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Abstract— This paper proposes new combination algorithms for 

performance enhancement of Conjugate Gradient Method (CGM) for 
adaptive beamforming system in mobile communications. Although 
the pure Conjugate Gradient Method (CGM) has better performance 
compared with pure Normalized Least Mean Square (NLMS) 
algorithm, but we can obtains further performance enhancement 
when we combine these algorithms together in one algorithm. The 
first new combination algorithm (NLMS-CGM) uses (NLMS) 
algorithm with a (CGM). While the second propose algorithm 
(MNLMS-CGM) uses Modified NLMS (MNLMS) algorithm with 
CGM. The MNLMS algorithm is regarded as variable regularization 
parameter ߝ	ሺ݇ሻ that is fixed in the conventional NLMS algorithm. 
The regularization parameter ߝ	ሺ݇ሻ use a reciprocal of the estimation 
error square of the update step size of NLMS instead of fixed 
regularization parameter (ߝ ).  

With the new proposed (NLMS-CGM) and (MNLMS-CGM) 
algorithms, the estimated weight coefficients, which are acquired 
from the first (NLMS or MNLMS) algorithm, are stored and then 
used as initial weight coefficients for CGM algorithm processing. 
Through simulation results of adaptive beamforming system using an 
Additive White Gaussian Noise (AWGN) channel model, the NLMS-
CGM and MNLMS-CGM algorithms achieves about  5 dB and 13 dB 
improvement in interference suppression compared with a pure CGM 
algorithm respectively. Moreover, when these two algorithms applied 
for the Rayleigh fading channel with a Jakes power spectral density 
(worst case scenario), it provides about 4dB and 5 dB improvement 
over the pure CGM algorithm. The MNLMS - CGM algorithm 
provides fast convergence time and low level of missadjustment at 
steady state compared with the pure CGM and NLMS-CGM 
algorithms. 
 
Keywords— Beamforming algorithm, Least Mean Square 
(LMS), Normalized LMS (NLMS), Conjugate Gradient 
Method (CGM).  , Time-varying regularization parameter. 

 

I. INTRODUCTION 

he Least Mean Square (LMS) algorithm which was 
developed by Widrow and Hoff (1960) has an important 

features like simplicity and  it does not require measurements 
of the pertinent correlation functions, nor does it require a 
matrix inversion [1]. The main limitation of the LMS 
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algorithm is its relatively slow rate of convergence [1].In order 
to increase the convergence rate, LMS algorithm is modified 
by normalization, which is known as normalized LMS 
(NLMS) [1, 2]. We may view the normalized LMS algorithm 
as an LMS algorithm with a time varying step-size parameter 
[1]. 

Many approaches of time varying step size for NLMS 
algorithm, like Error Normalized Step Size LMS (ENSS), 
Robust Variable Step Size LMS (RVSS) [3], and Error - Data 
Normalized Step Size LMS (EDNSS) [3] and others are 
reported [3-15]. The generalized normalized gradient descent 
(GNGD) algorithm in 2004 [6], used gradient adaptive term 
for updating the step size of NLMS [6]. The first free tuning 
algorithm was proposed in 2006 [7] which used the MSE and 
the estimated noise power to update the step size [7]. The 
robust regularized NLMS (RR-NLMS) filter is proposed in 
2006 [8], which use a normalized gradient to control the 
regularization parameter update [8]. Another scheme with 
hybrid filter structure is proposed (2007) in order to 
performance enhancement of the GNGD [9]. The noise 
constrained normalized least mean squares (NC-NLMS) 
adaptive filtering is proposed in 2008 [10] which is regarded 
as a time varying step size NLMS [10]. Another free tuning 
NLMS algorithm was achieved in 2008 [11,12] and it is called 
generalized square error regularized NLMS algorithm (GSER) 
[10,11]. The inverse of weighted square error is proposed for 
variable step size NLMS algorithm in 2008 [13]. After that the 
Euclidian vector norm of the output error was suggested for 
updating a variable step size NLMS algorithm in 2010 [14]. 
Another nonparametric algorithm that used mean square error 
and the estimated noise power is presented in 2012 [15]. 

All these algorithms suffer from preselect of different 
constant parameters in the initial state of adaptive processing 
or have high computational complexity. In this paper, a 
Modified Normalized Least Mean Square algorithm 
(MNLMS) is proposed which is also tuned free (i.e. 
Nonparametric). It used time varying regularization ߝ	ሺ݊ሻ 
instead of fixed value (ߝ ).  

