
 

 

  
Abstract— In this paper, the propagation of voltages and currents 

in lossless multiconductor transmission lines with one or more 
conductors periodically grounded is discussed. An general procedure 
for the computation of the characteristic impedance matrix is shown. 
The presented procedure is efficient, and can be applied to an 
arbitrary number of ungrounded and grounded conductors. 
Numerical results are shown for a typical line configuration, 
considering a direct lightning on the shield wire and discussing the 
effect that the termination has on the voltage propagation. 
 

Keywords—Characteristic impedance, Direct lightning, 
Multiconductor transmission line, Nonsymmetric Algebraic Riccati 
Equation (NARE), Periodical grounding.  

I. INTRODUCTION 
EVERAL numerical tools are nowadays available for the 
analysis of power lines, based on different solution 

methods and including several typologies of devices connected 
to the lines. They are able to consider networks of 
multiconductor transmission lines (MTL) with different kinds 
of conductors' geometries and complex configurations [1-5]. 

All the numerical tools have the common constrain to 
consider finite length lines. When the reference problem is an 
infinite length line, the problem is overcome by trimming the 
MTL to a chosen distance and by substituting each remaining 
semi-infinite part with its characteristic impedance matrix. If 
the MTL is not grounded on any wire, at the termination the 
characteristic impedance matrix will produce no reflections, 
just like the equivalent semi-infinite line.  

However, in several practical applications the MTL have 
some periodically grounded wires. This is common in 
transmission lines, where periodically grounded shield wires 
are placed over the power wires in order to intercept direct 
lightning [6], and also in distribution lines, for the mitigation 
of induced overvoltages due to indirect lightning [7-9].  

In all the applications where an MTL is periodically 
grounded on one or more wires, the characteristic impedance 
matrix is significantly different with respect to the non-
grounded case and plays a different role [10]. In fact, when a 
signal propagates along such a line, reflections occur at the 
periodical grounding points. In addiction, part of the current 
flowing trough the grounded wires is deviated to the ground at 
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each grounding point. So, in order to be equivalent to the 
semi-infinite line, the characteristic impedance matrix must 
have a proper frequency behavior, that have to reproduce all 
the expected reflections and attenuations [11].  

The particular behavior of the characteristic impedance 
matrix of an MTL with some periodically grounded wires is 
often neglected in numerical simulations. The characteristic 
impedance matrix of the non-grounded MTL is generally 
adopted for the grounded line. Therefore numerical 
simulations may be affected by an error due to the improper 
modeling of the system. The error occurs since the MTL 
terminations do not reproduce the correct reflections. 

In this paper we show a general procedure to compute the 
characteristic impedance matrix of a multiconductor 
transmission line periodically grounded on some wires. Then, 
for a practical configuration, we consider the direct lightning 
of the shield wire and we compute the voltages along the line, 
showing the different results obtained considering exact and 
improper line terminations. 

II. VOLTAGES AND CURRENTS PROPAGATION 
Let us consider a semi-infinite MTL with p non-grounded 

wires and s periodically grounded wires, as shown in Fig. 1. 
Then we name with m=p+s the total number of wires. 

 

... ...

... ...

... ...s non-grounded wires

p grounded wires

MTL cell

 
Fig. 1 Scheme of the MTL cells with the periodical grounding. 

 
The MTL is assumed to be lossless, this is acceptable due to 

the small length of each MTL cell (no more than some 
hundreds of metres). It has been already shown that, for 
practical values of the p.u.l. resistance, its influence on the 
characteristic impedance matrix is almost neglectable [12]. 

Due to this assumption, the per-unit-length inductance and 
capacitance matrixes L and C satisfy the relationship 
LC = 1/c2, being 1 an identity matrix and c the speed of light 
in the free space. In addition, the characteristic impedance of 
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the non-grounded MTL can be analytically expressed as 
cc /1

0
−== CLZ . The wires are numbered, independently 

from the effective spatial position, so that the wires from 1 to p 
are non-grounded and from p+1 to m are periodically 
grounded. 

