

Abstract—This paper describes the design of bilinear
interpolation-based and smooth hue transition
interpolation-based Bayer Filters for digital cameras using the
System Generator for DSP. The paper also compares experimentally
the MATLAB software implementation and the hardware
implementation of these designs.

Keywords—Bayer array, Demosaicing, FPGA, Interpolation.

I. INTRODUCTION
igital cameras perform a sequence of complicated
processing steps while recording color images. A color

image usually contains three different color components in
each pixel: red (R), green (G) and blue (B). Digital cameras
use three separate sensors to capture these three components
[1]. In order to reduce the cost, digital cameras capture images
using a sensoroverlaid with a color filter array (CFA). CFAs
allow only one color component for each pixel, which means
we need to generate the full color images from the output of
the image sensor [2].

Bayer color filter arrays(Bayer CFAs) are currently one
of the most common CFAs indigital cameras and can be used
together with many different interpolation methods [3, 4].

The System Generator for DSP, commonly referred to as
just System Generator [5,6], is a MATLAB/Simulink-based
simulation tool from Xilinx Inc. [7]. The System Generator is
a hardware design package that allows programming on the
FPGA and modeling a system using Simulink. The System
Generator contains many modules, such as FIR filter, FFT,
FIFO, RAM and ROM, which are very important in hardware
design.

This paper is organized as follows. Section II reviews
some basic concepts and previous work on Bayer Color Filter
Arrays. Section III describes a bilinear interpolation-based
Bayer Filter. Section IV describes a smooth hue
transition-based Bayer Filter. Finally, Section V presents some
experimental results and discussions.

Zhiqiang Li is with the Department of Computer Science and Engineering,

in the University of Nebraska-Lincoln, Lincoln, NE 68588, USA
(zli@cse.unl.edu).

Peter Z. Revesz is with the Department of Computer Science and
Engineering in the University of Nebraska-Lincoln, Lincoln, NE 68588,
USA(revesz@cse.unl.edu)..

II. REVIEW OF BASIC CONCEPTS

A. The Bayer Color Filter Array
Bayer CFAs greatly reduce the complexity and the cost of

digital cameras. Each Bayer CFA contains twice as many
green elements than red or blue ones, reflecting the fact that
the cone cells in the human retina are most sensitive to green
light. The full color image contains of three components (R, G
and B) in each pixel, but a Bayer image, which is the output of
a Bayer CFA, contains only one component in each pixel.
However, from a Bayer image a full color image is generated
by demosaicing [8], that is, an interpolation that estimates the
values of the missing components [9]. For demosaicing,
Xilinx uses bilinear interpolation, which performs the
following three steps:

1. Estimate the missing green values in the red and blue

pixels by using their four green neighbors. For
example, using the Bayer image in Fig. 1, the bilinear
interpolation finds:

 (1)

2. Estimate the missing red or blue values in the green

pixels:

(2)

3. Estimate the missing red value of the blue pixela

nd the missing blue values of the red pixels:

 (3)

Instead of the bilinear interpolation, this paper uses smooth

hue transition interpolation [10]. Before estimating the
missing red and blue values, we first estimate the missing
green values of the red or blue pixels, the same way as in step
(1) of the bilinear interpolation. Let the blue hue be B/G and
the red hue R/G. These are used the estimate the missing blue

G15)/4 + G13 + G19 + (G9 = G14
G13)/4 + G9 + G7 + (G3 = G8

R12)/2+(R2=R7
B8)/2+(B6=B7

B18)/4+B16+B8+(B6=B12
R14)/4+R12+R4+(R2=R8

Bilinear and Smooth Hue Transition
Interpolation-Based Bayer Filter Designs for

Digital Cameras
Zhiqiang Li, Peter Z. Revesz

D

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 211

element of the green pixels by:
(4)

Then the missing red values of the green pixels are

estimated by:

(5)

The missing red values of the blue pixels are estimated by:

(6)

Finally, the missing blue values of the red pixels are

estimated by:

 (7)

B. Xilinx’s hardware and software development platforms

Xilinx is a supplier of programmable logic devices. It is
famous for inventing the field programmable gate array
(FPGA). Xilinx Spartan®-3A DSP [11] FPGA video starter
kit (VSK) is a development platform consisting of the
Spartan-3A DSP 3400A development platform, the
FMC-video daughter card and a VGA camera. This platform
enables us to do experiments with video processing using the
Spartan-3A DSP family of FPGAs. VSK also includes a
variety of software components, which are the Xilinx ISE®
Design Suite 10.1(includes as well as full versions of EDK
and System Generator).

