

Abstract— This paper proposes real time implementation on

FPGA for moving objects detection and classification using Handel-
C language; the results are shown in RGB video format. In the first
part of our work, we propose a GUI interface programmed using the
Visual C++ that facilitates the implementation for non-initiate users;
from this GUI, the user can program/erase the FPGA or change filters
or threshold parameters. The second part of this work details the
hardware implementation of real-time motion detection algorithm on
a FPGA including the capture, processing and display stages using
DK IDE. The third part details the algorithm used to classify the
moving objects into humans, vehicles and clutter. The targeted circuit
was an XC2v1000FPGA embedded on the Agility RC200E board. A
PixelStream-based implementation has been successfully performed
and completed with a test validation on real-time motion detection
and classification.

Keywords—FPGA, Handel-C, Motion detection, Object
classification, Real Time, video surveillance.

I. INTRODUCTION
Detection of moving objects in video streams is known to be

a significant and difficult research problem [1].There are many
methods dealing with this problem, temporal difference
[2][3][4][5][6][7], background subtraction [8][9][10][11] and
optical flow[12][13] . After successfully detecting the moving
objects, the problem of identification and classification of
these objects follows automatically. There are two main
categories of approaches towards moving object classification:
Shape-based identification and Motion-based classification
[14].

Showing the results of moving object detection in RGB will
greatly improve the performance of object recognition,
classification, identification and motion analysis and will help
significantly the operators to make decisions. However, the
computational complexity and the huge information for video
involved in object detection and segmentation makes it
difficult to achieve real-time performance on a general purpose

K. Sehairi is with the LTSS laboratory, Amar Telidji University, Laghouat,

Algeria. An Assistant Professor in Teacher’s Superior School of Laghouat
ENS-L, Algeria (phone number: +213-661931582; e-mail:
k.sehairi@mail.lagh-univ.dz).

C. Benbouchama is an associate professor in Polytechnic Military School,
Algiers, Algeria (e-mail: ben_cherrad@yahoo.fr).

F. Chouireb is an associate professor with the Electrical Engineering
Department, Amar Telidji University, Laghouat, Algeria (e-mail:
chouirebfatima@yahoo.fr).

CPU. There exist many architectural approaches to this
challenge: 1) Application Specific Integrated Circuit (ASIC),
2) Parallel Computing, 3) GPUs, 4) DSPs, 5)FPGAs. Evolving
high density FPGA architectures such as those with embedded
DSP multipliers, memory blocks and high I/O (input/ output)
pin count make FPGAs an ideal solution in video processing
applications [3].

In our implementation, the detection of objects in motion is
based on image segmentation, carried out by calculating the
differential image of two consecutive frames [2][3][7][15]. In
order to detect the object in motion, the flow of data acquired
from camera will be split in two parallel sub-blocks; the first
one will be converted from YCbCr to gray-scale and will be
used to feed the analysis block. The second sub-block will be
converted from YCbCr to RGB and merged with the result of
the analysis sub-block. The video has a resolution of 720x576
and the object in motion will be presented in a bounding box
around it. For this implementation, we should respect two main
constraints: the real time processing and the resources of the
targeted FPGA. In addition to that, we were interested in
developing a Graphical User Interface in order to send the bit-
file that configures our FPGA, erases it or changes a parameter
in filter, like the threshold parameter. This helps non initiate
users to use the program without the necessity to know the
hardware architecture and the IDE.

II. RELATED WORKS
Many methods and techniques for motion detection have

already been proposed, in [16] they have been classified in
three large categories: Background subtraction, temporal
difference, optical flow. K.Ratnayake and A.Aishy [3]
developed an algorithm for object segmentation and
implemented it in Xilinx XC2VP20 using VHDL; they used
frame difference algorithm with a spatio-temporal threshold,
the design ran at 133Mpixel/s. In another work presented by
M.Gorgon, P.Pawlik et al. [8], the authors used the method of
Sum of Absolute Differences to detect vehicles for road traffic,
the language used was the Handel-C with the PixelStream
library of DK Agility, the implementation was done on RC300
board fitted with an FPGA VirtexIIV6000. The results showed
that this implementation process 25 standard PAL images in
gray scale with resolution of 576x768 in every second, the
number of CLBs used is 11%, 5% block RAMs, and 32% of
I/O blocks.

