
 

 

  
Abstract—In integrated systems of indoor visual light 

communication and power line communication technology, 
interference including multipath effect, DC bias and impulsive noise is 
a crucial obstacle to be coped with. In this paper, a recursive equalizer 
algorithm that can reduce the high computational complexity of blind 
decision feedback equalizer algorithms in order for advantages in 
implementation, and for the robustness against interference. The 
summation operation in the calculation of gradient of the cost function 
of the lagged cross-correlation of probability (LCCP) algorithm is 
transformed into a recursive gradient calculation. The proposed 
method reduces the computational burden of )(NO  to )1(O , which 

is independent of the data block size N . From the results of the 
simulation, the proposed method yielded the superior learning 
performance with reduced computation complexity. 
 

Keywords—Recursive gradient, DF-LCCP, indoor VLC, DC 
noise.  

I. INTRODUCTION 
NDOOR wireless sensor data communication technologies 
optical wireless is in great demand due to its usability even in 

some RF-restricted areas such as hospitals or airplanes. In some 
optical wireless technologies, visible light communication 
(VLC) utilizes white LEDs as illumination with a long lifetime 
and energy efficiency, and at the same time as a transmitter of 
sensor information in a way that humans cannot perceive it by 
modulating the light intensity at high rates beyond that of human 
perception [1].   

In indoor VLC systems, non-line-of sight (NLOS) links 
utilizing reflected paths of the light from indoor wall, ceiling 
and furniture have robustness to blocking, but suffer from 
multipath effect that results in intersymbol interference (ISI) in 
the received signal [2][3]. Furthermore, in the NLOS-VLC 
systems with white LEDs, background solar radiation and 
incandescent lamps play the role of main sources of DC bias 
noise, with which received signal is distorted seriously [4].  

Recently, integration approaches of VLC systems combined 
with power line communication (PLC) systems are emerging for 
home sensor networking [5][6]. In the integrated systems, 
abrupt power surges on the PLC network can cause impulsive 
noise inducing burst error occurrence [6][7]. Therefore, the 
integrated sensor network systems of VLC and PLC 
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(VLC/PLC) should be equipped with devices that can 
compensate for multipath effect, DC bias and impulsive noise, 
to provide reliable sensor data transmission. For that purpose, a 
decision feedback equalizer algorithm has been proposed in [8].  
The equalizer algorithm is based on a cost function of lagged 
cross-correlation between probabilities (LCCP) density 
functions [9]. The researchers developed the linear LCCP 
algorithm into its decision feedback version on the ground that 
error propagation problems can be avoided, since the Gaussian 
kernel of the linear LCCP has immunity against impulsive noise 
and the variable lag within the correlation function can deal with 
DC bias noise [8]. 

However, the weight update equation of the decision 
feedback LCCP algorithm using a block of output samples N  
contains the computations of )(NO  at each iteration time for 
each filter section. This computational complexity can prevent 
practical implementation. In this paper, a solution to reduction 
of the computational burden of the LCCP-DF algorithm is 
proposed and tested to see whether it produces the same 
weight update performance while keeping the reduction in the 
computational complexity.  

II. INTERFERENCE IN VLC/PLC ENVIRONMENTS 
The transmitted light signals in indoor VLC come to receivers 

through multipath channels that induce ISI. The ISI prevents the 
system from achieving high rate of sensor data transmission. 
The researchers in [3] gained information about the channel 
impulse response in their NLOS experimental setting of a 
transmitter and two receivers Rx1, field-of-view (FOV) 40o and 
Rx2, FOV=132o , in an empty typical office room. They found 
that ISI has a large influence on data rate performance from 
above 100 Mb/s, and the receiver with larger FOV is more 
prone to be affected by ISI. In this paper, the data rate of 150 
Mb/s and FOV=132o are chosen for performance evaluation.    

