
 

 

  
Abstract— The paper deals with chosen analytical and numerical 

methods which make possible to estimate instantaneous state of 
dynamical system in any time instant. Analytical model of the 
LCTLC filer uses Laplace-Carson transformation with complex 
operator p. The method described in the paper using transient 
component separation makes it possible to use steady state- and 
transient components to generate of total time waveforms of chosen 
output state variables or other quantities. The steady state component 
is created using response of AC input voltage during the first one 
half-period. Worked-out simulation experiment results are compared 
to common numerical solution done in Matlab/Simulink environment 
using discrete type of dynamical model of the filter system which is 
modelled and analyzed by second method for determination of 
instantaneous state of discrete dynamical system Theoretical analysis, 
computer simulation, and experimental verification are given in the 
paper. 
 

Keywords—Circuit analysis, modelling and simulation, Laplace-
Carson transform, state-space equation, non-harmonic supply, linear 
discrete control  

I. INTRODUCTION 

ONCEPTIONS of resonant converters greatly expanded into 
the various spheres of industry and consumer 

applications. Generally known switched mode power supplies 
as well as for power converters, to target the highest switching 
frequency together with the highest efficiency that is possible. 
If will be increased both phenomes together, simultaneously 
the power density increases. In order to reach the satisfactory 
electrical parameters and behaviour of converter, it is 
necessary to utilize new concepts of its main circuit [1]. In 
every industrial and consumer application became energy 
efficiency, power density and harmonic current emissions a 
main qualitative indicators of power semiconductor 
converters. LCTLC resonant converter belongs between 
generally known topologies used in various applications. 
Basically, the multi-element topologies are based on serial and 
parallel connection of accumulation components. Their 
combinations along with high frequency transformer creates 
varies topologies with individual specific properties [2]. 
Analysing of resonant systems may help to improve the design 
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and final properties of devices.  

II. THEORETICAL ASPECTS OF USED METHODS 

Generally, we can use analytical and/or numerical solution 
for the analysing and investigating of dynamical system. 
Consequently, we have to create either continuous or discrete 
dynamical model of the system. The first one is well known in 
the state-space form [1],[5] 

d����d� = �. ���� + 
. ����																										�1� 
where ���� is vector of state variables, ���� exciting vector, � 
and 
 are system matrices. Vector of output quantities is 
expressed as 

���� = �. ���� + �.����																									�1a� 
By numerical integration of (1) we obtain discrete form of 
dynamical model 

���� = �∆�� + �∆�� 																												�2� 
More detailed description of discrete model is given in B. 
subchapter later. 

A. Analytical method using steady-state and transient 
components under non-harmonic supply 

Using method of operator calculus Laplace or Laplace-
Carson (L-C), respectively, transform [6],[7] 

����� = ���/����1 + e� �/� 																													�3� 
where operator voltage during one half-period is in Laplace-
Carson  

���/���� = ��1 − e� �#�			or		&�'/��s� = � �1 − e�)�#�* 					�4� 
using Laplace transform. 
Generally, the current response on such a voltage consists of 
steady state and transient components [8]  

,��� = � �1 − e� �#�1 + e� �/� -���.���																										�5� 
The response of any state variable during one half-period of 
transient phenomenon can be obtain and evaluated just by 
roots of polynomial of denominator .���; and 0) = 0/2 
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,�/���� = �11 − e� �/�2 -���.���																						 �6� 
Transient component during one half-period 

,4567)�/� ��� = � 11 − e� �/�21 + e� �/� -���.���																				 �7� 
Steady state component during one half-period can be simply 
obtain by their subtracting 

,)496:;�/� ��� = ,�/���� − ,4567)�/� ���																	�8� 
Now, after inverse L-C transformation the steady state 
component for one half-period 

=)496:;�/� ��� = =�/���� − =4567)�/� ���																			�9� 
And 

=��� = =4567)��� ± @=�/���� − =4567)�/� ���A								�10� 
Such methodology makes it possible to separate both 
components similarly as in the DC linear circuit [5],[8]. 