A Real Time Implementation on FPGA of
Moving Objects Detection and Classification

K. Sehairi, C. Benbouchama, and F. Chouireb

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 160

Another work presented by Wen [4], in which he developed
an algorithm to detect and track human motion using the frame
difference method with an adaptive threshold, whose
parameter was calculated from the difference of smoothed
image by Gaussian filter and the original image, the algorithm
showed a good result in detecting motion but errors still
appeared due to change of brightness or shadow problem. A
recent work on frame difference method presented by Wei et
al. [7], in which they propose improving this algorithm by
using a new method described in four steps: firstly, an absolute
differential image is calculated from two consecutive gray
frames in image sequences. Secondly, the absolute differential
image is filtered by low-pass filter, and translated into binary
image. Thirdly, a number of binary images are calculated by
some gray images in the image sequences. Finally, motion
object region is extracted by arithmetic operations of pixels
from binary images mentioned above. This work was not
implemented on FPGA, but the result of this algorithm shows
that the moving object can be detected precisely. Similarly,
Widwayan et al. [17] work on motion detection by combining
the frame difference method and Dynamic adaptive template
matching in order to increase the accuracy; the image was
captured every second from an IP camera and with a resolution
of 256x192.The results show that the algorithm provides
detection accuracy of 95,5%.

Menezes and Silva-Filho [2] implemented on FPGA the
method of background subtraction using a new motion
detection architecture ; the goal was the comparison between a
software implementation (on an Intel Celeron 2.66Ghz) and a
hardware implementation on FPGA SpartanII; the resolution
of the video was 126x76, the results showed that the hardware
implementation was 7.5 times faster than a software
implementation. In [9] L. Ovsenik et al. designed a system of
video surveillance in which they used the background
subtraction as a first step to detect motion and then track and
identify the subject in motion using optical correlator (based
on comparing two signals by utilizing the Fourier transforming
properties of a lens), the results were applied on detecting an
abandoned luggage.

Also, in the classification stage, different descriptions of
shape information of motion regions such as representations of
point, box, silhouette and blob are available for classifying
moving objects [14]. For example, Lipton et al. [6] used the
dispersedness and area of image blob as classification metrics
to classify all moving object blobs into humans, vehicles and
clutter. Another work by Ekinci et al. [18] also used silhouette-
based shape representation to distinguish humans from other
moving objects and also to recognize the action using
skeletonization method. A similar work for pedestrian
detection was done by Janta et al. [19] , in which they used the
log-gabor filter to extract features and the support vector
machines (SVMs) to recognize the pedestrian.

 In motion-based identification, we are more interested in
detecting the periodic motion of non-rigid human articulated,
for example the work presented by Ran et al.[20] in which the

authors examine the periodic motion of gait to classify the
pedestrian and track it.

For the graphical user interface (GUI), a similar work is
done by E.Kobzili et al.[21] in which they used this design for
an FPGA implementation of several types of edge detection;
the targeted circuit was an FPGA VirtexII embedded on the
RC200 board.

III. THE SOFTWARE-HARDWARE MIXED DESIGN
To make our implementation more flexible, we use the

software-hardware platform approach; it simplifies the use of
the hardware side and also simplifies the change of data
between the soft and the hard, especially for image processing
applications that need many parameters to be changed for
example the parameters of convolution filter. In our
conception, we used the Handel-C language for the hardware
part; Handel-C is a behavioral oriented programming language
for FPGA HW synthesis and it is adapted to the co-design
concept [21].

