
 

 

  
Abstract—This paper describes the design of bilinear 
interpolation-based and smooth hue transition 
interpolation-based Bayer Filters for digital cameras using the 
System Generator for DSP. The paper also compares experimentally 
the MATLAB software implementation and the hardware 
implementation of these designs. 
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I. INTRODUCTION 
igital cameras perform a sequence of complicated 
processing steps while recording color images. A color 

image usually contains three different color components in 
each pixel: red (R), green (G) and blue (B). Digital cameras 
use three separate sensors to capture these three components 
[1]. In order to reduce the cost, digital cameras capture images 
using a sensoroverlaid with a color filter array (CFA). CFAs 
allow only one color component for each pixel, which means 
we need to generate the full color images from the output of 
the image sensor [2].  

Bayer color filter arrays(Bayer CFAs) are currently one 
of the most common CFAs indigital cameras and can be used 
together with many different interpolation methods [3, 4]. 

The System Generator for DSP, commonly referred to as 
just System Generator [5,6], is a MATLAB/Simulink-based 
simulation tool from Xilinx Inc. [7]. The System Generator is 
a hardware design package that allows programming on the 
FPGA and modeling a system using Simulink. The System 
Generator contains many modules, such as FIR filter, FFT, 
FIFO, RAM and ROM, which are very important in hardware 
design. 

This paper is organized as follows. Section II reviews 
some basic concepts and previous work on Bayer Color Filter 
Arrays. Section III describes a bilinear interpolation-based 
Bayer Filter. Section IV describes a smooth hue 
transition-based Bayer Filter. Finally, Section V presents some 
experimental results and discussions.  
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II. REVIEW OF BASIC CONCEPTS 

A. The Bayer Color Filter Array 
Bayer CFAs greatly reduce the complexity and the cost of 

digital cameras. Each Bayer CFA contains twice as many 
green elements than red or blue ones, reflecting the fact that 
the cone cells in the human retina are most sensitive to green 
light. The full color image contains of three components (R, G 
and B) in each pixel, but a Bayer image, which is the output of 
a Bayer CFA, contains only one component in each pixel. 
However, from a Bayer image a full color image is generated 
by demosaicing [8], that is, an interpolation that estimates the 
values of the missing components [9]. For demosaicing, 
Xilinx uses bilinear interpolation, which performs the 
following three steps: 

 
1. Estimate the missing green values in the red and blue 

pixels by using their four green neighbors. For 
example, using the Bayer image in Fig. 1, the bilinear 
interpolation finds: 

 

           (1) 

 
2. Estimate the missing red or blue values in the green 

pixels: 
 

(2) 

 
3. Estimate the missing red value of the blue pixela

nd the missing blue values of the red pixels: 
 

 (3) 

 
Instead of the bilinear interpolation, this paper uses smooth 

hue transition interpolation [10]. Before estimating the 
missing red and blue values, we first estimate the missing 
green values of the red or blue pixels, the same way as in step 
(1) of the bilinear interpolation. Let the blue hue be B/G and 
the red hue R/G. These are used the estimate the missing blue 
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element of the green pixels by: 
(4) 

 
Then the missing red values of the green pixels are 

estimated by:  
 

(5) 

 
The missing red values of the blue pixels are estimated by: 
 

(6) 

 
Finally, the missing blue values of the red pixels are 

estimated by: 
 

   (7) 

 

 
B. Xilinx’s hardware and software development platforms 

Xilinx is a supplier of programmable logic devices. It is 
famous for inventing the field programmable gate array 
(FPGA). Xilinx Spartan®-3A DSP [11] FPGA video starter 
kit (VSK) is a development platform consisting of the 
Spartan-3A DSP 3400A development platform, the 
FMC-video daughter card and a VGA camera. This platform 
enables us to do experiments with video processing using the 
Spartan-3A DSP family of FPGAs. VSK also includes a 
variety of software components, which are the Xilinx ISE® 
Design Suite 10.1(includes as well as full versions of EDK 
and System Generator). 

