
 

 

  
Abstract— MPEG-4 is not only a data compression standard 

algorithm, it gives also the opportunity to describe the scenes of a 
motion picture directly through XMT-A and XMT-O: two “high level 
languages” that are XML based. MPEG-4 therefore allows (and 
defines) the opportunities for video streaming. This makes this 
standard appealing for the conversion of Impress or PowerPoint 
presentations and for other e-learning applications because it offers 
the possibility of publishing the converted presentations on streaming 
servers. In this paper we exploit those possibilities by implementing 
an Impress extension that translates an electronic presentation to 
XMT-O, so to be finally “compiled” for MPEG-4 conversion, and we 
also describe a new streaming architecture for e-learning. 
 
Keywords—MPEG-4, Data Compression, XMT-O, Streaming, 

E-learning.  

I. INTRODUCTION 
HE MPEG-4 standard is not only a data compression 
algorithm. It gives also other opportunities to describe the 

scenes of a motion picture. In the MPEG-4 video standard (in 
particular the part 11 of this standard: the ISO / IEC 14496-11) 
we can describe the scenes of a motion picture directly 
through XMT-A and XMT-O: two high level languages XML 
based. MPEG-4 moreover allows and defines the opportunities 
for video streaming.  

This makes this standard a good starting point for the 
conversion of multimedia presentations, such as Impress or 
PowerPoint presentations, and for other e-learning 
applications because it offers the possibility of publishing the 
converted presentations on streaming servers. This paper 
presents an Impress extension that translates an electronic 
presentation to XMT-O, so to be finally “compiled” for 
MPEG-4 conversion, and a streaming architecture for e-
learning. 

In a very simplified e-learning scenario, essentially two 
actors are present: a teacher, or content expertise, that 
produces the learning contents, and a student that takes 
advantage of those contents. 

Our intention is to study the similarities between XMT-O 
and the XML based OpenDocument specifications. To do so 
we have implemented a converter that translates Impress 
 

B. Carpentieri and R. Iannone are with the Dipartimento di Informatica, 
Univerrsità di Salerno, 84084 Fisciano (SA), tel. +39 089 969500, E-mail 
bc@dia.unisa.it , roberto.iannone@gmail.com. D. Nunziata is  with STM 
Italia C. & O, 00128 Roma, E-mail : domenico.nunziata@gmail.it. 

multimedia presentations to MPEG-4. Preliminary results on 
this subject were presented in Iannone, Carpentieri and 
Annunziata [8] and Carpentieri and Iannone [9].   

Our idea was inspired by Chih-Chun Lai and others [1] 
where the authors depict how MPEG-4 technologies can be 
helpful in authoring interactive e-learning contents. In 
particular the authors show how to exploit XMT-O and XMT-
A to build-up three different applications of learning contents. 
The first is a navigation program for an historic monument. 
The second is a documentary that introduces the underwater 
creatures, such as fishes, turtles or cuttlefishes (a simple 
application where each fish is viewed as a moving object with 
a hyperlink that points to a predefined URL explaining about 
it). The last is an interactive English course, in which java 
script functionalities are utilized to evaluate the test results of 
a user. 

XMT-A is a XML based language used by MPEG-4 to 
describe a scene of the BIFS where audio-visual object lies. 
XMT-O is a “friendly” version of XMT-A that was created to 
maintain compatibility with the W3C SMIL (see 
http://www.w3.org/AudioVideo/). 

In this work we introduce an e-learning web based 
architecture that exploits the similarities between 
OpenDocument format, SMIL and XMT-O to build-up e-
learning contents represented by MPEG-4 interactive videos 
that can be deployed through a Darwin streaming server.  

II. MPEG-4 AUTHORING AND ODF 
Many authors have studied the interactive authoring of 

MPEG-4 scenes by exploiting XMT-O conversions and 
implementations. Kyungae Cha and Sangwook Kim [2] 
implement a comprehensive set of facilitative editing tools for 
composing multimedia scene. They also present a tool for 
automatic generation of XMT documents and MPEG-4 
contents in which the users can create their MPEG-4 scenes by 
using a graphical editor to put objects in the MPEG-4 video 
and also a timeline interface for animations and transitions. 
Chih-Chun Lai and others [1] implement three typology of 
learning contents by using XMT-O authoring, as previously 
described. 