B. Method for determination of instantaneous state of 
discrete dynamical system 

As mentioned above the numerical integration using, Euler-, 
Runge-Kutta-, Taylor expansion methods of (1) are giving 
[3],[5],[9] 

���� = �∆�� + �∆�� 																											�11� 
where ��C� is vector of state variables in discrete form, ��C� 
exciting vector, C is order of calculation, � and � are system 
matrices discretized by integration step ∆.  
Determination of �∆,	 �∆ matrices is possible to provide by 
using of: 

- analytical method (suitable for low order system); 
- numerical methods depending on their type: 

Euler direct explicit method (ℎ ≡ ∆): 

��ℎ� = �G + ℎ. ���H + �ℎ.
��H	 
→	�∆ = G + ℎ. �, �∆ = ℎ.
.																	�11a� 

Euler indirect implicit method: 

��ℎ� = inv�G − ℎ. ���H + inv�G − ℎ. ��ℎ. 
. �H	 →	�∆ = inv�G − ℎ. ��, �∆ = inv�G − ℎ. ��ℎ. 
.	 
Taylor expansion: 

��ℎ� = M�.N +OM�.�N�4�
.�Hd�
N

H
…

=Q��. ℎ�RS!
7
RUH

�H + ℎQ ��. ℎ�R�S + 1�!
7
RUH


.�H 

→	�∆ =Q��. ℎ�RS!
7
RUH

, �∆ = ℎQ ��. ℎ�R�S + 1�!
7
RUH


	. 

- Z-transformation method; 

- method of experiment when state variables ��ℎ� and �∆, �∆ can be obtain at discrete time ∆≡ ℎ. 

Then, by gradual sovereign and generalization /mathematical 
induction/ we get [xx], [xx]:  

�� = �∆��H + �∆H�∆&H = �∆&H																																											�12a� 
�� = �∆��H + �∆��∆&H + �∆H�∆&� 

�V = �∆V�H + �∆��∆&H + �∆��∆&� + �∆H�∆&� 

�� = �∆��H + �∆����∆&H + �∆����∆&�+ +	�∆��������∆&��� + �∆����∆&� 		�12b� 
Thus 

�� = ��∆���H + �∆ Q �∆X
H

XU���
Y����X���Z									�13� 

III.   MODELING AND SIMULATION OF LCLC FILTER CIRCUIT 

Using A method of steady-state and transient components 
 
Considering, the basic scheme of LCTLC inverter Fig. 1 and 
equivalent scheme of LCLC filter circuit, Fig. 2 [12].  
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Fig. 1 Basic schematic of LCTLC inverter 
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Fig. 2 Equivalent scheme of LCTLC inverter with HF transformer 
 
Under resistive-inductive load the impedance of series and 
parallel part of the LCTLC filter is defined by the following 
equations 

|\]| = ^_)X`6:� + �ab)X`6:�� = �`c4]�
d̀ c4] ,	 

\��a� = _� + j fab� − 1ag�h = 											 �14a� 
=	 _�|\]| |\]| + j|\]|i]� f=59X − 1=59Xh =		 
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= j�]|\]| + j|\]|i]� f=59X − 1=59Xh = 

= |\]| kj� + ji]� f=59X − 1=59Xhl 
where  

_� = _m� + _�� + _n�; 	b� = bm� + bp� ; 	 1g� = 1gn� + 1gq� 

and _�is resistance of series part of the filter, and its relative 

value j�] = rs|tu|; _m� - resistance of series filter coil; _�� - 

resistance of primary winding of the transformer; _n� - 
resistance of series filter capacitor; bm� – inductance of series 
filter coil; bp� – leakage inductance of the transformer; gn� - 
capacitance of series capacitor; gq� - capacitance of between 
windings of the transformer; =59X = vvwx# - is relative 

frequency; \] – nominal impedance. 
Similarly for nominal admittance for parallel resistive-
inductive load 

|y]| = z{ 1_ X`6:|
� + { 1ab X`6:|

� = d̀ c4]�`c4]�  

and similarly for 
|t}�v�||t~�v�| with little help of y��a� 

y��a� = 1_� + 1_X`6: + � fag� − 1ab�h = 

= 1j� |y]| + 1j |y]| + �|y]|i]� f=59X − 1=59Xh = 

= |y]| kf1j� + 1jh + �i]� f=59X − 1=59Xhl										�14b�	
where  1_� = 1_�9 + 1_m� + 1_n� ; 		g� = gn� + g��; 		 1b� = 1b� + 1bm� _�is resistance of paralel part of the filter, and its relative 

value j�] = �r}|�u| ; 	_�9 – resistance of transformer 

ferromagnetic; _m� – resistance of parallel filter coil; _n� - 
resistance of parallel filter capacitor; gn� - capacitance of 
parallel capacitor; g�� - capacitance of between turns of the 

windings of the transformer and 
�5����u = �r����|�u| – relative 

value of load conductance. 
At the beginning will be defined simple resistive load. So, for 
pure resistive R-load, by application of Kirchhoff laws we get  