System Generator is a design tool that enables us to use the
Mathworks model-based design environment Simulink for
FPGA design. Developers do not need to have experience with
FPGAs or RTL design when using System Generator. The
Simulink modeling environment with a Xilinx specific
blockset is used to complete the design. The downstream
FPGA implementation steps are automatically performed to
generate an FPGA programming file. Over 90 DSP blocks are

provided in the Xilinx DSP blockset for Simulink. Common
blocks such as adders, multipliers and registers are included.
In addition, some complex building blocks, such as FFTs,
filters and memories are also provided. The System Generator
is based on Simulink from MATLAB.

C. Xilinx’s outline of its Bayer Filter hardware
In this section, we describe the outline of the bilinear

interpolation-based Bayer Filters of Xilinx Inc. Xilinx’s
top-level camera design, which we illustrate in Fig. 2, contains
one big block called “vsk_camera_vop,” which has three
inputs and six outputs. The inputs “vsync” and“hsync” serve
as the vertical and the horizontal synchronization signals of
the oscilloscope. The input “BayerRaw_Raw” contains the
one-dimensional Bayer image. The outputs “vs_out”
and“hs_out” are synchronization signals. The “red_out,”
“green_out” and “blue_out” stand for the corresponding color
output information, while “de_out” is the output enable signal.
All of the output signals are connected to the oscilloscope
block.

B18/G18)+/G8(G13/2)(B8=B13
B8/G8)+(B6/G6(G7/2)=B7 ×

R12/G12)+(R2/G2(G7/2)=R7
R14/G14) + (R12/G12(G13/2)=R13

×

×

R14/G14)+R12/G12+R4/G4+(R2/G2
(G8/4)=R8

×

B18/G18)+B16/G16+B8/G8+(B6/G6
(G12/4)=B12

×

Fig. 1 A Bayer color filter array

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 212

Fig. 3 shows the details of the vsk_camera_vop block of Fig.

2. The camera pipeline consists of several smaller functional
blocks, which can be described as follows:

• In photography, dynamic range describes the ratio

between the maximum and the minimum light intensities.
In general, the higher the dynamic range value is, the
better the image looks. In Fig. 3, “dyn_range_exp” is the
dynamic range expansion module [12], which extends the
dynamic range by a mathematical transformation that is
beyond the scope of this paper.

• Block “spc” is the stuck pixel correction module [13].
This module corrects some of the pixels that cannot be
displayed correctly.

• Block “bright_contrast” controls the brightness and
contrast of the image.

• Block “bayer_filter”implements the bilinear interpolation
to complete the reconstruction of the image. This is the
module that we propose in this paper to redesign (Section
III) and to replace by a smooth hue transition
interpolation module (Section IV).

• Block “color_balance”adjusts the overall intensity of the
pixels.

• Block “stats”calculates the maximum and the minimum
values of the pixels.

Fig. 2 The top-level design of the camera

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 213

III. A BILINEAR INTERPOLATION-BASED BAYER FILTER

We neither could find any published hardware design using

System Generator nor could we get any details from Xilinx
Inc. about its bilinear interpolation design even after our
request. Therefore, we provide the reverse engineering of a
bilinear interpolation-based Bayer Filter. The reverse
engineering of the bilinear interpolation Bayer Filter is a

logical first step before designing a more complex smooth hue
transition Bayer Filter, which we describe in Section IV.