MPEG-4 is an ISO/IEC 14496 multimedia standard that 
enables the composition of multiple audio-visual objects. 
Users can display, play, and even interact with the scene 
contents that can be downloaded or streamed.  

A new Impress extension for interactive  
MPEG-4 video conversion and a streaming 

architecture for E-learning 
Bruno Carpentieri, Domenico Nunziata, Roberto Iannone. 

T 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 110



 

 

The scene contents can be protected by using an IPMP 
(Intellectual Property Management and Protection) system: 
this can be important in a learning environment where 
exchanged educational material could be covered by 
intellectual property rights. 

The heart of the MPEG-4 scene composition is the BIFS 
(Binary Format for Scene) that arranges the scenes in a 
logical, hierarchical structure represented by a directed acyclic 
graph that has as its root the whole scene and as its leaves the 
objects of the scene (this graph is an extension of the VRML 
scene graph). Each node of the graph has time-space 
coordinates that are included in the time-space coordinates of 
its father node. It is possible to specify temporal relationships 
between objects along with the expansion of the tolerance time 
on each object.  

BIFS provides a very powerful event management system 
which allows the structure of the scene both to be changed 
dynamically and also to be driven by user interaction (e.g.: a 
user can move an object on the scene, he can click on an 
object to activate an event that permits a scene change - for 
example a “next” button on a visual presentation).  

More interaction can be obtained by using MPEG-J: an 
MPEG-4 specification that defines a set of Java Application 
Programming Interfaces (APIs) to access and control the 
underlying MPEG-4 terminal that plays the MPEG-4 audio-
visual session.  

MPEG-4 gives the opportunity to describe the scenes of a 
motion picture directly through XMT-A (the “A” stands for 
Alpha) and XMT-O (the “O” stands for Omega), two “high 
level languages” XML based. XMT-A is an XML-based 
version of MPEG-4 BIFS content that provides a 
deterministic, one-to-one, mapping between the textual and 
the binary formats. XMT-O is a high-level abstraction of the 
MPEG-4 features based on the W3C SMIL language. It 
defines a subset of modules whose semantics are compatible. 
Therefore the XMT-O format can be parsed and played 
directly by a SMIL player or it can be compiled to an MPEG-4 
representation that can be played by an MPEG-4 player.  

XMT-O defines a document structure that is similar, but not 
identical, to the SMIL structure. The <XMT-O> tag can 
contain a single <head> and <body>, in that order. The XMT-
O <head> tag can contain <meta>, <customAttributes>, 
<metadata>, <layout>, <transition>, <defs> and <macros>, 
while the <body> tag is the content itself. A key feature of the 
content is the high-level constructs for the audio-visual 
objects. These constructs not only describe the objects but also 
include their behavior. Like in SMIL the <body> element has 
the timing semantics of a <seq> timing container. 

XMT-O is based on SMIL, but it is not the same language 
nor all the construct of SMIL have been integrated into XMT-
O.  In Figure 1 there is an example of a XMT-O file generated 
by the extension we developed. Inside the <head> tag we find 
the settings for type, layout and dimensions of the scenes that 
are derived from the ODP file. The <body> tag contains the 
<par> tag timing definitions and their behaviors. The <group> 
contains all the elements of the scene, so that these elements 
can be simultaneously animated. 

 
Fig. 1 An XMT-O file generated by our new extension  

 
OpenDocument format (ODF, see [4]) is a file format for 

electronic office documents such as spreadsheets, charts, 
presentations and word processing. While the specifications 
were originally developed by Sun, the current standard was 
developed by the Open Office XML technical committee of 
the Organization for the Advancement of Structured 
Information Standards (OASIS consortium) and it is based on 
the XML format originally created and implemented by the 
OpenOffice.org office suite. 

The structure of a ODF document can be represented via a 
ZIP compressed archive containing a files and directories; 
these can contain binary content and therefore it can use 
lossless compression to reduce file size. Furthermore 
OpenDocument benefits from separation of concerns by 
separating the content, styles, metadata and application 
settings into four separate XML files, so providing more 
flexibility: 

• content.xml: it contains the actual content of the 
document except binary data (images for example). 