The gradient based directions method in some cases has 
slow convergence rate. In order to overcome this problem, 
Hestenes and Stiefel developed conjugate gradient method ( 
CGM) in the early 1950s [16]. The CGM suffers from that the 
rate of convergence depends on the conditional number of the 
matrix 	Aഥ . Therefore, many modifications have been proposed 
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to improve the performance of the CG algorithm for different 
applications [17].In [18]; the step size can be replaced by a 
constant value or with a normalized step a size [18].Moreover 
the preconditioning process is used to increase the 
convergence rate of the CGM algorithm by change the 
distribution of the eigenvalues of 	Aഥ  and clustered them around 
one point. 

In 1997, spatial and time diversity for CGM algorithm is 
used to obtain an algorithm for adaptive beamforming in 
mobile communication systems [19]. In 1999,they solved the 
problem of applying CGM for a small number of both 
snapshots and the array elements by proposing new forward 
and backward CGM (FBCGM) and multilayer (WBCGM) 
methods [20]. In 2013, interference alignment in time-varying 
MIMO (multiple input and multiple-output) interference 
channels was achieved by applying an approach based on the 
conjugate gradient method combined with metric projection is 
applied  for [20]. In 2013, adaptive block least mean square 
algorithm (B-LMS) with optimally derived step size using 
conjugate gradient search directions was proposed to minimize 
the mean square error (MSE) of the linear system [22]. 

Although the pure CGM has better performance compared 
with a pure NLMS algorithm, but we can obtain further 
performance enhancement when we combine these algorithms 
together in one algorithm. This paper presents a new approach 
to achieve fast convergence and higher interference 
suppression capability with the CGM based algorithm. The 
proposed algorithms involve the use of a combination of 
NLMS (or MNLMS) and CGM algorithms. In this way, the 
desirable fast convergence and good interference suppression 
capability of CGM is combined with the good tracking 
capability of variable step size method used by NLMS (or 
MNLMS). 

The paper consists of the following sections: The next 
section, introduces the concept of the adaptive LMS and 
NLMS algorithms. In section III, the proposed algorithm 
(MNLMS) will be presented and in section IV, the analysis of 
the time varying step size of MNLMS algorithm will be given. 
In section V, the CGM algorithm will be presented. Section VI 
will give the proposed two combination algorithms. In section 
VII, simulation results of the proposed algorithms as well as 
CGM algorithms are presented using two types of radio 
channels. In section VIII, an intuitively justification for 
performance enhancement of the proposed two algorithms will 
be presented. Finally, in the last section, we conclude the 
paper according to the simulation results. 

 

II. BASIC CONCEPTS OF LMS AND NLMS ADAPTIVE 

ALGORITHMS 

An adaptive beamforming algorithm system of M-element 
array can be drawn as in Fig. 1. This figure shows that, the 
weight vector wഥ ൌ ሾwଵ	wଶ 	… .w୑ሿ୘must be modified in such 
a way as to minimize the error while iterating the array 
weights [23].The signal s̅ሺkሻ and interferers 
iଵሺkሻ, iଶሺkሻ, … i୒ሺkሻ are received by an array of M elements 

with M potential weights [23]. Each received signal at element 
m also includes additive Gaussian noise. Time is represented 
by the kth time samples. Thus, the weighted array output can 
be given in the following form [23]: 

 
yሺkሻ ൌ 	wഥ୘ሺkሻ. xതሺkሻ                                               (1) 
 
Where 

 xതሺkሻ 		ൌ 	 aത଴s̅ሺkሻ ൅ ሾaതଵ	aതଶ 	… . aത୒ሿ	. ൦

iଵሺkሻ
iଶሺkሻ
⋮

i୒ሺkሻ

൪ ൅ nതሺkሻ 

 	ൌ 	 xതୱሺkሻ ൅ xത୧ሺkሻ ൅ nതሺkሻ= input signal                         (2) 
With 
wഥ ൌ ሾwଵ	wଶ 	… .w୑ሿ୘= array weights 
xതୱሺkሻ = desired signal vector 
xത୧ሺkሻ = interfering signal vector 
 

Fig. 1 Block diagram of adaptive beamforming algorithm 
 
nതሺkሻ = zero mean Gaussian noise for each channel 
aనഥ  = M-element array steering vector for θ୧  direction of 

arrival. 
Error signal is defined as the difference of desired signal 

dሺkሻ and output signal yሺkሻ[23] 
 
eሺkሻ ൌ dሺkሻ െ wഥ୘ሺkሻ	xതሺkሻ                                             (3) 
 
By using the gradient of cost function, the weight vector of 

LMS is: 
 
wഥሺk ൅ 1ሻ ൌ wഥሺkሻ ൅ μ	eሺkሻ	xതሺkሻ                                      (4) 
 
The parameter µ is constant and is known as the step size 

[23]. In order to guarantee stability of the LMS algorithm; the 
step size parameter is should be bounded by [24]. 