The software side was developed using the VisualC++
language. After generating the bit file using the Agility DK
[22]; we will use the software interface which we have
developed to charge this bit file via the parallel port (with a
frequency of 50Mhz) on the RC200E board to configure the
FPGA. The algorithm parameters will be transferred using this
port with the same frequency with 8 bits data length. For the
user, these operations are hidden and the graphical user
interface allows him to configure or erase the FPGA and to
change the algorithm parameters, as an example in our case,
we can change the threshold value according to the brightness
of the scene.

IV. OUTLINE OF THE ALGORITHM

A. PixelStrams library [23]
Before we detail and explain our algorithm and the method

used to achieve our goals, we should speak about the tools
used for this implementation. We used the RC200E board
fitted with an FPGA XC2V1000 [24], this board has multiple
video input such as (S-video, Cameran video and composite
video) and video output (VGA, Svideo, composite video) and
two ZBT SRAM with a 2Mb capacity. The language used is
Handel-C [25], and the Integrated Development Environment
is DK5 of Agility, and this environment is equipped with
different platform development kits (PDK) that contain the
Pixel Stream.

Pixel Stream is a library used to develop a system for image
and video processing. It comes with many blocks, named
filters, which can make a primary video processing like
acquisition, streams conversion and filtering. The user has to
associate these blocks carefully indicating the type of the
stream (Pixel type, coordinates type, synchronization type).
Then he can generate the algorithm in Handel-C, and then he
has to add or modify the blocks to program his method and he
must finally merge the results. It is worth mentioning that these

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 161

blocks are parameterizable. That means we can modify the
parameters of image processing, for example the size of the
acquired image or the parameter of threshold and these blocks
are fully optimized and parallelized. Fig. 1 shows the GUI of
Pixel Stream.

Fig. 1 PixelStream GUI

As mentioned in the introduction, the flow of data will be

split in two parallel sub-blocks: an analysis sub-block and a
display sub-block. Fig. 2 shows a basic block diagram
outlining the algorithmic structure of the object detection
process of the system already developed.

Fig. 2 Object detection process algorithmic basic block diagram

The object detection process can be broken down into the

following stages:

B. Image acquisition and splitting
The images acquired from the RC200E board camera, fitted

with a Philips SAA7113H video input processor, are in YCbCr
color format. These images will be split using the Pixel Stream
library of Agility DK, into 2 streams that feed our two sub-
blocks. In the display block, we convert the stream from
YCbCr to RGB to be able to display it in VGA screen. In the
analysis block, we convert the second stream to Gray-scale
level to reduce the amount of data analyzed, this will help us to
reach the real time constraint and reduce clearly the resource
consumed of the FPGA.

 There are two ways to do the conversion, either before or
after split. If we choose the conversion before split, we have to
convert the stream from YCbCr to RGB (such conversion is
lossy and should be avoided wherever possible [17]), after that
in the analysis block we convert the stream from RGB to gray

scale level. But in this case we will increase the number of
multiplications to convert the stream from YCbCr to RGB then
from RGB to gray-scale level. This conversion can be done by
different methods and all these methods use the division
operation, which will be avoided especially in FPGA
applications. In the average method, we have to divide the sum
of three RGB components by three, the lightness method
divide the difference between max and min of the three
components for each pixel by two and the luminosity method
implies taking 30% of the red component plus 60% of the
green component and 10% of the third component [] (Fig. 3-
a).

In the second case, if we choose the conversion after
splitting, we have to convert the stream in every sub-block
(Fig. 3-b). In the display block we convert the stream from
YCbCr to RGB and in the analysis block we convert it from
YCbCr to gray-scale. In this conversion, we just take the
component Y because it represents the Gray-scale level in the
YCbCr format. So we see clearly that we use less resource by
avoiding many multiplication operations or division (to
convert RGB to gray Scale, case one). Moreover, we are
obliged to do approximations in the conversion from YCbCr to
RGB, and this conversion is not suitable for the analysis block,
that needs all the information captured from the camera. So we
choose to let the conversion after split in every branch of sub-
blocks. Fig. 3 shows the possible ways to do the conversion;
the preferred one is the one presented at the bottom of this
figure.