• styles.xml: this file contains information about the styles 
used in the content. Paragraphs, page, characters, frame and 
lists styles will be found in this file. 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 111



 

 

 

Fig. 2 ODF code that represents the description of two rectangles 
of different sizes, placed in two different parts of the scene. 

 
• meta.xml: this file contains information about the 

document itself. These information could be divided into four 
categories: general document properties (creation and / or 
modification date, size, etc…), document description (title, 
description, author, etc..), user-defined information and 
document statistics (total number of page and words, number 
of pictures in the document, etc.). Data are described by the 
OpenDocument meta namespace and by the Dublin Core 
definitions. 

• settings.xml: this file contains application specific 
information as zoom factor, cursor position on the document, 
etc. 

• mimetype.xml: this file contains MIME type of the 
document. Essentially this file determines the OpenDocument 
file type: application/vnd.oasis.opendocument.presentation is 
the MIME type for the ODP document files. 

The four folders are: 

  

 
Fig. 3 .XMT-O code that represents a similar description. 

 
• META-INF: this folder contains the manifest.xml file 

that describes the contents of the compressed file. 
• Configurations2: this folder contains application 

specific and advanced configurations.  
• Pictures: this folder contains all the document pictures  
• Thumbnails: this folder contains the document 

thumbnails. 
OpenOffice Impress is a presentation software that is part of 

a suite of programs from OpenOffice.org. OpenOffice Impress 
is available as a free download. Unlike other proprietary 
presentation software, Impress, and all the suite of 
OpenOffice, are licensed as open-source so they can be 
studied, modified, and enhanced freely. In educational 
environments this is the software that is frequently used to 
deliver knowledge to the audience. 

The ODF code in Figure 2 represents the description of two 
rectangles of different sizes, placed in two different parts of 
the scene. The XMT-O code in Figure 3 represents a similar 
description.  

The syntax and the language constructions (even the units 
of measurement) used in these two codes to describe the same 
objects are completely different. 

In order to convert all the objects and in order to place them 
correctly in the scene while keeping the original size, a 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 112



 

 

number of operations are carried out to transform the 
dimensions and locations of the objects from centimeters to 
pixels. 

ODF has as absolute reference the upper left corner, while 
XMT-O has as absolute reference the center of the scene. If 
we want to translate from ODF to XMT-O we therefore need 
also to consider the correct item positioning. 

In ODF the animations are grouped after the definition of 
the objects, before the closing tag of the page, and they are 
managed through the references to the IDs of the objects. In 
XMT-O the tags for animations and transitions are included in 
the tags that define the item to which they relate.  

Another difference concerns hyperlinks. In ODF these are 
seen as the actions to be taken in the presence of an 
appropriate listener. In XMT-O the links are handled as in 
HTML: by using a tag in which there are other tags that define 
the item as “interactive”. 

Those differences make the conversion process very hard 
but possible. In the rest of this paper we will describe how to 
implement this conversion. 

III. AN IMPRESS EXTENSION FOR MPEG-4 CONVERSION 
An Impress extension has been developed with the purpose 

of giving to the content creator an easy way to deal with the 
creation of the content. In fact the extension gives the 
opportunity to continue working with software that is well 
known and easy to use (Impress) and, after the work is 
finished, it allows the translation of the presentation into an 
MPEG-4 video that preserves most of the characteristics of the 
multimedia presentation. 

This extension has been developed in Java by using the IDE 
NetBeans with the OpenOffice plug-in; so the extension can 
be perfectly integrated into the OpenOffice.org suite. 

When the extension is launched, a window appears and the 
dimensions of the video can be selected (the dimensions are 
approximate because the slide dimensions in Impress are 
variable: they are expressed in centimeter instead of pixel); 
after this choice the conversion process starts. 

The presentation is first converted into XMT-O and after 
into an MPEG-4 video, this is carried out in eight steps:  

1. The path of the presentation file is retrieved by using a 
query to the UNO Component; into this path it is created a 
temporary folder with name TempX (where X is a 
progressively incremented integer); the files contained into the 
.odp archive are then extracted into this temporary folder. 