System Generator is a design tool that enables us to use the 
Mathworks model-based design environment Simulink for 
FPGA design. Developers do not need to have experience with 
FPGAs or RTL design when using System Generator. The 
Simulink modeling environment with a Xilinx specific 
blockset is used to complete the design. The downstream 
FPGA implementation steps are automatically performed to 
generate an FPGA programming file. Over 90 DSP blocks are 

provided in the Xilinx DSP blockset for Simulink. Common 
blocks such as adders, multipliers and registers are included. 
In addition, some complex building blocks, such as FFTs, 
filters and memories are also provided. The System Generator 
is based on Simulink from MATLAB. 

C. Xilinx’s outline of its Bayer Filter hardware 
In this section, we describe the outline of the bilinear 

interpolation-based Bayer Filters of Xilinx Inc. Xilinx’s 
top-level camera design, which we illustrate in Fig. 2, contains 
one big block called “vsk_camera_vop,” which has three 
inputs and six outputs. The inputs “vsync” and“hsync” serve 
as the vertical and the horizontal synchronization signals of 
the oscilloscope. The input “BayerRaw_Raw” contains the 
one-dimensional Bayer image. The outputs “vs_out” 
and“hs_out” are synchronization signals. The “red_out,” 
“green_out” and “blue_out” stand for the corresponding color 
output information, while “de_out” is the output enable signal. 
All of the output signals are connected to the oscilloscope 
block.

 

B18/G18)+/G8(G13/2)(B8=B13
B8/G8)+(B6/G6(G7/2)=B7 ×

R12/G12)+(R2/G2(G7/2)=R7
R14/G14) + (R12/G12(G13/2)=R13

×

×

R14/G14)+R12/G12+R4/G4+(R2/G2     
(G8/4)=R8

×

B18/G18)+B16/G16+B8/G8+(B6/G6        
(G12/4)=B12

×

 
Fig. 1 A Bayer color filter array 
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Fig. 3 shows the details of the vsk_camera_vop block of Fig. 

2. The camera pipeline consists of several smaller functional 
blocks, which can be described as follows: 

 
• In photography, dynamic range describes the ratio 

between the maximum and the minimum light intensities. 
In general, the higher the dynamic range value is, the 
better the image looks. In Fig. 3, “dyn_range_exp” is the 
dynamic range expansion module [12], which extends the 
dynamic range by a mathematical transformation that is 
beyond the scope of this paper.  

• Block “spc” is the stuck pixel correction module [13]. 
This module corrects some of the pixels that cannot be 
displayed correctly.  

• Block “bright_contrast” controls the brightness and 
contrast of the image. 

• Block “bayer_filter”implements the bilinear interpolation 
to complete the reconstruction of the image. This is the 
module that we propose in this paper to redesign (Section 
III) and to replace by a smooth hue transition 
interpolation module (Section IV).  

• Block “color_balance”adjusts the overall intensity of the 
pixels. 

• Block “stats”calculates the maximum and the minimum 
values of the pixels. 

 
 
 

 
Fig. 2 The top-level design of the camera 
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III. A BILINEAR INTERPOLATION-BASED BAYER FILTER 
 
We neither could find any published hardware design using 

System Generator nor could we get any details from Xilinx 
Inc. about its bilinear interpolation design even after our 
request.  Therefore, we provide the reverse engineering of a 
bilinear interpolation-based Bayer Filter. The reverse 
engineering of the bilinear interpolation Bayer Filter is a 

logical first step before designing a more complex smooth hue 
transition Bayer Filter, which we describe in Section IV.  

Now we explain the details of the bilinear-based Bayer filter 
hardware design. First, we explain the “xy_ctrs” module, 
which acts as a counter. There are three inputs and two outputs. 
“v”, “h” and “e”, which are vertical, horizontalsynchronization 
signals and enable signal. “x”, “y” are two counters whose 
initial values are 0. Fig. 4 shows the structure of the “xy_ctrs” 
module. 