Fig. 3 Possible ways to do the conversion, (a) before splitting, (b)

after splitting

C. Analysis block
1. Temporal difference
Temporal difference is a simple method to extract moving

objects. It presents an advantage in dynamic environments
(example: sun rise). The technique is simple, it consists of
saving the first image acquired in frame-buffer It-1(x, y) and
acquiring a second frame It(x, y). This second frame will
activate the delay cell to diffuse the image stored in the frame
buffer according to the coordinate of the pixel. Then the two
streams will be synchronized and subtracted (Eq.1). Fig. 4

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 162

shows the delay cell and difference diagram.

, 1 1
(,)(,) (,) (,) (,) t t t t

dI x yx y I x y I x y I x y
dt

ζ − −= = ∆ = − (1)

Fig. 4 The delay cell and difference diagram

After that, to get the region of changes, the difference image
is thresholded to remove the small changes of luminosity
between the two instants (Eq.2).

0 if ζ(x,y)<Th
Ψ(x,y)=

1 otherwise




 (2)

We should also mention that by a frame buffer we mean the

external SRAM in our board RC200E. We have not used the
blockRAMs of our FPGA because their capacity is 720Kbits,
and this amount lets us deal with an RGB image with a
resolution of only 240*128.

2. Block of analysis and statistics
When we get the region of changes from the thresholded

difference image, we search in this block the minimum and the
maximum along X and Y image axes. Table I shows the code
for calculating the Min and Max in Handel-C to give an idea
and comparison with the standard C language. In this code, we
have used the parallelism instruction (par{}) to calculate these
values in one cycle.
Table I. Handel-C program to calculate the Min and Max along the
axes X and Y

It is better to apply a filter before calculating these values to
remove the noise; we generally use a median filter or a
morphological filter.

To find the center of gravity (COG), we calculate the sum of
non-zero pixels coordinates along X and Y axes, and divide
this sum by its number. To avoid division we can easily
approximate the COG of the object by calculating the COG of
the surrounding box, and for that we take the difference

between the min and the max in each image axis and shift right
one bit to produce the division by two, to which we add the
min value (Table II).

Table II. Handel-C program to calculate the COG

Once coordinates of the center of gravity are obtained, we
copy the values to specific block in the display sub-block
where we can plot a rectangle around the detected object.
Finally we reset the values of min and max in the two axes.

Fig. 5 shows the result of a temporal difference in our scene

obtained using Matlab to visualize the result. We see clearly
that the temporal difference gives a non-closed edge of the
mobile object. If we search the max and the min along the X
and Y axes, we can easily obtain the points to make a
bounding box on the object in motion.

Fig. 5 Temporal difference and the Min and Max in X and Y axis

D. Display block
As stated above, the stream in the display block is converted

to RGB. Next we store the image in Frame buffer and wait for
the block of analysis to deliver the coordinate of the center of
gravity or the four points of the rectangle calculated from the
min and max along the two axes X and Y. These points serve
us as an input to the block that draws the rectangle.

Using the PxsCursor and PxsConsole we can add a cursor in
the center of gravity of the object and add a warning text like
"Warning there is motion". For two objects we use two blocks
to draw a rectangle around each object. Finally we can copy

unsigned Minx, Miny, Maxx, Maxy;
Minx=720;Miny=576;Maxx=0;Maxy=0;
If (Value==255) {
par{
Minx=((unsigned 16)xx<= Minx0)?((unsigned 16)xx):Minx;
Miny=((unsigned 16)yy<= Miny0)?((unsigned 16)yy):Miny;
Maxx=((unsigned 16)xx>= Maxx1)?((unsigned 16)xx):Maxx;
Maxy=((unsigned 16)yy>= Maxy1)?((unsigned 16)yy):Maxy;
 }
 }
else {delay;}
Copy the values
Reset all the values

if (Value ==255) {
 par{N+=1; sumX+= Coord.X;sumY+= Coord.Y;}
 }
else{delay;}
then
xg=sumX/N;
yg=sumY/N;