2. The styles.xml file is parsed and the general information 
about the style of the presentation are retrieved; in particular 
the name of the default style, the height and the width of the 
slide (the dimension are scaled according to the value selected 
for the video format), and the information for the visualization 
of the default background (color or image) are extracted. 

3. The file content.xml is parsed and an output file with 
name [presentation_name]slideX.xml is opened for each slide 
of the presentation (X will be incremented progressively). This 
file contains the instructions, in XMT-O, that define the aspect 
and the behavior of the slide. 

4. The method gettransition is invoked. Its task is to recover 

the data on the transition to the current slide and to restore the 
necessary instructions to play the exact transition (or 
something similar). 

5. The method convertislide is invoked. This method is 
responsible for processing, one by one, all the elements of the 
slide and for their translation into XMT-O. This method 
performs the conversion of all the graphics by first collecting 
all the information about size, location, attributes, etc. (scaling 
and translation operations might be needed for the translation 
of size and positioning information, depending on the size of 
the video). Then, in the final step, by using the information 
collected, the method generates XMT-O tags that are needed 
to create and place the slide items. 

6. When all the graphics have been finally prepared and 
positioned, then an area is defined, as footnote to the scene, 
containing two interactive arrows that indicate two possible 
movement directions: to advance to the next slide or to return 
to previous one. 

7. The XMT-O document is closed with its closing tag. It is 
called the constructor to create an object of type XMTBatch, 
which is invoked via the run method for the conversion of the 
XMT-O files generated into an MPEG-4 video. The name of 
the MPEG-4 file that is generated here is 
[presentation_name]slideX.mp4. 

8. After the conversion of all the slides of the presentation, 
the temporary folder is deleted and the execution ends.  

IV. CONVERSION LIMITS AND COMPROMISES 
The conversion from ODF to MPEG-4 needs to be adjusted 

by accepting a few appearance compromises. These 
adjustments cover all the graphics aspects: there shall be areas 
where compromises are more pronounced and other in which 
the compromises are almost imperceptible. The following is a 
list of the accepted compromises (in our implementation) 
among the original and the output: 

Background: When the background of the slide is formed 
by the repetition of a single image, since XMT-O does not 
foresee the possibility to repeat an image as the texture of an 
item, we scale the image to force an automatic repetition of 
the image to cover the area occupied by the rectangle that is 
the background for the slide. 

Dimensions: the compromise in this case concerns the 
conversion from the original size, expressed in centimeters, to 
the output size in pixels. To get videos that have pixel size 
close to the standard screen resolution, we had to use 
multiplying factors to scale both the graphic objects (20 for 
small, 25 for medium and 35 for big ones), or to adjust the 
font size for the text (1 for small, 1.25 for medium and 1.75 
for big one). 

Ellipse: these graphics elements are not supported by XMT-
O. The compromise in this case is inherent to the generation of 
these elements. To obtain this geometric figure, we started 
from a circle having as radius the size of the main axes, and 
then we proceeded scaling on one of the two axes, in a way 
that was proportionally to the size of the secondary axis.  

Transitions: In this field the compromises have been 
necessary because many SMPTE transitions have not been 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 113



 

 

implemented in the IBMToolkitforMpeg-4 [5], but all of them 
were implemented in Impress. This led us to use different 
transitions in place of those not yet supported. Whenever it 
was possible we have replaced the missing transitions with 
similar ones. 

Animations: It was not possible to translate with accuracy 
some emphasis animations; particularly the animations that 
included the change of parameters such as contrast, brightness, 
etc., because these are not contemplated in XMT-O. For 
motion animations along paths, it was decided to replace all 
the paths with a rectangle, given the impossibility of a direct 
conversion of any path and the huge amount of time required 
by a manual conversion of the different possible paths. For 
entry and exit animations for which it was not possible a 
conversion it has been chosen to make the item to disappear or 
to appear at the specified time. 