&���� − _�Sm���� − b� dSm����d� − &n���� − &n���� = 0				�15a� 
Sm���� − Sm���� − g� d&n����d� −	 1_� &n���� − 1_X &n���� =				= 0																																																															�15b� 

Then, operator calculus expression using L-C transformation 
under zero initial condition  

����� − �m���� k_� + �b� + 1�g�l − �n���� = 0						�16a� 

�m���� − �n���� kf 1_� + 1_Xh + 1�b� + �g�l 									�16b� 
Since ������ ≡ ����� and �_� + �b� + � ns� = \����,
�� �r} + �r�� + � m} + �g�� = y���� it can be written 

����� = ����� 11 + \����y���� = �����,���						�17� 
where 

���ts� ��}� � is the operator transfer function of the 

system. 
Introducing  

b� = b� = b;	g� = g� = g; 1 bg� = a5�; 	j = _� a5b�� ; �
= _� 1/a5g�� = a5_�g�; � = 1/_X 

as designed by [13] (p.u.) values, then ����� =
= ����� a5��� …�� + �j + �� + ���a5�V + �3 + j�� + ���a5��� +… 

 … …+�j + �� + ���a5V� + a5� = 

 

= ����� ������ + ��V + ��� + ��� + ��H = 

= 	�11 − M� �/�2 -���.���																					 �18� 
where  � = a5H; 	� = �j + �� + ���a5; 	� = �3 + j�� + ���a5�; 	� =�j + �� + ���a5V; 	� = a5�; 	� = a5�.  
Thus ������ + ��V + ��� + ��� + ��H = ����������										 �19� 
is the voltage transfer function in Laplace operator form. 
Supposing complex conjugated roots of denominator 
polynomial in form (let a5 = 1) 

��,� =	 �−� ± a. i�			and			�V,� =	 �−� ± a. i�						�20� 
For j = � = 0.05; 	� = 1 >> control	vector		� =�1; 	1.1; 	3.0525; 	1.1; 	1� (real elements, nominal load) the 
roots are ��,� =	 �−0.3887 ± 1.5027i�			and																		 �V,� =	 �−0.1613 ± 0.6238i�																		�20a� 
For j = � = 0; 	z = 0 ≫ ≫ 	control	vector	c = �1; 	0.0; 	3.00; 	0.0; 	1� (ideal elements, 
zero load) the roots are ��,� =	 �0.0000 ± 1.6180i�			and																	 �V,� =	 �−0.0000 ± 0.6180i�												�20b� 
Based on the transfer function (obtained from operator form 
eq.(19) the bode diagram in Matlab environment has been 
created, Fig. 3. 
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Fig. 3 Bode diagram of LCLC resonant filter 

It is important that a�,� and aV,� are frequencies when input 
impedance features zero values, and voltage transfer by 
infinite values. 
The inverse Laplace transform can be worked out [1],[8] 

&H��/���� = Q&���� -������.´���� e £4
]
�U�

														�21� 
since -�0� .�0�¤ = 0. 

&4567)��� = Q�1 − e� £�/�1 + e� £�/� -������.´���� e £4
]
�U�

											�22� 
Then &)496:;��� = &H��/���� − &4567)���.																�23� 
Regarding the complex conjugated roots the members of  -������.´���� 	will	give	|_�|e§¨£ 																								�24� 
and, similarly  1 − e� £�/�1 + e� £�/� 	will	give	|0�|e§©£																										�25� 
So -������.´���� = |_�|e§¨s ,	 

-������.´���� = |_�|e§¨} ,																				etc.			�26� 
It is possible to show  |_�|M§¨sM��6�§.ª�vw + |_�|M§¨}M��6�§.ª�vw = = 2|_�|M�6v4cos�«� + ¬a5��																				�27� 
and |_V|e§¨­e��®�§.;�vw + |_�|e§¨¯e��®�§.;�vw = = 2|_V|e®v4cos�«V + °a5��																								�28� 
Similarly 

1 − e� s��
1 + e� s�� = |0�|M§©s ,	 
1 − e� }�/�1 + e� }�/� = |0�|e§©} ,			etc.																�29� 

And also |0�|e§©sM��6�§.ª�vw + |0�|e§©}M��6�§.ª�vw = = 2|0�|e�6v4cos�±� + ¬a5��																																	�30� |0V|e§©­M��®�§.;�vw + |0�|e§©¯M��®�§.;�vw = = 2|0V|e�®v4cos�±V + °a5��																																	�31� 
Then, for output voltage 