The MaxX, minx, MaxY, miny has been already
calculated.
xg=minx+(MaxX-minx>>1)
yg=miny+(MaxY-miny>>1)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 163

stream to VGA output to visualize in a screen. Fig. 6 shows all
the diagram of motion detection in RGB.

Fig. 6 Diagram of motion detection

V. OBJECT CLASSIFICATION
Moving regions detected in video may correspond to

different objects in real-world such as pedestrians, vehicles,
clutter, etc. It is very important to recognize the type of a
detected object in order to track it reliably and analyze its
activities. In our case, the technique we used is based on basic
recognition and classification method, the criteria height/width
ratio. This method is simple but needs the result of detection to
be well segmented. After segmentation, we compute both the
width and the height of each detected object, from this ratio we
can even specify this moving object whether it is pedestrian or
vehicle or other. Figure (11) summarizes the method used for
classifying objects.

Fig.11.Classification flowchart

For each moving object, we will compute the height/width

ratio, if this ratio is superior than 1.1, the moving object is a
human being, else we will test the ratio again, if this ratio is
less than 0.7 the moving object is a vehicle, else it represents
another thing.

The ratios to specify each class are obtained after testing
many scenes; figure (12) and (13) show the ratio changes for
pedestrian and vehicle respectively for a scene of 50 images, in
which, we see that the ratio (height/width) does not fall below
1.1 in case of pedestrian and does not exceed 0.7 for vehicle.

Fig.12.Pedestrian change ratio

Fig.13.Vehicle change ratio

For implementation of this algorithm, we have already
calculated the Min and Max along the X and Y image
axis in the analysis sub-block. Using these values, we
calculate the Width and the Height for each moving
objects. Also to avoid the division we have replaced the
condition to detect human beings ()/ 1.1Height Width >
by the condition ()10. 11.Height Width> , the same for
detecting vehicles the condition becomes
()10. 7.Height Width> .

VI. 5BIMPLEMENTATION RESULTS
In this section, we demonstrate the effectiveness of the

proposed algorithm to work in real time and do the detection
in RGB with minimum resources consumed.

Fig. 7 shows the graphical user interface (GUI) that
represents the mixed Software/Hardware tool.

0 5 10 15 20 25 30 35 40 45 50 0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Vehicle change ratio

Frames

Rati
o

0 5 10 15 20 25 30 35 40 45 50 0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
Pedestrian change ratio

Frames

Rati
o

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 164

Fig. 7 The graphical user interface

Fig. 8 illustrates the results of our algorithm in scenes,

captured from the video result, where a person walks around.
The result shows that the person is well detected.

Fig. 8 Motion detection in RGB for one object.

Fig. 9 shows the results for two objects in motion, a warning

text displayed when we have motion, and the gravity center
coordinates of each object in motion. We can see that the two
persons are well detected but when the two objects get closer,
the occlusion problem appears and the algorithm considers
them as one object.

Fig. 9 Motion detection in RGB for two objects.

Figure 10 shows the results of moving object identification
divided in three scenes, (a) human identification, (b) car
identification and (c) multiple objects identification. The
warning text below was done using PxsConsole filter of
PixelStream. All the results were filmed using another camera
in front of the screen, that’s why we can see some blur in our
results.

(a)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 165

(b)

(c)

Fig. 10 Classification of detected objects

The resources used for detection and classification of
moving objects are demonstrated in table III. This latter shows
also the maximal frequency for this implementation. We see
clearly that the two major constraints, the technological limits
and the real-time aspect (40 ms/image), are respected. This
algorithm can treat 70 MPixels per second, it can treat
approximately ~170images/s for video size of 720x576 (and it
is very far greater than time constraints 25images/s).