 

0 ൏ ߤ ൏ 	
ଶ

୲୰	ሾഥୖሿ
                                                                    (5)  

 
Where Rഥ is the correlation matrix. Note that all the elements 

on the main diagonal of  Rഥ (Where  Rഥ is an auto correlation 
matrix of xതሺkሻ) equal to ݎሺ0ሻ .Since ݎሺ0ሻ is itself equal  to the 
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mean  square value of  the input at each of  the M- taps in FIR 
filter, then 
tr	ሾRഥሿ ൌ M	rሺ0ሻ                                                                  (6)  
The LMS algorithm uses a constant step size μ proportional 

to the stability bound: 

ெ஺௑ߤ ൌ 	
ଶ

ெ	௥ሺ଴ሻ
                                                                    (7)  

Since knowledge of the signal statistic  ݎሺ0ሻ is not 
available, a temporary estimate of the ݎሺ0ሻ can be computed 
by:- 

ሺ0ሻݎ ൌ 	
ଵ

ெ
	xത்ሺ݇ሻxതሺ݇)                                                         (8)  

 Then the “normalized” ߤெ஺௑ሺ݇ሻ is given by 

ெ஺௑ሺ݇ሻߤ ൌ 	
ଶ

୶ത೅ሺ௞ሻ୶തሺ௞ሻ
                                                          (9) 

  This is the upper limit of step size, therefore, the practical 
equation for the step size used for NLMS is [24]: 
ே௅ெௌሺ݇ሻߤ ൌ 	

௨బ
ఌା	୶ത೅ሺ௞ሻ୶തሺ௞ሻ

                                                   (10)  

    Where ݑ଴ is a small positive constant and should be 
bound to guarantee the convergence of the NLMS algorithm 
[24], 

wഥሺk ൅ 1ሻ ൌ wഥሺkሻ ൅
μబ

ఌା‖୶തሺ୩ሻ‖మ
eሺkሻxതሺkሻ                          (11) 

Where             ‖xതሺ݇ሻଶ‖ ൌ 	 xത்ሺ݇ሻxതሺ݇ሻ 
 The fixed regularization parameter ߝ ൐ 0  is added to 

overcome the problem of dividing by small value for the 
xത்ሺ݇ሻxതሺ݇ሻ [23]. 

III. MODIFIED NORMALIZED LEAST MEAN SQUARE ALGORITHM 

(MNLMS) 

The proposed MNLMS algorithm introduces a new way of 
choosing the step size. The small constant ߝ in the NLMS 
algorithm has fixed effect in step size update parameter and 
may cause a reduction in its value. This reduction in step size 
affects the convergence rate and weight stability of the NLMS 
algorithm. In MNLMS algorithm, the error signal may be used 
to avoid denominator being zero and to control the step size in 
each iteration. According to this approach, the  ߝ parameter 
can be set as: 

 

ሺ݇ሻߝ ൌ
ଵ

ୣሺ୩ሻమ
                                                                      (12)  

The proposed new step size formula can be written as 
௠௡௟௠௦ሺ݇ሻߤ ൌ

ఓబ
ఌሺ௞ሻା‖୶തሺ௞ሻ‖మ

                                              (13) 

Clearly, ߤ௠௡௟௠௦ሺ݇ሻ is controlled by normalization of both 
reciprocal of the squared of the estimation error and the input 
data vector. Therefore, the weight vector of MNLMS 
algorithm is 
wഥሺ݇ ൅ 1ሻ ൌ wഥሺ݇ሻ ൅

௨బ
ఌሺ௞ሻ	ା‖୶തሺ୩ሻ‖మ

݁ሺ݇ሻxതሺ݇ሻ                     (14)                                         

 
As can be seen from (13), the step size of MNLMS reduces 

and increases according to the reciprocal of the squared 
estimation error and input tap vectors. 

In other word, when the error signal is large at the 
beginning of the adaptation process, ߝ	ሺ݇ሻ is small and the step 
size is large in order to increase the convergence rate. 
However, when error signal is small in steady state, ߝ	ሺ݇ሻ is 

large and the step size is small in order to get a low level of 
misadjustment at steady state as shown in Fig.2. This prevents 
the update weights from diverging and makes the MNLMS 
more stable and converges faster than NLMS algorithms. 

 

 
Fig.2 (a) Profile change of ߝ	ሺ݇ሻ parameter and (b) Profile change 

of step size parameters (ߤ௠௡௟௠௦ሺ݇ሻ) of MNLMS algorithm 

IV. ANALYSIS OF THE NEW PROPOSED STEP SIZE METHOD 

This section, will give an approximate performance analysis 
for the proposed time varying step size algorithm using a 
similar approach used in [4, 25]. 

