
 

 

  
Abstract—This paper is focused mainly on demonstration of 

simple Matlab programs suitable for plotting the value sets of 
systems with real parametric uncertainty represented by families of 
polynomials. The behaviour of obtained value sets and especially 
their position in relation to the origin of the complex plane is 
convenient criterion of robust stability/instability. The paper presents 
number of illustrative examples for various simple as well as 
complicated structures of uncertainty mainly for continuous-time 
families including the Matlab codes and robust stability analyses. On 
top of that, the work covers also cases of a quasi-polynomial or 
discrete-time interval polynomial. 
 

Keywords—Real parametric uncertainty, value set concept, zero 
exclusion condition, Matlab.  

I. INTRODUCTION 
NCERTAIN systems and robustness issues have 
represented attractive research topics with high 

application potential in control for the last decades. 
Unsurprisingly, a number of related publications have 
appeared, e.g.  [1] – [6]. Among others, description of systems 
by means of real parametric uncertainty is very popular and 
effective approach to uncertainty modelling [7] – [9]. 

Definitely, the most critical feature of all control 
applications is the stability. Then, under conditions of 
uncertainty one speaks about robust stability. A universal 
graphical approach to robust stability analysis of systems with 
parametric uncertainty uses combination of the value set 
concept and the zero exclusion condition [7]. It is generally 
applicable and relatively easy to use method which is 
especially advantageous for systems with complicated 
uncertainty structures, because there is a lack of analytical 
tools for testing the robust stability of such kind of uncertain 
systems. From the practical viewpoint, analysis of robust 
stability for systems with real parametric uncertainty can be 
very comfortably performed with the assistance of the 
Polynomial Toolbox for Matlab [10]. However, the 
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capabilities of the toolbox are much more extensive, not 
restricted only to this problem. 

This work is a follow-up to the overview paper [11], where 
the robust stability tests were done with the help of the 
Polynomial Toolbox using commands khplot, vsetplot, 
ptopplot, etc. Nevertheless, this work provides the simple 
program codes for plotting the value sets of systems with 
parametric uncertainty which are applicable in Matlab itself. 
The “mini-programs”, covering basic structures of 
uncertainty, are always specific with respect to the example 
and plotted figure. The paper is the extended version of the 
conference contribution [12]. 

The work is organized as follows. In section II, the 
fundamentals of parametric uncertainty modelling and robust 
stability analysis are introduced. The section III then briefly 
describes the value set concept and the zero exclusion 
condition. Next, the illustrative examples of Matlab programs 
and their results can be found in the extensive section IV, 
which consists of eight subsections. Finally, section V offers 
some conclusion remarks. 

II. UNCERTAINTY MODELLING AND ROBUST STABILITY 
ANALYSIS 

The uncertainty can be taken into consideration in the 
mathematical models in two basic ways – as unstructured or 
parametric uncertainty [11] – [16]. The unstructured 
description of uncertainty is given by restriction of the area of 
possible appearance of frequency characteristics and it is 
useful e.g. in the case of unmodelled dynamics. On the other 
hand, parametric approach represents known structure but 
imprecise knowledge of real physical parameters of the 
system. Their possible values are usually bounded by 
intervals. 

In the next considerations, the problem of stability of a 
system is going to be assumed as the problem of stability of its 
characteristic polynomial. Thus, suppose the (continuous-
time) uncertain polynomial: 
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where q is the vector of uncertainty and iρ  are coefficient 
functions. 
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The family of polynomials is then [7]: 
 

{ }( , ) :P p q q Q= ⋅ ∈  (2) 
 

where Q is the uncertainty bounding set (a multidimensional 
box in this paper). 

The family of polynomials (2) is robustly stable if and only 
if ( , )p s q  is stable for all q Q∈ . Since the direct calculation 
of roots can be impractical due to potentially enormously long 
computation times, the more efficient techniques had to be 
studied [17]. The selection of method for robust stability 
analysis depends mainly on the structure of the uncertainty, 
i.e. on the way how the uncertain parameters enter into the 
coefficients of the polynomial (1). According to this, basic 
structures of uncertainty with increasing generality are 
distinguished as follows: independent (interval) uncertainty 
structure, affine linear uncertainty structure, multilinear 
uncertainty structure, nonlinear uncertainty structure 
(polynomial, general). On top of that, the single parameter 
uncertainty can be considered as a special case. Generally, the 
higher level of relation among coefficients means the more 
complicated robust stability analysis. An interested reader can 
find further information e.g. in [7] – [9], [11], [14]. 