Text: This is the point were more compromises are needed. 
This is, on one side, because of the poor support given by 
XMT-O and, on the other side, because of the large capacity 
of text formatting provided by Impress. The first compromise 
here concerns the loss of various text styles that may be 
present in the same Impress paragraph: with Impress, within a 
paragraph, you can define different sections, called span, and 
for each span you can define a different text style. This is not 
feasible in XMT-O (unless we put by hand a tag <string …> 
for each different word, and this is not feasible). For simplicity 
we used the text style of the last block in the paragraph for all 
the text of the paragraph. The other needed compromise 
relates to text formatting, as the text sections have no 
information about the new line, given that the text in Impress 
is formatted at run time, so we had to use a trick based on the 
measurement of the length in pixels of each word by using an 
instance of the class FontMetrics that provide the method 
stringWidth that is able to return the length in pixels of the 
string passed as argument. 

There are also a number of graphic elements that are not yet 
supported in our prototype (for each of them we indicate a few 
hints for a future implementation):  

Curve line: this type of line, is described, into the 
OpenDocument standard, by the utilization of the syntax 
derived from the tag <path d=“…”…> of SVG, in XMT-O 
there is a tag that is similar but unfortunately not identical. So 
to correctly convert this type of graphics element, it must be 
studied the correct parameter to obtain the exact conversion. 

Not geometrical shapes: this class of elements contains 
arrows, callout, flow diagram, stars etc. Those types of shapes 
are defined in a way that is similar to the curve line. 

3D shapes: these types of graphic elements are supported 
natively by XMT-O, with all the effect of light and shadow. 
These shapes have not yet been included into the software 
because they are not very frequent into the e-learning content. 

Video: XMT-O allows the inclusion of many type of 
videos. Unfortunately this feature is not yet implemented into 
the IBMToolkitforMpeg-4 that supports only the videos 
encoded into MPEG-4 format. The toolkit creators have 
released a video converter (AVGen) that allows the conversion 
of many formats of digital video into the MPEG-4 format.  

 
 
Fig. 4 . Our e-learning web based architecture (streaming contents 

are previously generated by our Impress mp4 conversion plugin). 
 
This converter can be included into the software developed to 
allow the inclusion of video after the conversion process. 

Audio: the situation is very similar to the Video files, but 
there is a format (MP3: MPEG-1 Layer 3) that is common to 
both standard. So this type can be used directly, a conversion 
must be performed for the other types of audio files. 

V. A STREAMING AUDIO-VIDEO MPEG-4 APPLICATION 
As depicted in Figure 4, once the contents have been 

converted to MPEG-4 files, they need to be published so to be 
delivered to the student audience (see Figure 5). 

An efficient and fast way to deliver these contents is 
streaming. A streaming media is a multimedia that is 
constantly received by, and normally presented to, an end-user 
by a streaming provider. The delivery of streaming content is 
ruled by three protocols: the first is the Real-time Streaming 
Protocol (or RTSP) that defines how the client could control 
remotely the streaming media server, issuing VCR-like 
commands such as play and pause, and allowing time-based 
access to files on a server; the second is the Real-time 
Transport Protocol (or RTP) that defines a standardized packet 
format for delivering of audio and video over the Internet. 

 

 
Fig. 5 . An example of learning course about streaming. The 

course is composed by different video stream that are loaded on user 
trigger events (the click on a link).  

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 114



 

 

The last is the Real Data Transport (or RDT) that is a 
proprietary transport protocol for the actual audio/video data 
(developed by RealNetworks in the 1990s). 

In our architecture we have chosen as streaming provider 
the freely available Apple Darwin Streaming Server[6] (DSS). 
The converted presentation is published on a DSS so students 
can take advantage of the learning content through a regular 
web browser with an MPEG-4 player. We have experimented 
with the IBM M4Applet[7] a Java applet developed by the 
Composite Media Technologies Group at the T. J. Watson 
IBM research center. 

VI. TESTING, RESULTS, AND CONCLUSIONS 
Comparing the original slides with their translations reveals 

where the conversion compromises act. 
The two screenshots in Figure 6 show that for the low 

impact compromises, the results obtained are very similar to 
the original (Figure 6, Figure 7).  

For the text, the compromises have a relevant visual impact 
(Figure 8, Figure 9).  

Anyway the overall visual effect of the converted 
presentation is good. From the point of view of the content the 
slides express the same semantic concepts and maintain the 
same spirit that the authors have impress on them. 

In this paper we have presented an ideal e-learning 
architecture were educational contents are built by using an 
OpenOffice Impress presentation to be converted through our 
Impress plug-in to different MPEG-4 videos that can be 
published on a DSS to be streamed to a student audience. 