Now we explain the details of the bilinear-based Bayer filter
hardware design. First, we explain the “xy_ctrs” module,
which acts as a counter. There are three inputs and two outputs.
“v”, “h” and “e”, which are vertical, horizontalsynchronization
signals and enable signal. “x”, “y” are two counters whose
initial values are 0. Fig. 4 shows the structure of the “xy_ctrs”
module.

Fig. 3 Camera processing pipeline

Fig. 4 The structure of xy_ctrs module

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 214

 Now we introduce the process of the counter module. The
value on the “x” port is increased by one as the clock ticks.
When “h” is falling edge, the output of “Expression3” is 1,
then the “loop_ctr1” resets, and the enable port of “loop_ctr2”

is 1, so that “x” is set to 0, “y” is increased by 1. In other
words, “y” is increased by one if the “h” is falling edge,
otherwise it does not change. Fig. 5 and Fig. 6 show the
waveforms of the process. Fig. 6 is a zoomed in waveform.

The “d0” stands for the signal of current clock cycle, and the
“d1” stands for the signal of the previous clock cycle. When
“d0” is 0 and “d1” is 1, the “Expression” is 1. For other
combinations of “d0” and “d1,” the result is always 0.
 For the “loop_ctr1” module, when the reset port is 1, the
“count” port is 0. Otherwise, “count” is increased by 1 until
4093 then it starts over from 0. Fig. 7 shows the structure of
the “loop_ctr1”.When “reset” is 1, “Expression” is 0, so that
“Mux” chooses “d0” as the output. The result of “AddSub1” is
0, and is delayed one clock cycle by “rctr”. At last, “count” is

the output port and the reset is completed.When the value of
“count” is less than 4093, and “reset” is 0, “Expression” is 1,
so that “Mux” chooses “d1” as output. The value of “d1” is the
value of “count” from the last clock cycle, and “count” is
increased by one via “AddSub1” to complete the add
operation. When the value of “count” is 4093, “reset” is 0,
“Relation5” is 1, and “Expression” is 0, so that “Mux”
chooses “d0” as output. The result of “AddSub1” is 0,
and“count” changes from 4093 to 0.

Fig. 5 The waveform of the process

Fig. 6 The zoomed in waveform of the process

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 215

 Next we explain the interaction between “xy_ctrs” module
and other blocks. “x_cnt” changes from 0 to 1489 then resets
to 0. “y_cnt” changes from 0 to the maximum value of the
counter. Both “x_cnt” and “y_cnt” are truncated to the least

significant bit and then are concatenated to 2 bits, which act as
selection signal for the “Subsystem” module. Fig. 8 shows the
interaction structure between “xy_ctrs” and other blocks. Fig.
9 shows the related waveforms for the interaction process.

Fig. 7 The structure of the loop_ctr1 module

Fig. 8 The structure of the interaction

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 216

As an example of the operation of the hardware, consider

Figs. 1 and 10. The block “Delay9” makes sure that the data is
synchronized with the vertical and horizontal signals.
Numbers from 1 to 9 stand for the location of pixels in the
circuit. When the data reach location A, because of the block
“delay 7”, the data cannot reach location 1 until two clocks
later. At the same time, data can reach the block “Single Port
RAM”, and is written into the RAM according to the address
provided. The“Single Port RAM” is set to the mode “Read

before write”, which means one clock later, the data at
location B is the initial value 0, not the data value stored.
During the next clock, the address is incremented by 1, and
new data is stored into the “Single Port RAM”. Since the
address is added at this time, the data at location B is still the
initial value 0 at the address. From location 4, we can get the
value 0 from the last clock. According to the description above,
before the pixels in the first row (G1, R2, G3, R4, and G5)
reach location A, values from location 4, 5, 6, 7, 8, 9 are all 0.

When the pixels in the second row (B6, G7, B8, G9, and

B10) start to reach location A, because of the control from
horizontal synchronization signal, the address is reset to 0.
Similarly to the previous description, “Single Port RAM” is in
the “Read before write” mode, the data we get from it is not
the data at location A(the data of the second row), it should be
the data from the first row(the data is G1). After one clock
delay, the G1 appears at location B. Similarly, after getting the
initial value 0 from “Single Port RAM1”, G1 is stored into it.