III. VALUE SET CONCEPT AND ZERO EXCLUSION CONDITION 
Among robust stability analysis tools, one seems to be very 

unique from the viewpoint of its universality and applicability 
even for the very complex uncertainty structures. The method 
combines the value set concept and the zero exclusion 
condition [7]. 

Assume a family of polynomials (2). The value set at 
frequency ω ∈ R  is given by [7]: 

 
{ }( , ) ( , ) :p j Q p j q q Qω ω= ∈  (3) 

 
In other words, ( , )p j Qω  is the image of Q under ( , )p jω ⋅ . 
Practical construction of the value sets then means to 
substitute s for jω , fix ω  and let the vector of uncertain 
parameters q range over the set Q.  

The zero exclusion condition for Hurwitz stability of family 
of continuous-time polynomials (2) says [7]: Suppose 
invariant degree of polynomials in the family, pathwise 
connected uncertainty bounding set Q, continuous coefficient 
functions ( )i qρ  for 0,1, 2, ,i n= …  and at least one stable 

member 0( , )p s q . Then the family P is robustly stable if and 
only if the complex plane origin is excluded from the value set 

( , )p j Qω  at all frequencies 0ω ≥ , that is P is robustly stable 
if and only if: 

 
0 ( , ) 0p j Qω ω∉ ∀ ≥  (4) 

 
More details can be found especially in [7] or eventually in 
[11]. 

IV. PLOTTING THE VALUE SETS IN MATLAB – ILLUSTRATIVE 
EXAMPLES 

The examples within this section are intended to 
demonstrate possible ways of simple plotting the value sets for 
several uncertainty structures in Matlab. The provided codes 
are not in the form of general functions, but they are always 
specific with respect to the plotted figure. Moreover, 
commands for axes labels and auxiliary axes are omitted. 

A. Single Parameter Uncertainty 
The first example is focused on single parameter 

uncertainty. Quite naturally, object with such kind of 
uncertainty can contain just one uncertain parameter. The 
specific family of polynomials is considered as: 

 
( ) ( )3 2( , ) 5 2 2 3 1.5 ;

0; 1

p s q s q s q s q

q

= + + + + + +

∈
 (5) 

 
The fig. 1, where the (straight line) value sets of this family 
for frequencies from 0 to 1.2 with step 0.02 are plotted, can be 
obtained e.g. by using the following code: 
 
%single parameter uncertainty 
clear all 
hold on 
for w=0:0.02:1.2 %frequency range 
  count=1; %auxiliary counter 
  for q=0:0.1:1 %uncertain parameter 
    p(count)=5*(j*w)^3+(2+2*q)*(j*w)^2+(3+q)*(j*w)+… 
    1.5+q; %the polynomial 
    count=count+1; %counter increment 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y) 
end 
hold off 

 

 
Fig. 1 straight line value sets for the family (5) 
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However, the presented procedure does not represent the 
only way of obtaining the value sets from the programmer 
viewpoint. An example of another approach can be seen here: 

 
%single parameter uncertainty - alternative 
clear all 
q=(0:0.1:1)'; %uncertain parameter 
count=1; %auxiliary counter 
for w=0:0.02:1.2 %frequency range 
  p(:,count)=5*(j*w)^3+(2+2*q)*(j*w)^2+(3+q)*(j*w)+… 
  1.5+q; %the polynomial 
  count=count+1; %counter increment 
end 
plot(p) 

 
Obviously, the resulting plot of value sets would be the 

same as in fig. 1, but, among others, this second version 
would automatically change colors of the individual lines. 
Incidentally, the same color changing effect for all figures in 
the paper would have just using command “hold all” instead 
of “hold on” in the presented codes. 

One way or another, it can be seen that the complex plane 
origin in fig. 1 is included in the value sets and thus the family 
of polynomials (5) is not robustly stable. 

Now, assume a family of polynomials with slightly changed 
last coefficient: 

 
( ) ( )3 2( , ) 5 2 2 3 0.5 ;

0; 1

p s q s q s q s q

q

= + + + + + +

∈
 (6) 

 
This time, the zero point is excluded from the 

corresponding value sets plotted in fig. 2 and the family (6) 
contains a stable member (the value sets round the origin 
counter-clockwise). It means that the family of polynomials 
(6) is robustly stable. 

 

 
Fig. 2 straight line value sets for the family (6) 

 
However, consider another modification of the polynomial 

family: 

( ) ( )3 2( , ) 5 2 2 3 2.5 ;

0; 1

p s q s q s q s q

q

= + + + + + +

∈
 (7) 

 
The value sets for this case (7) are visualized in fig. 3. As 

can be seen, the origin of the complex plane is not included in 
the value sets, but since the family (7) does not have any 
stable member, it is robustly unstable. More specifically, all 
members of this family are unstable. 