Sunlight and other illumination can affect VLC systems when 
light switches are turned on or off, and sunlight enters through 
opened curtains or blinds. This changing ambient light induces 
DC bias noise causing deterioration in detector sensitivity, 
requiring appropriate schemes for elimination of the DC bias 
noise component in the received signal [10] [11]. 
Another type of noise problem is observed in the integrated 
system VLC/ PLC. The wireless signal received from LED 
lighting can be retransmitted through the wired PLC network. 
Multiple appliances connected to the same power-line network 
generate noises which are impulsive. Impulsive noise is the 

Decision Feedback Equalization for Indoor 
Visual Light Communication 

Namyong Kim 

I 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 47



 

 

main source of interference that causes severe signal distortions, 
leading to bursts bit errors while transmitting data. Origins of 
impulsive noises can be domestic appliances such as power 
switches, power supplies, motors, power sockets, thermostats 
[12]. The impulsive noise model in this paper employs the 
model from [7] and [13] that is widely adopted in most PLC 
systems. The distribution function )( Imnf I  of the random 

impulsive noise Imn  is expressed in (1) which is the same one 
in [8].   
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where 2
GNσ is the variance of background Gaussian noise and 

2
INσ is that of impulse noise. Impulse noise occurs according to 

a Poisson process and the average number ε of impulses per 
information symbol duration.  And an example of generated 
DC bias and impulsive noise according to the distribution 
model is given in Fig. 1.  
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Fig. 1. Generated noise composed of background Gaussian noise, 
impulsive noise and two types of DC bias noise for simulation.  

III. BLIND EQUALIZATION BASED ON THE LCCP CRITERION   
FOR VLC/PLC 

Blind equalizer algorithms are widely used in multipath 
environments where training sequences for starting up or 
restarting after a communications breakdown are not required 
[14]. For blind equalization under DC bias noise, the LCCP 
function has been introduced in [9]. For two given 

probability functions )(xfS for a source symbol set and 

)( τ+xfY  for output data at lagτ  , the LCCP function is 
defined as ∫ +⋅= αταατ dffR YSSY )()()( .   

For the basic binary modulation scheme OOK with NRZ 
pulses to VLC as in [3], the distribution function of transmitted 

symbols (+1, -1) can be )]1()1([
2
1)( ++−= αδαδαSf .  The 

probability function )(xfY  for output data can be 
constructed by kernel density estimation method with a 

Gaussian kernel ]
2

exp[
2

1)( 2

2
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xxG −

= and N  output 

samples { }kNkNk yyy ,...,, 21 +−+−  at current sample time k  
[15] as    
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Then the LCCP function becomes   
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Maximization of the LCCP function with respect to an 

adaptive system variable forces the system to produce output 
samples iy  concentrated on the transmitted symbol points +1 

and -1. Defining a biased output ibiasedy , as τ−= iibiased yy ,  

and biased error ibiasedj ys ,−  as ),( ijebiased , respectively, the 

LCCP function to be maximized is  
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 The Gaussian kernel in the LCCP function (4) is a function 

of biased error and an exponential decay function, so that 
excessively large biased errors mostly induced by strong 
impulsive noise become negligible in the LCCP criterion. 
Furthermore, maximization process of the LCCP function (4) 
leads the biased error samples ),1( iebiased  for symbol 1 and 

),1( iebiased −  for symbol -1 to become zero, which means the bias 
τ induced from the inflow of DC bias noise can be cancelled 
out as the amount of τ is adjusted in the system.    