&��/���� = 2�²|_�|e�6v4cos�«� + ¬a5��+ |_V|e®v4cos�«V + °a5��³																					�32� 
&4567)��� = 2�²|_�||0�|e�6v4cos�±� + «� + ¬a5��+ |_V||0V|e�®v4cos�±V + «V+ ¬a5��³																																																							�33� 

Steady state component for one half-period 

&)496:;�/� ��� = &��/���� − &4567)�/� ���																				�34� 
And &���� = &4567)��� ± @&��/���� − &4567)�/� ���A											�35� 
Results of simulation are shown in Fig. 4a,b. 

a)  

b)  
Fig. 4 Time waveforms of the model for real parameters a) Zload=100 

%( nominal value) and b) ideal parasite-less with Zload=0 % 

Important, when ideal elements, zero load i.e. j = � = 0; 	� =0	 >> 	c = �1; 	0.0; 	3.00; 	0.0; 	1� then e�6v4 = 0;	e�®v4 = 0 
thus &4567)��� will never be zero. 
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Using B method for determination of instantaneous state of 
discrete dynamical system 
 

For calculation �� = ��∆���H 	 �∆ ∑ �∆XHXU��� Y����X���Z at 
any time instant �̃ � C. ∆ we need, at first, to know �∆, �∆ and �H, ��. 

Then continuous dynamic state space model yields the for 
following system equations [19] dSm����d� � "_�b� Sm���� " 1b� &n���� " 1b� &n����	 1b� &���																																																				�36a� dSm����d� � 1b� &n����																																			�36b� d&n����d� � 1g� Sm����																																				�36c� 					d&n����d� � 1g� Sm���� " 1g� Sm����" f 1_� 	 1_Xh 1g� &n����.																											�36d� 
Thus for parameters designed by [13] b� � b� � b � 0.1, g� � g� � g � 5	x	10�V, _X � 1, j ≡ _�� 0.01, � ≡ 1_� 	 � 0.01 

and elements of � and 
 matrices:  ��� � " jb � "0.1;	��� � 0;	��V � "1b � "10;	��� � 

� "1b � "10; 
��� � ��� � ��V � 0; ��� � 1b � 10; 
�V� � 1g � 200;		�V� � �VV � �V� � 0; 
��� � 1g� ; ��� � " 1g� ; ��V � 0;	��� � "f� 	 1_Xh 1g � " 1_g� "202	; ¬�� � 1b � 10;	¬�� · ¬�� � 0. 
 
The �∆ and �∆ will be �∆ � �¸ " ∆. ��;	�∆ � ∆.
																						�37� 
and �� � �&�; 0; 0; 0�� where &� � √2�ºnsin �fix �4 ∆� C� ¼� 	¼��, ̧  is unit matrix and ∆� 10��. 
Then 

�∆ � ½ 1.0000 0 0.0010 0.00100 1.0000 0 "0.0010"0.0200 0 1.0000 0"0.0200 0.0200 0 1.0201 ¾ 
�∆ � ½0.0010 0 0 00 0 0 00 0 0 00 0 0 0¾. 

If C goes from 0 to 2 160 (6 T) the result will be as in Fig. 5. 

 
Fig. 5 Time waveforms of the discrete dynamic state space model 

 
By comparison of voltage waveforms in Fig. 5 and Fig. 4a we 
can conclude that are in very good agreement. 
Finally, there is shown the experimental verification at steady 
state. 

 
Fig. 6  Experimental time waveforms of the output quantities(current 

- blue, voltage – red) at steady state under nominal loading 
 

By comparison of voltage waveform to those in Fig. 5 and Fig. 
4a at steady state we can conclude again that is in good 
agreement. 

IV.  CONCLUSION 

The method of steady-state and transient components (A), 
and method of determination of instantaneous state of discrete 
dynamical system (B) have been introduced. Both methods 
make possible to calculate the system response to input non-
harmonic voltage signal at any continuous or discrete time 
instant (�, or		C. ∆, respectively) regardless if input voltage is 
continuous or discrete impulse one. Comparison of simulation 
results of both methods is possible from Fig. 4a and Fig. 5 – 
the results are practically identical. Main difference between 
methods can be seen in used approaches. Since the method A 
deals with evaluation of the roots of denominator of transfer 
voltage function, the method (B) works directly - without the 
evaluation. If we need to know the poles due to behaviour of 
the discrete impulse system, so the inverse Z-transform using 
residua lemma should be used [10], [14]. The mentioned in the 
paper methods make it possible to solve any dynamical state 
of the system such as step changes of the load (switch on/off), 
step changes of the switching frequency (+/-), short circuiting 
of the filter circuit, etc. Analyzing of resonant filter system 
may help to improve the design and final properties of 
devices. 
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