 

 
Fig. 3 Camera processing pipeline 

  
Fig. 4 The structure of xy_ctrs module 
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   Now we introduce the process of the counter module. The 
value on the “x” port is increased by one as the clock ticks. 
When “h” is falling edge, the output of “Expression3” is 1, 
then the “loop_ctr1” resets, and the enable port of “loop_ctr2” 

is 1, so that “x” is set to 0, “y” is increased by 1. In other 
words, “y” is increased by one if the “h” is falling edge, 
otherwise it does not change. Fig. 5 and Fig. 6 show the 
waveforms of the process. Fig. 6 is a zoomed in waveform.

 

 

 
The “d0” stands for the signal of current clock cycle, and the 
“d1” stands for the signal of the previous clock cycle. When 
“d0” is 0 and “d1” is 1, the “Expression” is 1. For other 
combinations of “d0” and “d1,” the result is always 0. 
   For the “loop_ctr1” module, when the reset port is 1, the 
“count” port is 0. Otherwise, “count” is increased by 1 until 
4093 then it starts over from 0. Fig. 7 shows the structure of 
the “loop_ctr1”.When “reset” is 1, “Expression” is 0, so that 
“Mux” chooses “d0” as the output. The result of “AddSub1” is 
0, and is delayed one clock cycle by “rctr”. At last, “count” is 

the output port and the reset is completed.When the value of 
“count” is less than 4093, and “reset” is 0, “Expression” is 1, 
so that “Mux” chooses “d1” as output. The value of “d1” is the 
value of “count” from the last clock cycle, and “count” is 
increased by one via “AddSub1” to complete the add 
operation. When the value of “count” is 4093, “reset” is 0, 
“Relation5” is 1, and “Expression” is 0, so that “Mux” 
chooses “d0” as output. The result of “AddSub1” is 0, 
and“count” changes from 4093 to 0.

 

 
Fig. 5 The waveform of the process 

 
Fig. 6 The zoomed in waveform of the process 
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   Next we explain the interaction between “xy_ctrs” module 
and other blocks. “x_cnt” changes from 0 to 1489 then resets 
to 0. “y_cnt” changes from 0 to the maximum value of the 
counter. Both “x_cnt” and “y_cnt” are truncated to the least 

significant bit and then are concatenated to 2 bits, which act as 
selection signal for the “Subsystem” module. Fig. 8 shows the 
interaction structure between “xy_ctrs” and other blocks. Fig. 
9 shows the related waveforms for the interaction process. 

 

 
Fig. 7 The structure of the loop_ctr1 module 

 
Fig. 8 The structure of the interaction 
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As an example of the operation of the hardware, consider 

Figs. 1 and 10. The block “Delay9” makes sure that the data is 
synchronized with the vertical and horizontal signals. 
Numbers from 1 to 9 stand for the location of pixels in the 
circuit. When the data reach location A, because of the block 
“delay 7”, the data cannot reach location 1 until two clocks 
later. At the same time, data can reach the block “Single Port 
RAM”, and is written into the RAM according to the address 
provided. The“Single Port RAM” is set to the mode “Read 

before write”, which means one clock later, the data at 
location B is the initial value 0, not the data value stored. 
During the next clock, the address is incremented by 1, and 
new data is stored into the “Single Port RAM”. Since the 
address is added at this time, the data at location B is still the 
initial value 0 at the address. From location 4, we can get the 
value 0 from the last clock. According to the description above, 
before the pixels in the first row (G1, R2, G3, R4, and G5) 
reach location A, values from location 4, 5, 6, 7, 8, 9 are all 0. 

 

 
When the pixels in the second row (B6, G7, B8, G9, and 

B10) start to reach location A, because of the control from 
horizontal synchronization signal, the address is reset to 0. 
Similarly to the previous description, “Single Port RAM” is in 
the “Read before write” mode, the data we get from it is not 
the data at location A(the data of the second row), it should be 
the data from the first row(the data is G1). After one clock 
delay, the G1 appears at location B. Similarly, after getting the 
initial value 0 from “Single Port RAM1”, G1 is stored into it. 