Let us define with ( )zV  and ( )zI  the vectors of the voltages 
and currents of the different wires in the frequency domain, 
respectively. Among all the voltage and current vectors, the 
ones calculated in correspondence of the grounding points are 
the most relevant ones. Therefore we call them as 

( )nzn == VV  and ( )nzn == II with n = 0, 1, …, being   
the distance between two grounding points. 

Then, let us define as Rg the grounding resistance of the 
wires and G an mxm matrix where all the elements are zero but 
the last s ones on the main diagonal, namely Gi,i = 1/Rg with i 
= p+1, …, m. 

With these assumptions it is possible to express the chain 
matrix of the n-th elementary cell, namely 
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being c/ω=ϖ  the normalised frequency. 

If a finite length MTL is considered, including N cells, it has 
to be connected to a termination network. In general we call 

NZ  the impedance matrix representing the termination 
network, then at the end of the line it is of course verified the 
relation 

 

NNN IZV =   . (3) 
 
In order to evaluate the voltages and currents in this 

configuration, according to (1) and to the properties of the 
chain matrix, it is valid 
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If we define 
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yielding the (3), then it is found that 
 

( ) ( )2111
1

12220 SZSSSZI NN
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−
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So once the initial voltages 0V  or currents 0I  are known, 

relations (6) and (1) allow to compute the voltages and 
currents at every grounding point. 

A. Computational remarks 
Although the procedure in (4)-(6) is formally correct, since 

some of the eigenvalues of the matrix T are greater than 1, for 
high values of N some elements S diverge and so the 
computation of (6) may be numerically unstable. 

To overcome this problem, we can consider that, at the 
generic grounding point at distance z = i  , it is verified the 
relation 

 

iii IZV =   , (7) 
 
being iZ  the generic equivalent impedance at distance i  . 

From (2), it is possible to obtain a recurrence relation that 
allows to compute the succession of the equivalent impedance 
matrixes, according to 

 

( ) ( )1222
1

21111 ΤΤΤΤ −−=
−

− iii ZZZ    . (8) 
 
So, starting from the termination matrix NZ , it is possible 

to iteratively compute all the other equivalent matrixes. This 
procedure leads to the same results obtained using the (4)-(6), 
but avoiding numerical problems. 

B. Considerations on the line termination 
From the previous equations it is clear that the termination 

matrix NZ  plays a key role in the computation of the voltages 
and currents. 

If an ungrounded MTL is terminated on its characteristic 
impedance matrix 0Z , then the line will effectively have the 
behavior of a semi-infinite line. Then, if an MTL with some 
periodically grounded conductors is terminated on its proper 
characteristic impedance matrix, then proper reflections will 
occur at the terminations and the line will have again the 
behavior of a semi-infinite line. 

Otherwise a different behavior of the voltages and currents 
is found, due to the incorrect reflections occurring at the 
terminations. 

In this paper we investigate the influence of the termination 
matrix on the voltages and currents evaluations. However, in 
order to perform the comparisons, the characteristic impedance 
matrix of the considered network has to be computed at first. 
This task is not so trivial, since it requires the solution of 
second order matrix equation. 
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III. CORRECT COMPUTATION OF THE CHARACTERISTIC 
IMPEDANCE MATRIX 

The calculation of the characteristic impedance matrix that 
includes the effect of the periodical grounding is not a trivial 
task [13]. In order to simplify the procedure, it is possible to 
introduce a similarity transformation in order to decouple the 
transmission line phasor equations. In this case we introduce 
the transformations LT /ci = Ti and 1−= iv TT , and so the 

modal voltages VTV v=
~  and currents ITI i=

~ . It is worth 
noting that the chosen transformations are frequency 
independent and are applicable for every line configuration. 

In the transformed domain the characteristic impedance of 
the non-grounded MTL cell becomes an unitary matrix, i.e. 

1TZT =−1
0 iv
 , this simplify the chain matrix (2). By mean of 

this similarity transformation, the chain matrix (2) becomes 
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being LGLGTTG cvi == −1~ . Despite the matrix G is 

almost empty, the transformed matrix G~  is a singular real 
positive full matrix. 