 

 
Fig. 3 straight line value sets for the family (7) 

 

B. Single Parameter Uncertainty (in Quasi-Polynomial) 
In this case, the investigated family still has a single 

uncertain parameter, but now it is a quasi-polynomial: 
 

( )( )
( )

2

2

( , ) 5 1 0.13

2 0.15 0.05 0.004 ;

2; 10

d

d

T

d

p s T s s s

e s s

T

−

= + + +

+ +

∈

"

"  (8) 

 
This type of object typically occurs as a closed-loop 

characteristic quasi-polynomial under assumption of a 
controlled plant with uncertain time-delay term and a fixed 
controller [11], [18]. The fig. 4 shows the value sets consisting 
of more complex single parameter curves. It can be plotted 
using: 

 
%single parameter uncertainty (quasi-polynomial) 
clear all 
hold on 
for w=0:0.002:0.3 %frequency range 
  count=1; %auxiliary counter 
  for TD=2:0.1:10 %uncertain time-delay term 
    p(count)=(5*(j*w)+1)*((j*w)^2+0.13*(j*w))+… 
    2*exp(-TD*(j*w))*(0.15*(j*w)^2+0.05*(j*w)+0.004);… 
    %the quasi-polynomial 
    count=count+1; %counter increment 
  end 
  x=real(p); %real part 
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  y=imag(p); %imaginary part 
  plot(x,y) 
end 
hold off 

 

 
Fig. 4 value sets for the family (8) 

 
Now, the zero point is excluded from the value sets. 

Moreover, the family (8) definitely has a stable member and 
thus this family is robustly stable. 

C. Interval Uncertainty 
The next example is going to deal with interval polynomial, 

which is given typically by shorthand notation with lower and 
upper bounds of polynomial coefficients: 

 
[ ] [ ] [ ] [ ]3 2( , ) 1; 2 2; 3 3; 4 0.5; 1p s q s s s= + + +  (9) 

 
The key feature of the interval polynomial family is that it 

has independent structure, i.e. each uncertain parameter can 
enter into only one coefficient. The famous tool for 
investigation of robust stability of interval polynomials is 
Kharitonov theorem [19] which uses four Kharitonov 
polynomials, specially constructed by means of upper and 
lower bounds of the interval coefficients. In fact, this principle 
is applied also in the presented simple Matlab program (which 
produces fig. 5): 

 
%interval uncertainty 
clear all 
hold on 
for w=0:0.02:1.5 %frequency range 
  q3_min=1; q3_max=2; %definition of interval coefficients 
  q2_min=2; q2_max=3; 
  q1_min=3; q1_max=4; 
  q0_min=0.5; q0_max=1; 
  K_1=q0_min+q1_min*(j*w)+q2_max*(j*w)^2+… 
  q3_max*(j*w)^3; %Kharitonov polynomials 
  K_2=q0_max+q1_max*(j*w)+q2_min*(j*w)^2+… 
  q3_min*(j*w)^3; 

  K_3=q0_max+q1_min*(j*w)+q2_min*(j*w)^2+… 
  q3_max*(j*w)^3; 
  K_4=q0_min+q1_max*(j*w)+q2_max*(j*w)^2+… 
  q3_min*(j*w)^3; 
  x=real([K_1,K_3,K_2,K_4,K_1]); 
  y=imag([K_1,K_3,K_2,K_4,K_1]); 
  plot(x,y) 
end 
hold off 

 

 
Fig. 5 rectangular value sets for the family (9) 

 
The vertices of the rectangular value sets from fig. 5 

correspond to four Kharitonov polynomials. The interval 
polynomial family (9) is robustly stable because it has a stable 
member and the origin of the complex plane is excluded from 
the value sets. 

D. Affine Linear Uncertainty Structure 
Now, the consideration is going to be focused on family of 

polynomials with affine linear uncertainty structure taken 
from [11], inspired by [7]: 

 
( ) ( )

( ) ( )

3 2
1 2 3 1 2 3

1 2 3 1 2 3

( , ) 2 2 1 3 2

3 7 5 2 2 5 4 ;

0.2 for 1, 2, 3i

p s q q q q s q q q s

q q q s q q q

q i

= − + + + − − + +

+ + + + − + +

≤ =

"

"  (10) 

 
Affine linear uncertainty structure can be found quite 

frequently because e.g. interval plant in feedback loop with 
fixed controller leads to the closed-loop characteristic 
polynomial with this uncertainty structure. More generally, the 
affine linear uncertainty structure itself is preserved during 
transmission from the open loop to the closed loop [20]. The 
shape of value set for this uncertainty structure is polygonal 
(convex) as can be seen in fig. 6 which is obtained with the 
assistance of: 

