OF THE CONTROLLER DESIGN METHOD 
The controllers utilized for the robust stability tests and 

control simulations in the section 5 are designed by means of 
an algebraic approach under assumption of the classical 
feedback control loop. 

The technique is based on algebraic approach developed in 
[14], [15]. It applies general solutions of Diophantine 
equations in the ring of proper and (Hurwitz-)stable rational 
functions (RPS), Youla-Kučera parameterization and 
conditions of divisibility. One of the main advantage consists 
in possibility to tune the final controllers though a single 
scalar parameter 0m > . The details of the methodology, 
specific equations for calculation of controller parameters and 
tuning recommendations can be found in [16] – [18], [22], 
[24], etc. 

In the paper, the nominal plant is given by (5) which is not 
suitable form for the controller design because the synthesis 
works with rational functions only. For that reason the time-
delay term in (5) has been approximated by using the popular 
first order Padé approximation: 
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Assumption of the traditional feedback control loop with a 

step-wise reference signal and application of the method (see 
e.g. [16] – [18], [22], [24]) leads to the realistic PID controller 
with general structure: 
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where the parameters can be calculated by using rules: 
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and: 
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The parameters of the controlled system are taken from (3). 
Usage of two choices for parameter 0m >  results in specific 
controller parameters: 

 
2 1

0 1

0.12 0.24736; 0.072077;
0.0007776; 0.088425

m q q
q p

= ⇒ = =
= = −

 (10) 

 
2 1

0 1

0.18 0.14336; 0.056203;
0.0039366; 0.082237

m q q
q p

= ⇒ = =
= =

 (11) 

 
Notice that the first controller (10) is unstable and thus not 

appropriate for practical application. However, it comes in 
useful for the purpose of the simulation examples in the 
section V (and especially subsection V-B). 

IV. ROBUST STABILITY 
The principal question is if the controller (10) or (11) 

robustly stabilizes the whole family of controlled plants (1) 
for the cases (2), (3) and (4), respectively. In other words, the 
main goal is to investigate robust stability of the family of 
closed-loop characteristic quasi-polynomials with the 
structure: 

 
( )( )

( )
2
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where two plant parameters are fixed while the third one is 
uncertain according to one of the scenario (2), (3) or (4), and 
where the controller parameters are given by either (10) or 
(11). 

The answer can be found with the assistance of the 
universal graphical approach which combines the value set 
concept and the zero exclusion condition [11]. Very briefly 
speaking, the value set at one frequency ω  can be obtained by 
substitution of s for jω  in the family (12), fixing ω  and 
letting the relevant uncertain parameter (K, T or Θ) range over 
the prescribed interval. Then, the family (12) is robustly stable 
if and only if it contains at least one stable member and the 
zero point (the origin of the complex plane) is excluded from 
the value sets at all non-negative frequencies. Further 
information on the value set concept and the zero exclusion 
condition as well as more general issues of robustness for 
systems with parametric uncertainty can be found e.g. in [11] 
or also in [12], [13]. 
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V. ANALYSES OF ROBUST STABILITY AND CONTROL 
SIMULATIONS 

This section is intended to provide tests of robust stability 
together with simulations of control outputs under assumption 
of the closed control loop with the plant family (1) and 
controller (10) or (11). Both controllers are applied to all three 
possible combinations of plant parameters (2), (3) or (4). 

All the figures within this section were plotted in Matlab 
environment. More specifically, they were achieved under 
conditions as follows: The value sets of the quasi-polynomial 
families were plotted (according to description in the previous 
section) for the range of frequencies from 0 to 5 with step 0.1. 
From the control simulations point of view, some 
“representative” set of systems was selected by sampling the 
respective uncertain parameter ( 1: 0.02 : 3K = , 1: 0.05 : 5T =  
or 1: 0.1: 9Θ = ) and subsequently it was used for the 
simulation. Thus, there were e.g. 101 “representative” systems 
for the case of the uncertain gain. Moreover, the control 
response of the nominal system (5) is also included in the 
figures (red curve). Besides, the step load disturbance of the 
size –0.2 was injected into the input of the controlled plant 
during the last third of simulation time. 