If we introduce a the periodically grounded MTL 
characteristic impedance matrix in the modal domain cZ~ , it 

verifies the relation kck IZV ~~~
=  for every k = 0, 1, … . Then, 

with some simple manipulations, from (9) it is found 
 

( )[ ] 01GZZGZ =−−ϖ−
~~~~cot1~

ccc j   , (10) 
 

for every π≠ϖ k , with k = 0, 1, … 
So the expression of the characteristic impedance matrix can 

be found by solving a Nonsymmetric Algebraic Riccati 
Equations (NARE) with complex coefficients [14-17]. Riccati 
equation are second order non-linear equations that appears in 
several problems of physics and engineering [18-26]: the non-
symmetric ones with complex coefficients are probably the 
worst cases and the less studied in literature. It is not possible 
to find an analytical solution of such a problem, however a 
numerical procedure can be specifically applied for (10). 

At first, it is possible to make some consideration on the 
solution. It is possible to observe that all the quantities have a 
periodical dependence by the frequency, so even cZ~  will have 
a periodical behavior, being the period π=ϖ∆ , that is to say 

/cπ=ω∆ . This means that, once the solution if found in one 
period, all the spectrum is computed. This result also implies 
that the characteristic impedance matrix can’t be represented 
in terms of just rational functions and so it can be synthesized 
in time domain as a purely passive network. 

It is possible to find a solution of (10) by studying the 
Hamiltonian matrix associated to the equation. It is a mxm 

matrix defined as: 
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It can be found that (11) can be always diagonalized for 

π≠ϖ k . Then, by analyzing the eigenvalues of (11), it comes 
out that, on varying of the frequency, there are: 
 p distinct complex eigenvalues with phase between 0 

and π; 
 p distinct complex eigenvalues with phase always 

between 0 and –π; 
 the real eigenvalue +1 with algebraic multiplicity s; 
 the real eigenvalue –1, with algebraic multiplicity s. 
Now, support to sort the eigenvectors’ matrix placing in the 

first s columns the ones corresponding to the eigenvalue –1, 
that the p eigenvectors corresponding to 
 the complex eigenvalues with positive phase if 

kk +≤ϖ≤ 5.0 , for k = 0, 1, …; 
 the complex eigenvalues with negative phase if 

kk +≤ϖ≤+ 15.0 , for k = 0, 1, …; 
and finally the remaining eigenvectors. 

According to this choice, let us represent the corresponding 
eigenvector matrix as 
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It is also found that U11 is nonsingular, and the solution of 

(10) is 
 

1
1121
−−= UUZc

   . (13) 
 
Equation (10) has also other solutions, but the characteristic 

impedance matrix found with this specific procedure 
correspond to the only one physical solution. 

In order to show the characteristic impedance behavior in a 
practical case, we can consider the real 77 kV power line 
geometry as shown in Fig. 2, consisting of two three phase 
lines and a periodically grounded shield wire on the top. 
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Fig. 2 Line geometry: conductors 1-6 are phase conductors, conductor 7 is the 
periodically grounded shield wire. 
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The conductors cross section is 150 mm2. In our 

investigation we consider two borderline cases for the distance 
between grounding points: a very short distance (   = 50 m) 
and a very long one (   = 300 m). 

In Figs. 3 and 4 we show, as example, the real and 
imaginary parts of the term )11(,cZ  and )7,7(,cZ  of the 
characteristic impedance matrix in one period, for a distance 
between grounding points of 50 m..  
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Fig. 3 Coefficient 

)11(,cZ : plot over an entire period (left hand side) and zoom 

in (right hand side). Distance 


 = 50 m. 
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Fig. 4 Coefficient 

)7,7(,cZ : plot over an entire period (left hand side) and zoom 

in (right hand side). Distance 


 = 50 m. 
 
The computed values have been verified with a numerical 

circuit solver. A MTL cell with the last conductor connected to 
ground and ended on a termination network is considered, then 
the equivalent impedance at the beginning of the MTL is 
computed. If, and only if, the termination network corresponds 
to the characteristic impedance matrix, it also corresponds to 
the computed equivalent entrance matrix. A very good 
agreement between  

The real part has always an even behavior in the period, 

while the imaginary part is odd. As expected the terms of the 