The weight coefficients of the proposed algorithm are 
updating as in (17). This is rewritten as: 

 
wഥሺ݇ ൅ 1ሻ ൌ wഥሺ݇ሻ ൅                     ௠௡௟௠௦ሺ݇ሻ݁ሺ݇ሻxതሺ݇ሻ                      (15)ߤ
Let wഥሺ݇ሻ∗ represents the time varying optimal weight 

vector that is computed as [4]: 
wഥሺ݇ ൅ 1ሻ∗ ൌ wഥሺ݇ሻ∗ ൅                     ሺ݇ሻ                                           (16)݌	
Where ݌ሺ݇ሻ is the disturbance zero-mean white process [4]. 

Moreover, let   ߞ	ሺ݇ሻ represents the optimum estimation error 
process defined as [4]: 
ሺ݇ሻ	ߞ ൌ ݀ሺ݇ሻ െ xത்ሺ݇ሻwഥሺ݇ሻ∗                                           (17)                    
Or     
݀ሺ݇ሻ ൌ ሺ݇ሻ	ߞ ൅ xത்ሺ݇ሻwഥሺ݇ሻ∗	                                          (18)                    
Let vതሺ݇ሻ represents the coefficient misadjustment vector 

(error vector) defined as [25]: 
 vതሺ݇ሻ ൌ wഥሺ݇ሻ െ wഥሺ݇ሻ∗		                                                  (19)     
   Substitutes (18 and 19)  in (3) for ݀ሺ݇ሻ and  vതሺ݇ሻ 

respectively, then eሺkሻ in (3) becomes: 
eሺkሻ ൌ ሺ݇ሻ	ߞ	 ൅ xത்ሺ݇ሻwഥሺ݇ሻ∗ െ	xത்ሺ݇ሻwഥሺ݇ሻ    
eሺkሻ ൌ ሺ݇ሻ	ߞ	 െ vത்ሺ݇ሻxത்ሺ݇ሻ                                           (20)                    
Taking expected value of (20) after squaring it, then 
ሾ݁ଶሺ݇ሻሿܧ ൌ 	 ௠௜௡ߦ ൅  ሾGഥሺ݇ሻሿ                                (21)ݎݐଶሺxതሻߪ
Where  ߦ௠௜௡ ൌ  ଶሺ݇ሻሿ represents the MMSE (minimumߞሾܧ

mean-square error) [4],  ߪଶሺ࢞ሻ ൌ ሾxതሺ݇ሻଶሿ ,  and  Gഥሺ݇ሻܧ ൌ
 ሾvതሺ݇ሻvത்ሺ݇ሻሿ is the expected value of the coefficientܧ
misadjustment vector  ( error vector) [4]. 

Substituting (18), (19), and (20) into (15), we can easily 
show that 

 vതሺ݇ ൅ 1ሻ ൌ ሺ	ܫ െ ௠௡௟௠௦ሺ݇ሻxത்ሺ݇ሻxതሺ݇ሻሻvതሺ݇ሻߤ ൅
ሺ݇ሻ	ߞ௠௡௟௠௦ሺ݇ሻxതሺ݇ሻߤ	 െ                                               (22)	ሺ݇ሻ݌

Now assume that, ߤ௠௡௟௠௦ሺ݊ሻ is uncorrelated with  xതሺ݇ሻ  , 
and  ߞ	ሺ݇ሻ respectively, and the term  ݌ሺ݇ሻ is zero mean [4, 
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16], then the expected value of the weight vector is given by 
[4]: 
vതሺ݇	ሾܧ ൅ 1ሻሿ ൌ

ሾࡵ െ ሾxത்ሺ݇ሻxതሺ݇ሻሿܧሿ	௠௡௟௠௦ሺ݇ሻߤሾܧ ሿܧሾvതሺ݇ሻሿ                     (23)                
Then the convergence of the proposed algorithm is 

guaranteed if the expected value of the step size parameter is 
within the following bound: 
0	 ൏ ௠௡௟௠௦ሺ݇ሻሿߤሾܧ	 ൏ 2                                                  (24)  
 

V. CONJUGATE GRADIENT METHOD (CGM) 

The goal of CGM algorithm is to iteratively search for the 
optimum solution by choosing conjugate (perpendicular) paths 
for each new iteration [24]. CGM is an iterative method whose 
goal is to minimize the quadratic cost function [24] 

 

ഥሻݓሺܬ ൌ 	
ଵ

ଶ
ഥܣ	ഥ்ݓ തതതݓ		 െ ഥݓ்̅݀                                               (25) 