After all the pixels of the second row (B6, G7, B8, G9, B10)
reach location A, the pixels of the first row(G1, R2, G3, R4,
G5) are stored into “Single Port RAM1”.

When the third row (G11, R12, G13, R14, G15) arrives toA,
we can get the pixels of first row from “Single Port
RAM1”and store the second row to it. We get the pixels of the
second row from “Single Port RAM”, and store the third row
to it. Finally, locations 1, 2, 3 store the pixels from the third
row, locations 4, 5, 6 store the pixels from the second row, and

Fig. 9 The waveforms of the interaction

Fig. 10 Part of the design by bilinear interpolation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 217

locations 7, 8, 9 store the pixels from the first row.
All of the delay blocks help make the pixels stay in the

circuit temporarily, in order to apply the interpolation method
to the pixels. For example, at one moment, G1, R2, G3, B6,
G7, B8, G11, R12and G13 can be obtained from location 1 to
location 9. Then G7 is the center of the 3 by 3 array (G1, R2,
G3, B6, G7, B8, G11, R12, and G13). Now G7 does not have
any red and blue values but only has a green value. We
directly connect location 5 to “Shift 2”, and get the green
value through “Mux2”. In order to get the blue element, add
the values from location 4 and location 6, and get it through
“Mux3”. The red element is similar, add the values from
location 2 and location 8, and get it through “Mux4”.

In the design, we get the average value via the slice block.
Slice block is used to truncate the binary bits. For example,
binary 1110(decimal 14), and we remove the last bit 0, the
result is 111(decimal 7), which is 14 divided by 2. In this way,
we can simplify some of the calculations.

IV. A SMOOTH HUE TRANSITION INTERPOLATION-BASED
BAYER FILTER

In this section, we first implement the smooth hue transition
interpolation algorithm using MATLAB (subsection A), and
then we describe our hardware design of the smooth hue
transition interpolation-based Bayer filter using System
Generator (subsection B).

A. Implementation in MATLAB of the smooth hue transition
interpolation

We use MATLAB to implement the smooth hue transition
interpolation. First, the Bayer image is captured using
DH-SV1410, which is widely used in industry. The following
algorithm assumes that the size of the input data is a 1040 by
1392 Bayer image. We apply the smooth hue
transitioninterpolation algorithm to the Bayerimage to
reconstruct the full color image. The function

result_g = shtlin_g_rg (Bayer)

implements Step (1), whereresult_g stands for the green values.
The function

result_r = shtlin_r_rg (Bayer, result_g)

implements Steps (5) and (6) where result_r stands for the red
values. The function

result_b = shtlin_b_rg (Bayer, result_g)

implements Steps (4) and (7) where result_b stands for the
blue elements.The red, green and blue components constitute
the interpolated 1040 by 1392 full color image. Fig. 11 shows
an example of a smooth hue transition interpolation.

B. The hardware design

Modifying the Xilinx reference design, we designed a Bayer

filter that usesa smooth hue transition interpolation. In the
reference design, 9 locations (from location 1 to location 9)
are needed to store the pixels temporarily, which actually is a
3 by 3 array. Our modified design usesa 5 by 5 array, that is,
25 locations (from location 1 to location 25). Fig. 12 shows
part of the design. We again use Fig. 1 to explain the process.

At one moment, all of the pixels in Fig. 1 are corresponding
to the locations in Fig. 12. For example, pixel G1 is at location
1, and pixel G13 is at location 13, etc. Further, G13 is the
center of the array because it is a green element. We can
directly forward its value to the Mux block. We use Step (1) to
estimate G12 and G14 and the following to estimate the red
values of element 13:

 (8)

Besides, we need two additional blocks here, Multiplier and

Divider. We add values at locations 11, 13, 7, 17, divide the
sum by 4, and get the green value G12 at location 12. We can
also estimate G14 through the values at locations 13, 15, 9, 19.
Notice that the values at location 12, 14 are red elements. We
connect location 12 with G12, location 14 with G14, and
calculate the quotients R12/G12 and R14/G14. Then we sum
the two quotients by an adder and connect the sum and G13
with a multiplier. Finally, we pass the product to the shift
block, right shift 1 bit (divide by 2) and get the red value R14.
The estimation of the blue value at location 13 can be done
similarly to the estimation of the red value.