This property of canceling ISI, impulsive noise and DC bias 
noise makes it possible to prevent error propagation problems 
when decision feedback approach is employed.  
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IV. DECISION FEEDBACK LCCP ALGORITHM AND RECURSIVE 
GRADIENT CALCULATION 

As will be observed in the simulation results, the linear 
LCCP algorithm is ineffective in data rates above 100 Mb/s rate 
from where ISI has a large influence on data rate performance. 
To improve data rate by way of residual ISI cancelation, 
decision feedback equalizer (DFE) schemes can be considered. 
The decision feedback structure is made up of the feed-forward 
section and feedback section. Feed-forward section with weight 
vector [ ]TF
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Then the equalizer output becomes B
k

F
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The steepest ascent method using gradients 
F
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vector yields the weight updating equations as  
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each gradient vector F
k∇  and B

k∇  can be written as  
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It is noticeable that the gradient vectors F
k∇  and B

k∇  for the 
weight update at each iteration are calculated with the 
computations of )(NO for each filter section. This 
computational burden can be an obstacle for practical 
implementation. In the following section a solution for reducing 

computational complexity of LCCP-DF algorithm is proposed 
by computing each gradient recursively, by utilizing the 
previously calculated gradient and current data.  

In the initial state for the time Nk ≤≤1 , when a new sample 

ky  is obtained, we have k samples to estimate the gradient at 
time k. Therefore, each gradient vector can be expressed as  
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Separation of the recent data at time k from each summation 

leads to   
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Similarly, 
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In the state 1+≥ Nk , the last gradient for the feed forward 
section at time 1−k  becomes   
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The last gradient for the feedback section at time 1−k  is 
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By separating the current data at time k and the old data at 

time 1+− Nk from the current gradient vectors F
k∇  and B

k∇  
we have   
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The initial gradient vectors F
0∇  and B

0∇  are set to 0.  
We can notice that the resulting recursive expressions (14) 

and (15) for  Nk ≤≤1 , and (19) and (20) for 1+≥ Nk  reduce 
the computational complexity )(NO in (7) and (8) to )1(O , 
which is independent of the data block size  N and more 
appropriate to practical implementations.     

V. RESULTS AND DISCUSSIONS 
To investigate whether the proposed recursive approach of 

(19) and (20) produces the same gradient values as the original 
gradients (7) and (8) which are calculated by the block 
processing method, gradient values for various data-block size 
N  are tested under the same experimental environment as in 
[8].  

The gradients of the equalizer taps (the first and second tap 
are chosen for convenience’s sake) with 20=N are depicted 
in Fig. 2 for the first tap’s gradient and Fig. 3 for the second 
tap’s gradient. We can notice that though the trace of gradient 
for each method is different in the initial state where the 
memory for the summation is not fully occupied, the two 
curves come close to each other as the iteration increases. 
More importantly, we observe the two curves become 
identical after the iteration number 20, when the memory for 
the summation is full.  To verify this phenomenon, the same 
experiment has been carried out for 40=N  and the results 
are shown in Fig. 4 for the first tap and Fig. 5 for the second 
tap.  
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Fig. 2. Learning curves for the first tap with the data block size 
20=N . 

 
In accordance with our expectation, the proposed method 

yields in the case of 40=N  the same gradient values as the 
original block processing method for any equalizer tap after 
iteration number 40. These results indicate that the proposed 
recursive method produces the same performance as the original 
method and its computational complexity is independent of the 
data block size N whereas the original one is heavily 
dependent.  
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Fig. 3. Learning curves for the second tap with the data block 
size 20=N . 
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Fig. 4. Learning curves for the first tap with the data block size 

40=N . 
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Fig. 5. Learning curves for the second tap with the data block 
size 40=N . 

 

For evaluation of MSE convergence performance we selected 
another impulse response of NLOS links in VLC systems as 
follows. The normalized impulse response for this experiment 
was obtained from the measurements taken in an empty typical 
office room, with a transmitter and two FOV receivers Rx1 (40o) 
and Rx2 (132o) [3]. The transmission speed is 150 Mbps. The 
z-transform of the impulse response is 
 

321 0.24550.57370.75401478.0)( −−− +++= zzzzH
7654 0.00870.02820.06740.1217 −−−− ++++ zzzz  (21) 

 

 
The transmitted symbol points are binary {+1,-1} as in [3] 

for VLC. The random impulsive noise and DC bias noise as in 
Fig. 2 is added to the received signal. The parameters for the 
impulsive noise model are 0012.0=ε , 001.02 =GNσ , 