Where 	Aഥ 	 is the K x M matrix of array snapshots, (K = 
number of snapshots and M = number of array elements). 
dത ൌ ሾdሺ1ሻ	dሺ2ሻ	… . dሺKሻሿ୘  is the desired signal vector of K 
snapshots. It can be shown that the gradient of the cost 
function is [24]: 

 
ഥሻݓሺܬ௪ߘ ൌ 	 ഥܣ	 തതതݓ		 െ ݀̅                                                      (26) 
Starting with an initial guess for the weights		wതതതሺ1ሻ , then 

the first residual value r̅ሺ1ሻafter at the first guess (iteration =1) 
is given as [24]: 

 
ሺ1ሻݎ̅ ൌ 	െܬᇱ൫		ݓതതതሺ1ሻ൯ ൌ 	 ݀̅ െ ഥܣ	  തതതሺ1ሻ                              (27)ݓ	
The new conjugate direction vector Dഥ to iterate toward the 

optimum weight is [24]: 
 
ഥሺ1ሻܦ ൌ 	  ሺ1ሻ                                                              (28)ݎഥ்̅ܣ	
The general weight update expression is given by [24]: 
 
ഥሺ݇ݓ ൅ 1ሻ ൌ ഥሺ݇ሻݓ ൅ μ஼ீெሺ݇ሻܦഥሺ݇ሻ                                 (29) 
Where µେୋ୑ is the step-size of CGM and is given by [24]: 
 

μ஼ீெሺ݇ሻ ൌ
௥̅೅ሺ௞ሻ	஺ഥ 	஺ഥ೅	௥̅ሺ௞ሻ

஽ഥ೅	஺ഥ೅஺	ഥ஽ഥሺ௞ሻ
                                                (30) 

The residual vector update is given by [24]: 
 
ሺ݇ݎ̅ ൅ 1ሻ ൌ ሺ݇ሻݎ̅ ൅ μ஼ீெሺ݇ሻܣ	ഥܦഥሺ݇ሻ                               (31) 
and the direction vector update is given by [24]: 
 
ഥሺ݇ܦ ൅ 1ሻ ൌ ሺ݇ݎഥ்̅ܣ	 ൅ 1ሻ െ  ഥሺ݇ሻ                           (32)ܦሺ݇ሻߙ
A linear search is used to determine α (k) which 

minimizes	݆ሺwഥሺkሻሻ.  
 

ሺ݇ሻߙ ൌ
௥̅೅ሺ௞ାଵሻ	஺ഥ 	஺ഥ೅	௥̅ሺ௞ାଵሻ

௥̅೅ሺ௞ሻ	஺ഥ 	஺ഥ೅	௥̅ሺ௞ሻ
	                                             (33) 

Thus, the procedure to use CGM is to find the residual and 
the corresponding weights and update until convergence is 
satisfied.  

VI. THE PROPOSED NLMS-CGM AND MNLMS-CGM 

ALGORITHMS 

The convergence rate for CGM can be accelerated and the 
mean square error (MSE) can be minimized by use of different 
techniques. One such technique is combining more than one 
algorithm. This paper proposes an algorithm that uses a 
combination of the gradient based directions with conjugate 
gradient based directions. The two proposed algorithms can 
summarized as the following 

1. The first proposed algorithm is called NLMS-CGM which 
is a combination of NLMS and CGM algorithms. The CGM 
algorithm uses the weight vector that calculated by the NLMS 
algorithm as initial value to calculate the final optimal weight. 

2. The second proposed algorithm is called MNLMS-CGM. 
It makes use of two individual algorithm stages, based on the 
proposed MNLMS and CGM algorithms.  

With the proposed (NLMS-CGM) and (MNLMS-CGM) 
algorithms scheme, the estimated weight coefficients, obtained 
from the first NLMS or MNLMS algorithm, is storage, and 
then they used as initial weight coefficients for CGM 
algorithm processing. In this way, the CGM weight 
coefficients will not be initiated with zero value but with 
previously estimated values that are obtained from the first 
algorithm (NLMS or MNLMS). Table 1 shows the step 
sequence for both proposed algorithms. 

VII. SIMULATION RESULTS 

In this section, the pure CGM and pure NLMS are first 
tested in order to evaluate their performance without 
combination process .Then NLMS-CSM and MNLMS-CGM 
algorithms are evaluated and simulated for smart antenna 
applications.  

For the purpose of illustration and comparison, in all 
simulations presented here, a linear array consisting of M= 10 
isotropic elements with d ൌ 0.5λ element spacing is used 
under the following conditions.  