At another moment, pixel R14 is the center of the array.
Since thereis a red value at location 14, we forward it to the
“Mux” block. We get the green value using as in the bilinear
interpolation. We estimate the blue value of this pixel using
Step (9). The elements G8, G10, G18, G20 can be estimated
via bilinear interpolation. Thenin order to estimate the blue
value at location 14, we calculate the quotients B8/G8,

R14/G14) + (R12/G12 * (G13/2)=R13

Fig. 11 Smooth hue transition interpolation by MATLAB

(Zhiqiang Li)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 218

B10/G10, B18/G18 and B20/G20, sum the four quotients,
multiply the sum by G14, and block shift the results, that is, to
divide by four. That can be expressed using the formula:

(9)

V. EXPERIMENT RESULTS
We use signal-noise ratioto compare the quality of the

images reconstructed by our MATLAB
implementationdescribed in Section IV and our modified
Bayerfilter described in Section VI. As an example, Figs. 11
and 13 show a picture of the first author as reconstructed by
smooth hue transition interpolation, respectively. Fig. 14 and
Fig. 15 show the reconstructed picture of a drinking fountain
by smooth hue transition interpolation. Fig. 16 and Fig. 17
show the reconstructed picture of the first author by bilinear
interpolation. Fig. 18 and Fig. 19 show the reconstructed
picture of the drinking fountain by bilinear interpolation. In
addition, Table 1 shows the comparison result of these
pictures.

) G20 / B20 + G18 / B18 + G10 / B10 + G8 / B8 (
 4 / G14 = B14 ×

Fig. 12 Design by smooth hue transition

Fig. 13 Smooth hue transition interpolation by System

Generator (Zhiqiang Li)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 219

Table. 1 Signal-to-Noise Ratios

SNR methods

pictures

MATLAB
Bilinear

System Generator
Bilinear

MATLAB Smooth hue
transition

System Generator Smooth hue
transition

Drinking fountain 6.1341 10.2983 4.7923 8.1590

First author(Zhiqiang Li) 9.6371 15.4759 9.5556 9.6273

Fig. 14 Smooth hue transition interpolation by MATLAB

(fountain)

Fig. 15 Smooth hue transition interpolation by System

Generator (fountain)

Fig. 16 Bilinear interpolation by MATLAB (Zhiqiang Li)

Fig. 17 Bilinear interpolation by System Generator

 (Zhiqiang Li)

Fig. 18 Bilinear interpolation by MATLAB (fountain)

Fig. 19 Bilinear interpolation by System Generator

(fountain)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 220

The table suggests that hardware implementation of the
smooth hue transition interpolation-based Bayer Filter is
generally better than the one only by the MATLAB software
implementation. The same can be said for the bilinear
interpolation method. Table 1 shows that the bilinear
interpolation method has a higher signal to noise ratio.
However, the SNR is not the only measure for comparing the
quality of pictures. The smoothness of the transitions can be
seen to be clearly better for the smooth hue transition
system-based methods.

There are many applications of digital cameras where a
smoother image could be useful, for example, in image
databases [14] (Chapter 8), visualization and data mining of
medical images [14, 15, 16, 23]. In the future, it would be
interesting to provide hardware implementations of other
interpolation methods [15, 18, 19, 20, 21, 22, 23].