 
%affine linear uncertainty structure 
clear all 
hold on 
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for w=0.05:0.05:3 %frequency range 
  count=1; %auxiliary counter 
  for q1=-0.2:0.4:0.2 %uncertain parameters for… 
  %2^3=8 generators 
    for q2=-0.2:0.4:0.2 
      for q3=-0.2:0.4:0.2 
        p(count)=(2*q1-q2+2*q3+1)*(j*w)^3+(3*q1-q2-q3+… 
        2)*(j*w)^2+(3*q1+q2+7*q3+5)*(j*w)+(2*q1-2*q2+… 
        5*q3+4); % the polynomial 
        count=count+1; %counter increment 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  k=convhull(x,y); %convex hull 
  plot(x(k),y(k)) 
end 
hold off 

 

 
Fig. 6 polygonal value sets for the family (10) 

 
Analogically to the previous cases, the family (10) contains 

a stable member and the value sets do not cross the zero so the 
family is robustly stable again. 

E. Multilinear Uncertainty Structure 
The fifth example analyzes the polynomial family with 

multilinear uncertainty structure, adopted from [7]: 
 

( )
( ) ( ) ( )

4 3
1 2 1 2

2
1 2 2 1 2 1 2

( , ) 5 0.2 0.1 0.1

6 3 4 6 6 8 0.5 3 ;

0.25 for 1, 2i

p s q s q q q q s

q q q s q q s q q

q i

= + + + − +

+ − + + − + −

≤ =

"

"  (11) 

 
The value sets for the polynomial (11) can be visualized 

(see fig. 7) using the code: 
 

%multilinear uncertainty structure 
clear all 
hold on 

for w=0:0.1:1.2 %frequency range 
  count=1; %auxiliary counter 
  for q1=-0.25:0.01:0.25 %sampling of uncertain parameters 
    for q2=-0.25:0.01:0.25 
      p(count)=(j*w)^4+(5+0.2*q1*q2+0.1*q1-0.1*q2)*… 
      (j*w)^3+(6+3*q1*q2-4*q2)*(j*w) ^2+(6+6*q1-8*q2)*… 
      (j*w)+(0.5-3*q1*q2); % the polynomial 
      count=count+1; %counter increment 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 

 
Fig. 7 value sets for the family (11) 

 
Application of the same principles as in the previous cases 

leads to the result that the investigated family (11) is robustly 
stable. 

One can notice that the value sets are not convex anymore 
and that “brute-force method”, i.e. sampling of uncertain 
parameters and computing the image of the corresponding 
polynomial in the complex plane, has been used. The reason 
consists in the fact that there is a lack of analytical tools for 
the multilinear or even more complicated (polynomial, 
general) uncertainty structures. 

F. Polynomial Uncertainty Structure 
Next, the family with polynomial uncertainty structure 

(from [11]) is supposed: 
 

( )
( ) ( )

3 2
1 2

3 3 3 3
1 2 1 2 2 1 2 1 2 2

1 2

( , ) 2

10 5 ;

, 1;1

p s q s q q s

q q q q q s q q q q q

q q

= + + +

− − + + + + + + +

∈ −

"

"  (12) 

 
The program for plotting the value sets of (12) is essentially 

the same as in the previous example, i.e.: 
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%polynomial uncertainty structure 
clear all 
hold on 
for w=0:0.3:5.1 %frequency range 
  count=1; %auxiliary counter 
  for q1=-1:0.02:1 %sampling of uncertain parameters 
    for q2=-1:0.02:1 
      p(count)=(j*w)^3+(q1*q2+2)*(j*w)^2+(q1^3-q2^3-… 
      q1*q2+q2+10)*(j*w)+(q1^3+q2^3+q1*q2+q2+5);… 
      % the polynomial 
      count=count+1; %counter increment 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 
The resulting value sets are shown in fig. 8. They clearly 

demonstrate robust stability of family (12). 
 