502 =INσ . In the case of static DC noise, DC 2V is added to the 
background Gaussian noise from the sample number 3000. In 
the case of varying DC noise, )5000/2sin( kπ is started to be 
added from 5000=k as depicted in Fig. 1. The feed forward 
filter length is 11=P  and the backward filter length is 

4=Q  . The linear filter length is the sum of P  and Q  as 
15=L . The kernel size is 6.0=σ  and the data-block size is 
20=N . The same convergence parameter 01.0=LCCPµ  is 

used as in [8]. Decision feedback algorithms are compared with 
linear algorithms for performance evaluation. DF and linear 
correntropy algorithms are also compared since they were 
developed based on the generalized correlation function in a 
kernel-transformed space and are well known to have impulsive 
noise immunity [13] 

In Fig. 6 and 7, MSE convergence performance is compared 
under impulsive noise for all the sample time and DC bias noise 
starts to be added at the sample time 3000. The linear and DF 
version of the correntropy algorithm suffer from DC bias noise 
and impulsive noise under the NLOS/VCL channel, showing a 
very slow convergence. On the other hand, linear and DF 
version of LCCP algorithm show rapid learning curves from the 
start. After DC noise addition, the recursive DF_LCCP 
converges within 1000 samples reaching -28 dB while the linear 
version reaches -13 dB of steady state MSE. The 15 dB 
performance gain in the environment of FOV=132o and 150 
Mbps speed indicates that DF-LCCP employing the recursive 
gradient calculation can enable the VLC system to achieve 
highly reliable sensor data transmission at higher data rate even 
under the interference of various ambient light changes and 
electrical sparks from the combined PLC medium.   
In the comparison of MSE convergence performance under 
impulsive and slowly varying DC bias noise as in Fig. 7, the 
correntropy based algorithms fail to achieve cancellation of 
varying DC noise, on the other hand, the recursive DF-LCCP    
algorithm  shows no perturbation from varying DC noise, 
yielding  -28 dB of steady state MSE.  

For clearer observation of the compensation capability 
against multipath, impulsive and static DC bias noise, the output 
samples of the DF-LCCP are depicted in Fig. 8. It is noticed that 
output samples are quickly returned to the symbol points -1 and 
1 after the time 3000 when DC bias is added and are kept in 
highly concentrated state. The outlying random dots represent 
output samples when impulsive noise is present, but we see they 
do not influence the weight updating equations of the DF-LCCP 
algorithm producing stable output samples after the impulses.  
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Fig. 6. MSE convergence performance under impulsive and 
static DC bias noise. 
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Fig. 7. MSE convergence performance under impulsive and 
slowly varying DC bias noise. 
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Fig. 8. The convergence of output samples of DF-LCCP.  

 

VI. CONCLUSION 

Indoor visual light communication technology is in great 
demand where the white LEDs for energy saving illumination 
are used as transmitters for indoor sensor networks. In recent 
integrated VLC/PLC systems multipath effect, DC bias and 
impulsive noise are problematic obstacles. In this paper, for the 
purpose of robustness against interference, and for advantages 
in implementation, a recursive method is proposed for reducing 
the computational complexity of blind decision feedback 
equalizer algorithms. Through investigation of the summation 
properties in the calculation of the feed-forward and feedback 
gradient of DF-LCCP algorithm, a recursive gradient 
calculation method was derived. The method reduces the 
computational burden of )(NO  to )1(O , which is independent 
of the data block size N . From the results of the simulation, the 
proposed method yielded superior learning performance, but 
with reduced computational complexity. This indicates that the 
proposed recursive method of the gradient calculation of the 
decision feedback LCCP equalizer algorithm has the capability 
of compensation for multipath effect, impulsive and DC bias 
noise in the indoor VLC/PLC environment and is more 
appropriate for practical implementations.  
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