Table III. Implementation results

VII. CONCLUSION
In this paper, we presented a simple method for the motion

detection and identification in RGB for real time surveillance
application using Handel-C language. Our program was just
about 300 lines which proves the ease and rapidity of the
Handel-C language, the DK integrated development
environment and its libraries on reducing the time of
development. In our work we used the most important
characteristics in FPGA; parallelism in data and design and
computing. Using two parallel sub-blocks helps us to reach the
constraints of real time and visualize the detection in RGB;
that is more efficient for recognizing the object in motion,
unlike other methods that give the result of detection in binary
image. For non-initiate users in programming FPGA, the
interface is a perfect tool to implement FPGA and it helps the
user to change the threshold parameter according to the
brightness of the scene.

We have obtained satisfying results, but in the case of two
objects the problem of occlusion appears, this is the major
problem in all video surveillance applications. In addition, the
method based on frame difference is limited; the accuracy of
detection changes according to the scene: in indoor areas, the
accuracy is better than in outdoor areas due to the complexity
of the latter such as the change of luminance, slight motion,
and tree branch movement. For future work, we will
implement another motion detection algorithm that can operate
in complex scenes, and try to recognize these movements and
gestures using learning methods.

REFERENCES
[1] Ying-Li Tian and Arun Hampapur. “Robust Salient Motion Detection

with Complex Background for Real-Time Video Surveillance”. In
Proceedings of the IEEE Workshop on Motion and Video Computing
(WACV-MOTION '05), Vol. 2. IEEE Computer Society, Washington,
DC, USA, 30-35.2005.

[2] Menezes, G.G.S.; Silva-Filho, A.G. “Motion detection of vehicles based
on FPGA”. Programmable Logic Conference (SPL), 2010 VI Southern ,
vol., no., pp.151-154, 24-26 March 2010.

[3] Kumara Ratnayake, Aishy Amer. “An FPGA-Based Implementation of
Spatio-Temporal Object Segmentation”. In Proceedings of the
International Conference on Image Processing, ICIP 2006, October 8-
11, Atlanta, Georgia, USA. pages 3265-3268. 2006.

[4] Wen jun-Qin. “An Adaptive Frame Difference Method for Human
Tracking”. Advances in information Sciences and Service
Sciences(AISS), Volume4, Number1. 2012.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 166

[5] Francesco Ziliani and Andrea Cavallaro. “Image analysis for video
surveillance based on spatial regularization of statistical model-based
change detection”. Real-Time Imaging 7, 5 (October 2001), 389-399.
2001.

[6] Alan J. Lipton, Hironobu Fujiyoshi, and Raju S. Patil. “Moving Target
Classification and Tracking from Real-time Video”. In Proceedings of
the 4th IEEE Workshop on Applications of Computer Vision
(WACV'98). IEEE Computer Society, Washington, DC, USA,1998.

[7] Wei Shuigen; Chen Zhen; Li Ming; Zhuo Liang, "An Improved Method
of Motion Detection Based on Temporal Difference," International
Workshop on ,Intelligent Systems and Applications,IEEE, 2009. ISA
2009. vol., no., pp.1,4, 23-24 May 2009.

[8] Marek Gorgon, Piotr Pawlik, Miroslaw Jablonski, and Jaromir Przybylo.
“FPGA-based Road Traffic Videodetector”. In Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD '07). IEEE Computer Society, Washington,
DC, USA, 412-419. 2007.

[9] L. Ovseník, A. KažimírováKolesárová, J. Turán. “Object Detection in
Video Surveillance systems”. Journal of Electronic and Computer
Engineering 3 (2010) 137-143. 2010.