After all the pixels of the second row (B6, G7, B8, G9, B10) 
reach location A, the pixels of the first row(G1, R2, G3, R4, 
G5) are stored into “Single Port RAM1”.  

When the third row (G11, R12, G13, R14, G15) arrives toA, 
we can get the pixels of first row from “Single Port 
RAM1”and store the second row to it. We get the pixels of the 
second row from “Single Port RAM”, and store the third row 
to it. Finally, locations 1, 2, 3 store the pixels from the third 
row, locations 4, 5, 6 store the pixels from the second row, and 

 
Fig. 9 The waveforms of the interaction 

 
Fig. 10 Part of the design by bilinear interpolation 
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locations 7, 8, 9 store the pixels from the first row. 
All of the delay blocks help make the pixels stay in the 

circuit temporarily, in order to apply the interpolation method 
to the pixels. For example, at one moment, G1, R2, G3, B6, 
G7, B8, G11, R12and G13 can be obtained from location 1 to 
location 9. Then G7 is the center of the 3 by 3 array (G1, R2, 
G3, B6, G7, B8, G11, R12, and G13). Now G7 does not have 
any red and blue values but only has a green value. We 
directly connect location 5 to “Shift 2”, and get the green 
value through “Mux2”. In order to get the blue element, add 
the values from location 4 and location 6, and get it through 
“Mux3”. The red element is similar, add the values from 
location 2 and location 8, and get it through “Mux4”.  

In the design, we get the average value via the slice block. 
Slice block is used to truncate the binary bits. For example, 
binary 1110(decimal 14), and we remove the last bit 0, the 
result is 111(decimal 7), which is 14 divided by 2. In this way, 
we can simplify some of the calculations.  

IV. A SMOOTH HUE TRANSITION INTERPOLATION-BASED 
BAYER FILTER 

 
In this section, we first implement the smooth hue transition 
interpolation algorithm using MATLAB (subsection A), and 
then we describe our hardware design of the smooth hue 
transition interpolation-based Bayer filter using System 
Generator (subsection B). 

A. Implementation in MATLAB of the smooth hue transition 
interpolation 
 
We use MATLAB to implement the smooth hue transition 
interpolation. First, the Bayer image is captured using 
DH-SV1410, which is widely used in industry. The following 
algorithm assumes that the size of the input data is a 1040 by 
1392 Bayer image. We apply the smooth hue 
transitioninterpolation algorithm to the Bayerimage to 
reconstruct the full color image. The function 

 
result_g = shtlin_g_rg (Bayer) 

 
implements Step (1), whereresult_g stands for the green values. 
The function 
 

result_r = shtlin_r_rg (Bayer, result_g) 
 

implements Steps (5) and (6) where result_r stands for the red 
values. The function 
 

result_b = shtlin_b_rg (Bayer, result_g) 
 

implements Steps (4) and (7) where result_b stands for the 
blue elements.The red, green and blue components constitute 
the interpolated 1040 by 1392 full color image. Fig. 11 shows 
an example of a smooth hue transition interpolation. 
 

 
 

B. The hardware design  
 
Modifying the Xilinx reference design, we designed a Bayer 

filter that usesa smooth hue transition interpolation. In the 
reference design, 9 locations (from location 1 to location 9) 
are needed to store the pixels temporarily, which actually is a 
3 by 3 array. Our modified design usesa 5 by 5 array, that is, 
25 locations (from location 1 to location 25). Fig. 12 shows 
part of the design. We again use Fig. 1 to explain the process. 

At one moment, all of the pixels in Fig. 1 are corresponding 
to the locations in Fig. 12. For example, pixel G1 is at location 
1, and pixel G13 is at location 13, etc. Further, G13 is the 
center of the array because it is a green element. We can 
directly forward its value to the Mux block. We use Step (1) to 
estimate G12 and G14 and the following to estimate the red 
values of element 13: 

 
      (8) 

 
Besides, we need two additional blocks here, Multiplier and 

Divider. We add values at locations 11, 13, 7, 17, divide the 
sum by 4, and get the green value G12 at location 12. We can 
also estimate G14 through the values at locations 13, 15, 9, 19. 
Notice that the values at location 12, 14 are red elements. We 
connect location 12 with G12, location 14 with G14, and 
calculate the quotients R12/G12 and R14/G14. Then we sum 
the two quotients by an adder and connect the sum and G13 
with a multiplier. Finally, we pass the product to the shift 
block, right shift 1 bit (divide by 2) and get the red value R14. 
The estimation of the blue value at location 13 can be done 
similarly to the estimation of the red value.  