characteristic impedance of the periodically grounded exhibit a 
strong dependence by the frequency, while all the terms of the 
characteristic impedance matrix in case of ungrounded MTL 
are not dependant by the frequency. Then, for higher values of 
the grounding resistance, the coefficients of the characteristic 
impedance matrix exhibit a smoother behavior. 

In Figs. 5 we show the same term of Figs. 3, but for a 
distance between grounding points of 300 m..  
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Fig. 5 Coefficient 

)11(,cZ : plot over an entire period (left hand side) and zoom 

in (right hand side). Distance 


 = 300 m. 
 
By comparing Fig. 3 and Fig. 5, it is found that the 

characteristic impedance seems to be invariant with respect to 
the grounding points, the difference is neglectable. This result 
is found for all the terms of the matrix, so we avoid to show 
further impedance plot. 

However, it must be remembered that the normalized 
periods used in the plots proportional to the distance between 
the groundings (i.e. c/ω=ϖ ). So the effective periods in the 
plots in Fig. 3 and Fig. 5 are different: this will influence the 
time domain simulations. 

IV. NUMERICAL RESULTS IN TIME-DOMAIN 
In this section we show, in a practical case, how the 

termination impedance matrix can affect the simulation of the 
voltage and current propagation in time-domain. 

We consider the case of a direct lightning hit on the shield 
wire of an infinite-length line, which conductors configuration 
is the one shown in Fig. 2. For simplicity we assume that the 
shield wire is hit at the grounding point. To evaluate the 
voltages and currents along the line, we have considered the 
model depicted in Fig. 6. 

The used lightning current is described by the sum of two 
Heidler functions [27], namely 
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Fig. 6 Configuration considered (top) and equivalent circuit (down). 

 
The adopted parameters are shown in Table I, which are 

representative of a subsequent stroke. 
 

LIGHTNING CURRENT PARAMETERS 
I01 

(kA) n1 
τ11 

(μs) 
τ21 

(μs) 
I02 

(kA) n2 
τ12 

(μs) 
τ22 

(μs) 
10.7 2 0.25 2.5 6.5 2 2.1 230 

 
As termination network we consider two solutions 

commonly adopted in literature and the one proposed in the 
previous section, that is to say: 
 the matrix 0Z , related to the ungrounded MTL; 

 the matrix cZ , related to the periodically grounded 
MTL and computed according to the procedure 
presented in the previous section; 

 the matrix dZ , related to an approximated solution 
where each phase conductor is terminated on its 
characteristic impedance computed in absence of the 
other conductors and the shield wires are directly 
terminated to earth [28]. 

We model each semi-infinite line (left and right of the hit 
point) by using just 2 MTL cell, including the grounding, and 
then we place the termination network. In such a configuration 
it is possible to observe that the different terminations 
influence the voltage and current computation. Of course only 
the termination correctly representing a semi-infinite line with 
its grounding will allow to compute the right voltages and 
currents. 

In order to have a benchmark to verify the voltages and 
currents in the previous case, we perform a further simulation 
by considering 20 MTL cells instead of 2, obviously much 
more time consuming. In such a configuration the voltages at 
the beginning of the line are practically independent by the 
termination, and so the computed values can be considered as 
the “correct solution” and used as term of comparison. 

In Fig. 7 we show the voltage produced on the conductor 1 
(top-left conductor) at the hit point, assuming a small value of 
the grounding resistance (Rg = 1 Ω) and considering a distance  
between the groundings of   = 50 m. It is observed that the 
voltages have the same peak value, but a difference in the 

descending part can be seen. So, a proper termination has a 
practical effect just on the tail part of the voltage. 
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Fig. 7 Voltage v1(t) at the hit point. Rg = 1 Ω, 


 = 50 m. 

 
In Fig. 8 we show the same, but this time for an higher value 

of the grounding resistance (Rg = 100 Ω). In this case the 
voltages differ in all their waveshape. If the line is terminated 
on the impedance matrix 0Z , the peak value is overestimated 

of about 30 %, while with the termination dZ  the peak value 
is underestimated of about 15 %. In addiction, due to the 
higher value of the grounding resistance, the voltages are 
higher as well, of course. 