[10] Hati, K.K.; Sa, P.K.; Majhi, B., "Intensity Range Based Background
Subtraction for Effective Object Detection," Signal Processing Letters,
IEEE , vol.20, no.8, pp.759,762, Aug.2013.

[11] Ikhwan H. Muhamad, Fairuz R. M. Rashidi “In-Car Suffocating
Prevention Using Image Motion Detection" 2nd proceedings of the 2nd
international conference on systems, control, power, robotics
(SCOPORO '13). World Scientific and Engineering Academy and
Society (WSEAS), Morioka City, Iwate, Japan, 145-150.

[12] Idaku Ishii, Taku Taniguchi, Kenkichi Yamamoto, Takeshi Takaki.
”1000 fps Real-Time Optical Flow Detection System” .Proc. SPIE 7538,
Image Processing: Machine Vision Applications III, 75380M (January
28, 2010).

[13] Yassine Benabbas, Nacim Ihaddadene, and Chaabane Djeraba. “Motion
pattern extraction and event detection for automatic visual
surveillance”. J. Image Video Process. 2011, Article 7 (January 2011),
15 pages. 2011.

[14] Liang Wang, Weiming Hu, Tieniu Tan. “Recent developments in human
motion analysis”. Pattern Recognition, Vol. 36, No. 3. (March 2003),
pp. 585-601, 2003.

[15] Hazem M. El-bakry, and Nikos Mastorakis “Fast Human Motion
Tracking by using High Speed Neural Networks " Proc. of 9th WSEAS
International Conference on Signal, Speech And Image Processing (Ssip
'09), Budapest, Hungry,September 3-5, 2009, pp. 221-240.

[16] Weiming Hu, Tieniu Tan, Liang Wang, and S. Maybank. “A survey on
visual surveillance of object motion and behaviors”. Trans. Sys. Man
Cyber Part C 34, 3 (August 2004), 334-352,2004.

[17] Widyawan; Zul, M.I.; Nugroho, L.E., "Adaptive motion detection
algorithm using frame differences and dynamic template matching
method," Ubiquitous Robots and Ambient Intelligence (URAI), 2012
9th International Conference on , vol., no., pp.236,239, 26-28 Nov.
2012.

[18] Murat Ekinci, Eyüp Gedikli, “Silhouette based human motion detection
and analysis for real-time automated video surveillance”. Turk. J. Elec.
Eng. & Comp. Sci., 13, (2005), 199-229.

[19] J. Janta, P. Kumsawat, K. Attakitmongkol, and A. Srikaew. 2007. A
pedestrian detection system using applied log-Gabor. In Proceedings of
the 7th WSEAS International Conference on Signal, Speech and Image
Processing (SSIP'07), Lang Congyan (Ed.). World Scientific and
Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin,
USA, 55-60.

[20] Y. Ran, I. Weiss, Q. Zheng, and L. S. Davis,“Pedestrian detection via
periodic motion analysis,” International Journal of Computer Vision,
vol. 71, no. 2, pp. 143–160, February 2007.

[21] Kobzili El Houari, El Houari Kobzili, Cherrad Benbouchama, Zohir
Irki. “A software-hardware mixed design for the FPGA implementation
of the real-time edge detection”. Systems Man and Cybernetics (SMC),
2010 IEEE International Conference on , vol., no.,pp.4091-4095, 10-13
Oct. 2010.

[22] Mentor Graphics Agility (2012). "Agility DK",
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/

[23] Mentor Graphics Agility (2012). "PixelStream Manual",
http://www.mentor.com/products/fpga/handel-c/pixelstreams/

[24] "Virtex II 1.5v Field-Programmable Gate Arrays", Data sheet, Xilinx
Corporation, 2001.

[25] "DK5 Handel-C language reference manual", Agility 2007.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 167

http://academic.research.microsoft.com/Author/29170456/kobzili-el-houari
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://www.mentor.com/products/fpga/handel-c/pixelstreams/