 Input signal Sሺkሻ ൌ cos	ሺ2πftሺkሻሻ with f ൌ 	
ଵ

୘
ൌ 900 

MHZ and	t ൌ ሺ1: kሻ ∗ T/k where k is the number of sample 
intervals and T is the time period. 
 Desired ( Angle of Arrival) AOA of θ଴ ൌ 	0଴ and two 

interfering signals, i1 and i2  with two AOA’s, θଵ ൌ
	45଴, 	θଶ ൌ 	െ30଴. 
 All weight vectors are initially set to zero. 
 Desired signal	dሺkሻ ൌ Sሺkሻ. 
 Initial step size parameter µ଴ ൌ 1 

 Regularization parameter (ߝ ) for NLMS is set to 1e-12.  
 Zero mean Gaussian noise with variance 	σ୬ଶ ൌ 0. 001 is 

added to the input signal for each element in the array. 
 Signal to Noise ratio (SNR) is set to 30 dB, and Signal to 

Interference ration (SIR) is set to 10 dB. 
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Table 1 NLMS-CGM and MNLMS-CGM algorithm 
Step 0 : Initialization ( NLMS or MNLMS) 
Set the parameters: K , AOA0, AOA1, AOA2, the order of the 
FIR and the number of array elements ; Generate the desired 
and interference signals; 
Get input data of K snapshots.     
Set  w	ሺ0ሻതതതതതതത ൌ ሾ0,0, … . . ,0ሿ୘ 
Step 1 : For k=  1, 2, ….. K/2 
Initialize columns of  	xത matrix of input data as 	xതሺ: , kሻ ൌ xሺkሻ 
Calculate the error signal as  

eሺkሻ ൌ dሺkሻ െ wഥୌሺkሻ	xതሺkሻ 
Update the weight coefficients as: 
 wഥሺk ൅ 1ሻ ൌ wഥሺkሻ ൅

μబ
ఌା‖୶തሺ୩ሻ‖మ

eሺkሻ	xതഥሺkሻ for NLMS 

 wഥሺk ൅ 1ሻ ൌ wഥሺkሻ ൅
୳బ

கሺ୩ሻ	ା‖୶തሺ୩ሻ‖మ
eሺkሻ	xതሺkሻ  for MNLMS 

End 
Store wഥሺ݇ ൅ 1ሻ  as wഥሺK/2ሻ  To be used as the initial weight 
for CGM. 
Step 2: Initialization (CGM)  
Iteration k=K/2+1 
Define matrix of array values for K time samples 	Aഥ  ,set 
	wതതതሺ1ሻ ൌ 	wഥሺK/2ሻ ;  
r̅ሺ1ሻ ൌ 	dത െ 	Aഥ 	wതതതሺ1ሻ ; Dഥሺ1ሻ ൌ 	 	Aഥୌr̅ሺ1ሻ; 
Step 3: for k=K/2+1: K/2+2, ...., K 
Compute the following: 
 µେୋ୑ሺkሻ ; update the weight coefficients as: wഥሺk ൅ 1ሻ ൌ
wഥሺkሻ ൅ µେୋ୑ሺkሻDഥሺkሻ ;  
update CGM parameters  r̅ሺk ൅ 1ሻ; αሺkሻ;  Dഥሺk ൅ 1ሻ;  
End 
 
 

 
 

A.  Simulation of Jakes Fading Model  

The Jakes fading model which is used in the simulations, 
also known as the Sum of Sinusoids (SOS) model, is a 
deterministic method for simulating time-correlated Rayleigh 
fading waveforms and is still widely used today.  

The model assumes that N equal-strength rays arrive at a 
moving receiver with uniformly distributed arrival angles 
α୬, such that ray n experiences a Doppler shift ω୬ ൌ
	ω୫	cos	ሺα୬ሻ, where ω୬ ൌ 2πfୡv/c	 is the maximum Doppler 
frequency shift, v is the vehicle speed, fୡ is the carrier 
frequency, and c is the speed of light. As a result, the fading 
waveform can be modeled with No + 1 complex oscillator, 
where No = (N/2 - 1) /2. This leads to the equation [25] 

T୩ሺtሻ ൌ ට ଵ

ଶ୒ାଵ
	൛2∑ ሺcosβ୬

୒బ
୬ୀଵ ൅ jsinβ୬ሻ cosሺω୬cosα୬t ൅

θ୬୦ሻ ൅ √2 cosሺω୫t ൅ θ଴୦ሻൟ                                                (34) 
 
Where, h is the waveform index, h=1, 2….N0 and λ is the 

wavelength of the transmitted carrier frequency. Here	β୬ 	ൌ
	πn/ሺN0 ൅ 1ሻ. To generate the multiple waveforms, Jakes 
suggests using [25] 