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Fig. 8 Voltage v1(t) at the hit point. Rg = 100 Ω, 


 = 50 m. 

 
If we consider a larger distance between the groundings 

(   = 300 m), the previously observed behaviors are mitigated. 
For this distance in Fig. 9 we show as well the voltage 
produced on the conductor 1 at the hit point, assuming as 
grounding resistance Rg = 1 Ω. In this case the voltages have 
the same peak value and an almost similar behavior also in the 
tail part of the voltage. 

Then, in Fig. 10 we show the same  for Rg = 100 Ω. Also in 
this case the voltages differ in all their waveshape and are 
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overestimated when the line is terminated on 0Z  and 

underestimated when the line is terminated on dZ . In addition, 
due to the wider distance between the grounding points, a 
ringing effect produced by the reflections is much more 
evident, especially when the line is terminated on 0Z . 
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Fig. 9 Voltage v1(t) at the hit point. Rg = 1 Ω, 


 = 300 m. 
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Fig. 10 Voltage v1(t) at the hit point. Rg = 100 Ω, 


 = 300 m. 

 
Finally, just for the case of Rg = 100 Ω, where the 

differences are more evident, we also show the current flowing 
through the grounding at the hit point. In particular, in Fig. 11 
we show the case of a distance between the groundings 
  = 50 m and in Fig. 12 the case of   = 300 m. The 
waveshapes are similar to the one observed for the voltages, so 
similar consideration can be done. It is also observed, as 
expected, that for higher value of the grounding resistance the 
current flowing through the grounding decrease, while the 
voltages notably increases. 

The above calculations in time-domain are just a simple 
example. However they clearly show, in a practical case, the 
importance of properly terminating a periodically grounded 
line. The obtained results are quite general and can be assumed 
as valid for the most common configuration lines. 
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Fig. 11 Current ig(t) flowing through the grounding at the hit point. 
Rg = 100 Ω, 


 = 50 m. 
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Fig. 12 Current ig(t) flowing through the grounding at the hit point. 
Rg = 100 Ω, 


 = 300 m. 

 

V. CONCLUSIONS 
The paper shows a concrete method for the computation of 

the characteristic impedance matrix of a multiconductor 
transmission line with an arbitrary number of conductors 
periodically grounded. The problem involves the solution of a 
non-symmetric Riccati algebraic equation. The characteristic 
impedance matrix exhibit a periodical frequency behavior, 
significantly different from the case of ungrounded MTLs. It 
has also been shown that the characteristic impedance matrix 
is almost independent by the distance between the groundings, 
if it is computed in period normalized to the distance itself.  

Then, it has been shown, by means of simulations in time 
domain, how the proper termination of the transmission line 
affects the voltages at the hit point and the current flowing 
through the groundings. It has been observed that the effect is 
more relevant for higher values of the grounding resistance.  

The proposed method can be simply used both in frequency 
and time domain [13]. 

It has also been shown how the distance between the 
groundings influences the effect of the terminations on the 
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computation of the voltages and currents.  It has been observed 
that the effect is more relevant when the distance between the 
grounding is short. So this aspect is more relevant for 
distribution than for transmission lines. 

Finally, it is worth to make some considerations on the 
adopted model: a limitation used in the present paper is related 
to the assumption that the MTL is lossless. This hypothesis can 
be removed with minimal effort [12], in fact the introduction 
of conductive losses in the MTL just affect the chain matrix 
(9). By introducing more complex similarity transformation, it 
would be possible to reduce the problem to a NARE as in (10) 
with more complex coefficients. Then, the procedure proposed 
in Section III can be used as well, with different constraints on 
the eigenvalues to choose. However it has been observed that, 
due to the shortness of each MTL cell, the conductive losses 
just introduce a complication in the solution calculation, with 
no appreciable effect on the characteristic impedance matrix. 
So it is acceptable to neglect them. 
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