At another moment, pixel R14 is the center of the array. 
Since thereis a red value at location 14, we forward it to the 
“Mux” block. We get the green value using as in the bilinear 
interpolation. We estimate the blue value of this pixel using 
Step (9). The elements G8, G10, G18, G20 can be estimated 
via bilinear interpolation. Thenin order to estimate the blue 
value at location 14, we calculate the quotients B8/G8, 

R14/G14) + (R12/G12 * (G13/2)=R13

 
Fig. 11 Smooth hue transition interpolation by MATLAB 

(Zhiqiang Li) 
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B10/G10, B18/G18 and B20/G20, sum the four quotients, 
multiply the sum by G14, and block shift the results, that is, to 
divide by four. That can be expressed using the formula:  

 

(9) 

 
 

V. EXPERIMENT RESULTS 
We use signal-noise ratioto compare the quality of the 

images reconstructed by our MATLAB 
implementationdescribed in Section IV and our modified 
Bayerfilter described in Section VI. As an example, Figs. 11 
and 13 show a picture of the first author as reconstructed by 
smooth hue transition interpolation, respectively. Fig. 14 and 
Fig. 15 show the reconstructed picture of a drinking fountain 
by smooth hue transition interpolation. Fig. 16 and Fig. 17 
show the reconstructed picture of the first author by bilinear 
interpolation. Fig. 18 and Fig. 19 show the reconstructed 
picture of the drinking fountain by bilinear interpolation. In 
addition, Table 1 shows the comparison result of these 
pictures. 

 

 

) G20 / B20 + G18 / B18 + G10 / B10 + G8 / B8 ( 
 4 / G14 = B14 ×

 
Fig. 12 Design by smooth hue transition 

 
Fig. 13 Smooth hue transition interpolation by System 

Generator (Zhiqiang Li) 
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Table. 1 Signal-to-Noise Ratios 

SNR methods 
 

pictures 

MATLAB 
Bilinear 

System Generator 
Bilinear 

MATLAB Smooth hue 
transition 

System Generator Smooth hue 
transition 

Drinking fountain 6.1341 10.2983 4.7923 8.1590 

First author(Zhiqiang Li) 9.6371 15.4759 9.5556 9.6273 

 

 
Fig. 14 Smooth hue transition interpolation by MATLAB 

(fountain) 

 
Fig. 15 Smooth hue transition interpolation by System 

Generator (fountain) 

 
Fig. 16 Bilinear interpolation by MATLAB (Zhiqiang Li) 

 
Fig. 17 Bilinear interpolation by System Generator 

 (Zhiqiang Li) 

 
Fig. 18 Bilinear interpolation by MATLAB (fountain) 

 
Fig. 19 Bilinear interpolation by System Generator 

(fountain) 
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The table suggests that hardware implementation of the 
smooth hue transition interpolation-based Bayer Filter is 
generally better than the one only by the MATLAB software 
implementation. The same can be said for the bilinear 
interpolation method. Table 1 shows that the bilinear 
interpolation method has a higher signal to noise ratio. 
However, the SNR is not the only measure for comparing the 
quality of pictures. The smoothness of the transitions can be 
seen to be clearly better for the smooth hue transition 
system-based methods.  

There are many applications of digital cameras where a 
smoother image could be useful, for example, in image 
databases [14] (Chapter 8), visualization and data mining of 
medical images [14, 15, 16, 23]. In the future, it would be 
interesting to provide hardware implementations of other 
interpolation methods [15, 18, 19, 20, 21, 22, 23]. 
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