REFERENCES
[1] Image Sensor Architectures for Digital Cinematography, DALSA Corp.
[2] X.Lia, B.Gunturkb and L.Zhangc, “Image Demosaicing: A Systematic

Survey,”SPIE Proceedings, vol. 6822, Jan. 2008.
[3] B. Bayer “Color imaging array,”U.S. Patent 3 971065, July 20, 1976.
[4] T.Wittman,“ Mathematical Techniques for Image Interpolation,”

unpublished.
[5] System Generator for DSP Getting Started Guide, Xilinx Inc.,2012.
[6] System Generator for DSP Reference Guide, Xilinx Inc, Apr. 2008.
[7] Xilinx, Available: http://www.xilinx.com
[8] R. Kimmel, “Demosaicing: Image Reconstruction from Color CCD

Samples,” IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 8,
Sept. 1999, pp. 1221-1228.

[9] R.Lukac, “Color Filter Arrays: Design and Performance Analysis,”
IEEE Transactions on Consumer Electronics, vol. 51, No. 4, Nov.
2005, pp. 1260-1267.

[10] R. Maschal, S. Young, J. Reynolds, K.Krapels,J. Fanning, and T.
Corbin,“ Review of bayer pattern color filter array (cfa) demosaicing
with new quality assessment algorithms,” U.S. ArmyRes. Lab, 2010.

[11] Spartan 3A-DSP FPGA Video Starter Kit User guide, Xilinx Inc., Apr.
2008.

[12] S. Battiato, A. Castorina and M. Mancuso, “High dynamic range
imaging for digital still camera: an overview,” Journal of Electronic
Imaging, vol. 12(3),Jul. 2003, pp. 459–469.

[13] A. A. Tanbakuchi,A.V.D.Sijde, B.Dillen, A. J. P. Theuwissen and W.
d.Haan, “Adaptive pixel defect correction,” SPIE Proceedings, vol. 5017,
May. 2003.

[14] P. Z. Revesz, Introduction to Databases: From Biological to
Spatio-Temporal, Springer, 2010.

[15] P. Z. Revesz, C. Assi, “Data mining the functional characterizations of
proteins to predict their cancer-relatedness,” International Journal of
Biology and Biomedical Engineering, 7 (1), 7-14, 2013.

[16] P. Z. Revesz, S. Wu, “Spatiotemporal reasoning about epidemiological
data,” Artificial Intelligence in Medicine, 38 (2), 157-170, 2006.

[17] L. Li, P. Z. Revesz, “Interpolation methods for spatio-temporal
geographic data,” Computers, Environment and Urban Systems, 28 (3),
201-227, 2004.

[18] P. Z. Revesz, “Cubic spline interpolation by solving a recurrence
equation instead of a tridiagonal matrix,” Mathematical Methods in
Science and Engineering, (Proc. of the 1st Int. Conf. on Mathematical
Methods and Comp. Tech. in Science and Engineering), Nov. 2014, p.
21-25.

[19] J.Y. Kim, K.J. Kim, and S.W. Nam, “Image Reconstruction using a 2D
M-channel Perfect Reconstruction Filter Bank with an Optimized
Adaptive Interpolation Kernel,” Proceedings of the 7th WSEAS
International Conference on Multimedia Systems & Signal Processing,
Apr. 15-17, 2007.

[20] S. Bhooshan and S. Sharma, “Image Compression and Decompression
using Adaptive Interpolation,” Proceedings of the 8th WSEAS
International Conference on SIGNAL PROCESSING, ROBOTICS and
AUTOMATION, Feb. 21-23, 2009.

[21] V. Skala, “Fast Interpolation and Approximation of Scattered
Multidimensional and Dynamic Data Using Radial Basis Functions,”
WSEAS TRANSACTIONS on MATHEMATICS, vol. 12, May. 2013.

[22] M. Hafizah, T. Kok, and E. Supriyanto, “Development of 3D Image
Reconstruction Based on Untracked 2D Fetal Phantom Ultrasound
Images using VTK,” WSEAS TRANSACTIONS on SIGNAL
PROCESSING, vol. 6, Oct. 2010.

[23] Z. Brahimi, H. Bessalah, A. Tarabet and M. K. Kholladi, “Selective
Encryption Techniques of JPEG2000 Codestream for Medical Images
Transmission,” WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS,
vol. 7, Jul. 2008.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 221