 
Fig. 8 value sets for the family (12) 

 

G. General Uncertainty Structure 
In the seventh case, the assumed uncertainty structure is 

even more complicated and can not be classified as any of the 
previous types. So, the family with general uncertainty 
structure (again from [11]) is given as: 

 
[ ]3 2

1 2

1 2 1 2

1 2 1 2

1 2

( , ) cos( )

5 3sin cos( ) 4

4 sin cos( ) 0.1 ;

, 1;1

p s q s q q s

q q q q s

q q q q

q q

= + +

⎡ ⎤− − + +⎣ ⎦
⎡ ⎤− + + +⎣ ⎦

∈ −

"

" "

"

 (13) 

 
The corresponding value sets (fig. 9) can be obtained by 

using the “brute-force” code: 
 

%general uncertainty structure 
clear all 
hold on 
for w=0:0.2:4 %frequency range 
  count=1; %auxiliary counter 
  for q1=-1:0.01:1 %sampling of uncertain parameters 
    for q2=-1:0.01:1 
      p(count)=(j*w)^3+(cos(q1*q2))*(j*w)^2+… 
      (5*sqrt(abs(q1))-3*sin(q2)-cos(q1*q2)+4)*(j*w)+… 
      ((-4*sqrt(abs(q1))+sin(q2)+cos(q1*q2)+5));… 
      % the polynomial 
      count=count+1; %counter increment 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 
 

 
Fig. 9 value sets for the family (13) 

 
As the origin of the complex plane is included in the 

plotted value sets, the family of polynomials (13) is robustly 
unstable. 

H. Discrete-Time Interval Polynomial 
The last example is intended to demonstrate the generality 

of possible application of the value set concept and the zero 
exclusion condition by means of discrete-time interval 
polynomial. Unfortunately, the Kharitonov-like extremal 
results are not generally available for discrete-time systems so 
they can not be utilized. Besides the existence of several 
analytical methods, the universal graphical approach can be 
advantageously employed here. 

The continuous-time versions of the value set concept and 
the zero exclusion condition has been already presented. 
Nevertheless, the idea can be extended and generalized to so-
called robust D-stability framework [7] which allows 
investigating robust stability for an arbitrary stability region 
D. The exact definition of the value set concept and the zero 
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exclusion condition for robust D-stability can be found 
primarily in [7] or subsequently in [21]. Roughly speaking, in 
discrete-time case one has to go through the unit circle 
(stability boundary for discrete-time systems) as the 
generalized frequency (instead of frequency from zero to 
“infinity” as in the continuous-time case). Then, the key idea 
of the zero exclusion condition remains basically the same, i.e. 
the family is robustly D-stable if and only if it has at least one 
D-stable member and zero point is excluded from the value 
sets. 

Consider the fifth order discrete-time interval polynomial 
taken from [21]: 

 
[ ] [ ] [ ]

[ ] [ ] [ ]

2

3 4 5

( , ) 1, 2 3, 4 5,6

7,8 9,10 11,12

p z q z z

z z z

= + + +

+ +

"

"
 (14) 

 
The one of possible methods for plotting the value sets of 

the polynomial (14) has been implemented in the simple 
routine: 

 
%discrete-time interval polynomial 
clear all 
hold on 
for c=0:0.01:1 %generalized frequency range 
  count=1; %auxiliary counter 
  for q0=1:0.5:2 %sampling of uncertain coefficients 
    for q1=3:0.5:4 
      for q2=5:0.5:6 
        for q3=7:0.5:8 
          for q4=9:0.5:10 
            for q5=11:0.5:12 
              z=exp(j*c*2*pi); %unit circle 
              p(count)=q0+q1*z+q2*z^2+q3*z^3+ q4*z^4+… 
              q5*z^5; % the polynomial 
              count=count+1; %counter increment 
            end 
          end 
        end 
      end 
    end 
  end 
  x=real(p); %real part 
  y=imag(p); %imaginary part 
  plot(x,y,'.') 
end 
hold off 

 
The resulting value sets are depicted in fig. 10. It is 

effortless to verify in Matlab that the family has a stable 
member (choose any fixed polynomial from the family and 
check the stability). Consequently, due to the exclusion of the 
complex plane origin from the value sets, the discrete-time 
interval polynomial (14) is concluded to be (Schur) robustly 
stable. 

 

 
Fig. 10 value sets for the family (14) 

 

V. CONCLUSION 
The paper has been focused on presentation of simple 

Matlab codes for plotting the value sets of polynomials with 
real uncertain coefficients under several uncertainty 
structures. On the basis of the obtained figures, the robust 
stability can be analyzed easily using the zero exclusion 
condition. Altogether, eight illustrative examples given in the 
paper have covered seven cases of continuous-time uncertain 
polynomials, namely with single parameter uncertainty 
(“ordinary” uncertain polynomial and uncertain quasi-
polynomial), independent (interval) uncertainty structure, 
affine linear uncertainty structure, multilinear uncertainty 
structure, polynomial uncertainty structure and general 
uncertainty structure, and moreover also one discrete-time 
interval polynomial. 
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