A. Uncertain Gain 
In the first part, the uncertain gain, that means plant 

parameters according to (2), has been assumed. The tuning 
parameter 0.12m =  leads to the PID controller parameters (10). 
Putting all these numbers into the closed-loop characteristic 
quasi-polynomial structure (12) brings the main object of 
interest from the robust stability viewpoint. The value sets of the 
family of quasi-polynomials are plotted in fig. 1 and the closer 
view to the neighbourhood of the complex plane origin is 
zoomed in fig. 2. As can be seen the zero point is included in the 
value sets and thus the family is not robustly stable for this case. 
It is confirmed also by fig. 3 which shows the simulated control 
outputs. The nominal system (5) is stabilized but the some 
systems from the assumed family (2) are not. Besides, the set of 
corresponding manipulated variables (controller outputs) is 
depicted in fig. 4. 
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Fig. 1 value sets – plant (2), controller (10) 
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Fig. 2 zoomed value sets – plant (2), controller (10) 
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Fig. 3 control outputs – plant (2), controller (10) 
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Fig. 4 manipulated variables – plant (2), controller (10) 

 
Now, the same simulations are repeated but for the 

controller tuned by 0.18m =  with parameters (11). The value 
sets are depicted in fig. 5 and its zoomed version in fig. 6. 
Obviously, the family contains at least one stable member and 
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the point zero in excluded from the value sets so the family 
must be robustly stable. Consequently, this fact can be seen 
also from control outputs given in fig. 7. The fig. 8 then shows 
the manipulated variables. 
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Fig. 5 value sets – plant (2), controller (11) 
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Fig. 6 zoomed value sets – plant (2), controller (11) 
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Fig. 7 control outputs – plant (2), controller (11) 
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Fig. 8 manipulated variables – plant (2), controller (11) 

 

B. Uncertain Time Constant 
The second part focuses on the case of uncertain time 

constant, i.e. (3). 
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Fig. 9 value sets – plant (3), controller (10) 
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Fig. 10 zoomed value sets – plant (3), controller (10) 
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The analysis for the controlled plant with parameters (3) 
and the first controller (10) is analogical to the one described 
in the subsection 5-A. The value sets are shown in fig. 9, 
zoomed value sets for better perspective of the situation near 
the zero point in fig. 10, the set of simulated control outputs in 
fig. 11, and corresponding set of manipulated variables in fig. 
12. 

Notice that even the unstable controller (10) is able not only 
to stabilize the nominal system, but also to robustly stabilize 
the control loop with all possible values of controlled plant 
time constant. 
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Fig. 11 control outputs – plant (3), controller (10) 
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Fig. 12 manipulated variables – plant (3), controller (10) 

 
The results for the case of controller (11) provided again by 

means of value sets, their zoomed version, control responses, 
and manipulated variables can be found in figs. 13 – 16. The 
control loop is robustly stable again, but the performance was 
improved. 
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Fig. 13 value sets – plant (3), controller (11) 
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Fig. 14 zoomed value sets – plant (3), controller (11) 
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Fig. 15 control outputs – plant (3), controller (11) 
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Fig. 16 manipulated variables – plant (3), controller (11) 

 

C. Uncertain Time-Delay Term 
The final part deals with the case of uncertain time-delay 

term regarding to (4). 
 

-35 -30 -25 -20 -15 -10 -5 0 5
-400

-350

-300

-250

-200

-150

-100

-50

0

50

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Fig. 17 value sets – plant (4), controller (10) 
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Fig. 18 zoomed value sets – plant (4), controller (10) 

For the controller (10), the value sets, zoomed version of 
the value sets, output signals, and manipulated variables are 
visualized in figs. 17-20, respectively. The control circuit is 
robustly unstable. 
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Fig. 19 control outputs – plant (4), controller (10) 
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Fig. 20 manipulated variables – plant (4), controller (10) 
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Fig. 21 value sets – plant (4), controller (11) 
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Analogically, the results for robustly stable scenario (both 
full view and zoomed versions of the value sets as well as 
“representative” control responses and manipulated variables), 
obtained by using the controller (9), are presented in figs. 21-24. 

 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Fig. 22 zoomed value sets – plant (4), controller (11) 
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Fig. 23 control outputs – plant (4), controller (11) 
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Fig. 24 manipulated variables – plant (4), controller (11) 

VI. CONCLUSION 
The contribution has dealt with possible method for robust 

stabilization of single-input single-output first-order time-
delay plants affected by parametric uncertainty. The emphasis 
was laid especially on the robust stability analysis which was 
performed by means of plotting the value sets of a family of 
closed-loop characteristic quasi-polynomials and subsequent 
application of the zero exclusion condition. The continuous-
time controllers utilized in the paper were designed via the 
general solutions of Diophantine equations in the RPS and then 
tuned by the single parameter. The set of illustrative examples 
has been focused on three successive cases of controlled 
systems with uncertain gain, uncertain time constant and 
uncertain time-delay term. Robust stability/instability of 
closed loops containing these plants and two differently tuned 
PID controllers was investigated and then demonstrated also 
through the control simulations. 
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