 

θ୬୦ ൌ
π୬

୒బାଵ
൅

ଶπሺ୦ିଵሻ

୒బାଵ
                                                     (35) 

 
The output was shown as a power spectrum, with the 

variation of the signal power in the y axis and the sampling 
time (or the sample number) on the x axis [25]: 

 

T୦ሺtሻ ൌ ට
ଶ

୒బ
	൛∑ ሺcosβ୬

୒బ
୬ୀଵ ൅ jsinβ୬ሻ cosሺω୬cosα୬t ൅ θ୬୦ሻൟ  

                                                                                          (36) 
To present a worst case scenario, a Doppler frequency fୢ of 

117 Hz, corresponding to a mobility of 140 km/h at 900 MHz, 
is used in the simulation. The Rayleigh Envelope that results 
for inputs of v = 140 km/h, fୡ = 900 MHz, fୱ =500 kbps, U 
=3and M = 1000000, is shown in Fig.3, where U is the 
number of sub-channels and M is the number of channel 
coefficients. 

 
Fig. 3 Simulation of Jakes fading model with v = 140 km/h. 

 

B. The Simulation Results of the Pure CGM and Pure 
NLMS Algorithms  

In order to properly assess the performance of smart 
antenna for mobile communication systems, an Additive 
White Gaussian Noise (AWGN) channel model is required 
that each received signal at element m in Figure1 includes 
only an additive, zero mean, Gaussian noise into account. 

Figure 4 presents the linear plot of the radiation pattern for 
the pure CGM, and pure NLMS algorithms. This figure shows 
that the pure CGM generates a null of about −29 dB at 
interference angle -30o and 45o respectively. While the pure 
NLMS algorithm generates a null of about −20 dB. Figure 5 
shows the Square Error (MSE) learning curves for both pure 
CGM and NLMS algorithms. 

Figure 6 shows the magnitude estimation for one element 
weight (w4) for each algorithm. As can be observed from this 
figure, the pure CGM and NLMS start convergence towards 
the optimum (desired) weight from the arbitrary weight value 
to the optimum weight value.  
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Fig.4 Linear radiation patterns for the pure CGM and pure NLMS 

algorithms 

 
Fig. 5 Error Square Learning Curves for the pure CGM, and pure 

NLMS algorithms 
 

 
Fig. 6 One weight estimation for the pure CGM, and pure NLMS 

algorithms 
 
Figure 7 presents the linear plot of the radiation pattern for 

the CGM, and NLMS-CGM algorithms. This figure shows 
that the CGM generates a deeper null of about −29 dB while 
NLMS-CGM generates a null of about −34 dB. This means 
that the proposed NLMS-CGM algorithm has about 5 dB 
improvement in interference suppression compared with CGM 
algorithm. 

 

 
Fig.7  Linear radiation patterns for pure CGM, NLMS-CGM 

algorithms/AWGN. 
 

C. The Simulation Results of the Proposed Algorithms 
Using the AWGN Channel 

The number of samples used is K=20 .In all next simulation 
results the paper will focuses in pure CGM and two proposed 
algorithms only because the pure CGM has better performance 
than the pure NLMS and also to make the figures more 
clearly. 

Figure 8 presents the linear plot of the radiation pattern for 
the CGM, and MNLMS-CGM algorithms. This figure shows 
that MNLMS-CGM generates a null of about −42 dB and -39  
dB at interference angle -30o and 45o respectively. This means 
that the proposed MNLMS-CGM algorithm has about 10-13 
dB improvement in interference suppression compared with 
CGM algorithm. In other words, the MNLMS-CGM algorithm 
enhances the performance of both CGM and NLMS-CGM 
algorithms. 

 

 
 Fig. 8 Linear radiation patterns for pure CGM, MNLMS-CGM 

algorithms/AWGN. 
 

Figure 9 shows the MSE curve for the CGM, NLMS-CGM, 
and MNLMS-CGM algorithms. It can be seen that, the 
proposed algorithms can achieve a faster convergence rate (1 
iteration only) than the CGM algorithm (4 iterations).  
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Fig.9  Error Square Learning Curves for pure CGM, NLMS-CGM, 

and MNLMS-CGM /AWGN 
 

Figure 10 shows the magnitude estimation for one element 
weight (w4) for each algorithm. As can be observed from this 
figure, the NLMS-CGM and MNLMS-CGM start 
convergence towards the optimum (desired) weight from the 
first initial iteration. On the contrary, the CGM algorithm 
starts to converge from the arbitrary weight value to the 
optimum weight value.  