We therefore showed how, by exploiting the similarities 
between SMIL, XMT-O and OpenDocument format it was 
possible to build-up an OpenDocument to XMT-O converter. 

Future work will be devoted to enhance the converter and to 
reduce the compromises by introducing better conversion 
rules. Further studies are needed to incorporate MPEG-J 
functionalities for a richer interactive experience and to blend 
together the streaming architecture and the impress plug-in, 
obtaining a system, web services based, to send directly from 
Impress the converted publication to the DSS. 

We are also considering the usage of the streaming 
architecture for applications related to e-learning and data  
compression as for instance interactive data compression (see 
Carpentieri [10] and Carpentieri [11]) and image or layered 
documents compression (see Carpentieri [12] and Ansalone 
and Carpentieri [13]). 

 
 
 
 
 
 
 
 
 
 
 

REFERENCES   
[1] Chih-Chun Lai, Chihwei Pan, Chia-Hung Tsai, Yu-Chen Tsai; 

‘Authoring and Presentation of Interactive eLearning Content by Using 
MPEG-4 BIFS Technologies’, 16th IPPR Conference on Computer 
Vision, Graphics and Image Processing (CVGIP 2003), (2003). 

[2] Young, Kyungae Cha, Sangwook Kim; ‘Interactive Authoring Tool for 
Extensible MPEG-4 Textual Format (XMT)’, Workshop Notes of 
Semantic Authoring, Annotation and Knowledge Markup, 15th 
European Conference on Artificial Intelligence (ECAI 2002), Lyon, 
France, July 22-26, 71-75 (2002). 

[3] Mikaël Bourges-Sévenier, Euee S.Jang; IEEE Transaction on Circuits 
and Systems for Video Technology, 14(7), July (2004). W.-K. Chen, 
Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 
1993, pp. 123–135. 

[4] Oasis Consortium; ‘Open Document Format for Office Applications 
Specification v1.1’, http://www.oasisopen.org/specs/index.php# 
opendocumentv1.1. 

[5] AlphaWorks; ‘IBM Toolkit for MPEG-4’, 
http://www.alphaworks.ibm.com/tech/tk4mpeg4; May (2003).  

[6] Apple Computer Inc.; ‘QuickTime Streaming Server and Darwin 
Streaming Server Administrator’s Guide’, May (2002).  

[7] IBM Research; ‘IBM MPEG-4 Multimedia Applet Player’, 
http://www.research.ibm.com/mpeg4/Projects/player.htm; January 
(2006).  

[8] Roberto Iannone, Bruno Carpentieri, Domenico Nunziata; ‘Interactive 
MPEG-4 Videos: An Impress Extension for MPEG-4 Conversion and a 
Streaming Architecture for e-Learning’. IEEE ISCIS 2009, 29-34 
(2009). 

[9] Bruno Carpentieri, Roberto Iannone, “Building an Impress Extension for 
Interactive MPEG-4 Video Conversion”, in Latest trends in information 
technology, Proceedings of WSEAS ICTN 2012, (2012). 

[10] Bruno Carpentieri: “Interactive Compression of Digital Data”. 
Algorithms 3(1): 63-75 (2010). 

[11] Bruno Carpentieri: “Interactive Compression of Books”. WSEAS 
Transactions on Computers 9 (3) , pp. 278-287 (2010). 

[12] Bruno Carpentieri: “Image compression via textual substitution”. 
WSEAS Transactions on Information Science and Applications 6 (5) , 
pp. 768-777 (2009). 

[13] Anna Ansalone and Bruno Carpentieri: “How to set "don't care" pixels 
when lossless compressing layered documents”.  WSEAS Transactions 
on Information Science and Applications 4 (1) , pp. 220-225 (2007). 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 115



 

 

 
Fig. 6 . Original ODP slide  

 

 
Fig. 7 . MPEG-4 converted version (some compromises about text layout 

and formatting are visible) 

 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 116



 

 

 

 
Fig. 8 . Original ODP slide  

 

 
Fig. 9 . MPEG-4 converted version (some compromises about text layout 

and formatting are visible) 

 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 7, 2013 117