 
Fig.10 One weight estimation for pure CGM, NLMS-CGM, and 

MNLMS-CGM /AWGN 
 

D. The Simulation Results of the Proposed Algorithms 
Using the Rayleigh Fading Channel with Jakes Model  

The proposed and CGM algorithms are simulated over 
Rayleigh fading channel with Jakes model (shown in Fig.3) 
when the number of samples used is 20. Figure 11 presents the 
linear plot of the radiation pattern for the CGM, and NLMS-
CGM algorithms. This figure shows that the CGM generates a 
deeper null of about −24 dB and -28 dB at interference angle -
30o and 45o respectively. While NLMS-CGM generates a null 
of about −28 dB and -29.5 dB at interference angles. This 
means that the proposed NLMS-CGM algorithm has about 
1.5-4 dB improvement in interference suppression compared 
with CGM algorithm. 

 
Fig.11  Linear radiation patterns for pure CGM, and NLMS-CGM 

algorithms/Rayleigh channel 
 
Figure 12 presents the linear plot of the radiation pattern for 

the CGM, and MNLMS-CGM algorithms. This figure shows 
that MNLMS-CGM generates a null of about −29 dB and -30  
dB at interference angle -30o and 45o respectively. This means 
that the proposed MNLMS-CGM algorithm has about 2-5 dB 
improvement in interference suppression compared with CGM 
algorithm. In other words, the MNLMS-CGM algorithm 
enhance the performance of both CGM and NLMS-CGM 
algorithms. 

Figure 13 shows the MSE curve for the CGM, NLMS-
CGM, and MNLMS-CGM algorithms. It can be seen that, the 
proposed algorithms can achieve a faster convergence rate (2 
iterations only) than the CGM algorithm (6 iterations).  

Figure 14 shows the magnitude estimation for one element 
weight (w4) for each algorithm . As can be observed from this 
figure, the NLMS-CGM and MNLMS-CGM algorithms that 
the weight converges to its optimum value quickly and 
without fluctuation compared with the CGM algorithm.  

 

 
Fig.12 Linear radiation patterns for pure CGM, and MNLMS-

CGM algorithms/Rayleigh channel 
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Fig. 13   Error Square Learning Curves for pure CGM, NLMS-

CGM, and MNLMS-CGM / Rayleigh channel. 
 

 
 

Fig. 14  One weight tracking for pure CGM, NLMS-CGM, and 
MNLMS-CGM / Rayleigh channel. 

VIII. PERFORMANCE ANALYSIS OF THE PROPOSED 

ALGORITHMS 

In the CGA algorithm, weights are initialized arbitrarily 
with wഥሺ0ሻ ൌ 0 and then are updated. In order to speed up 
convergence, an initial weight vector, that has been coming 
through the NLMS (or MNLMS) algorithm, is used. After the 
initial weights vector derivation, and the antenna beam is 
already scanned to the incident direction of the desired signal 
(by NLMS or MNLMS), then the CGM starts its operation. 

 When the CGM algorithm begins adaptation, the antenna 
beam has already steered close to the approximate direction of 
the desired signal. Therefore CGM algorithm takes less time 
to converge compared with pure CGM. After that, even if the 
signal environment changes, the two proposed combined 
algorithms are able to encounter these changes. In our paper, 
we consider a system which the environmental change is slow 
(AWGN channel) and strong (Rayleigh fading channel with a 
Jakes power spectral density (worst case scenario)). Under this 
condition, with the signal environment change, NLMS (or 
MNLMS) algorithm can track the desired signal with fast 
convergence time because both NLMS and MNLMS 
algorithms have time varying step size.  

Therefore, we combine good tracking capability of time 
varying step size NLMS (or MNLMS) with the fast 

convergence rate capability and deep null of CGM. The 
outcome of combined algorithms is fast convergence rate, 
high, deep null (interference suppression), low level of 
misadjustment, and high stability in steady state. 

IX. CONCLUSION 

This paper presents a new approach to achieve fast 
convergence and higher interference suppression capability 
with the CGM based algorithm. The proposed algorithms 
involve the use of a combination of NLMS (or MNLMS) and 
CGM algorithms. In this way, the desirable fast convergence 
and stability of CGM is combined with the good interference 
suppression capability of NLMS (or MNLMS). 

The MNLMS algorithm is an improved version of the 
NLMS algorithm which used time variable regularization 
parameter for updating the step size of the NLMS algorithm 

Through simulation results of adaptive beamforming using 
AWGN the Rayleigh fading channels, show performance 
enhancements of the proposed algorithm in terms of fast 
convergence rate, and interference suppression capability 
compared to the pure CGM and pure NLMS algorithms for 
both radio channels. 
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