
 

 

  

Abstract—Onboard electrohydraulic actuator (EHA) applied to 

primary and secondary flight command, and in particular the 

servovalves (SVs) regulating their hydraulic power, are complex 

devices and can fail in several ways: servovalves are critical 

components of the hydraulic servos and their correct operation is 

mandatory to ensure the proper functioning of the controlled 

servosystem. For this reason, a continuous monitor is typically 

performed to detect a servovalve loss of operation, but this monitor 

falls short of recognizing other malfunctionings. Often, a progressive 

degradation of a servovalve occurs, which does not initially create an 

unacceptable behavior, but eventually leads to a condition in which 

the servovalve, and hence the whole servoactuator operation, is 

impaired. Developing a prognostic algorithm able to identify the 

precursors of a servovalve failure and its degradation pattern is thus 

beneficial for anticipating the incoming failure and alerting the 

maintenance crew such to properly schedule the servovalve 

replacement. This avoids a servovalve failure in service, thereby 

ensuring improved equipment availability and minimizing the 

impacts onto the logistic line. To this purpose, authors propose a new 

model-based fault detection and identification (FDI) technique able 

to perform an early detection of two of the most common types of SV 

progressive failures (dry friction acting on servovalve spool and 

contamination of the first stage filter). The robustness of the 

proposed technique has been assessed through a simulation test 

environment, built on the purpose. Such simulation has demonstrated 

that the methodology has adequate robustness; also, the ability to 

early identify an eventual malfunctioning has been proved with low 

risk of missed failures or false positives. 

 

Keywords— Electrohydraulic servomechanism, flight command, 

numerical modeling, fault detection/identification, prognostics. 

I. INTRODUCTION 

ROGNOSTICS is a new discipline that aims to identify the 

progressive failure affecting a system and to predict the 

moment in which a specific component loses its functionality 

(and, then, it is not further able to meet desired performances). 
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It is based on knowledge and analysis of the possible failure 

modalities of the considered item and on the capability to 

individuate the initial symptoms of aging or wear; additionally, 

this discipline has the objective to assess the magnitude of 

such damage performing a fault detection and identification 

(FDI). Therefore, a dedicated failure propagation model uses 

these informations to evaluate any possible malfunction and its 

impact. Vachtsevanos et al [1-2] put in evidence as the use of 

this discipline in aeronautics, as in many other technological 

fields, could be very useful if applied to maintenance, since it 

lowers both costs and inspection time. In order to optimize 

these advantages, the discipline known as Prognostics and 

Health Management (PHM) originated: its purpose, as 

reported by Byington, Watson, Edwards, and Stoelting [3], is 

to provide real-time data on the current status of the system 

and to calculate the Remaining Useful Life (RUL) before a 

fault occurs or a component becomes unable to perform its 

functionalities at a desired level. The research presented in the 

paper, referring to the considerations reported by Borello, 

Dalla Vedova, Jacazio and Sorli in [4] and by Maggiore et al. 

in [5], is focused on the development of a fault 

detection/identification (FDI) method able to identify failure 

precursors (alerting that the system is degrading) and to 

evaluate the damage entity. Indeed, a progressive degradation 

of a system subsystem/component, which does not initially 

create an unacceptable behavior, often leads to a condition in 

which the efficiency of such component is impaired and hence 

the whole actuation system operation could be compromised. 

Developing a prognostic algorithm able to identify the 

precursors of an EHA failure and its degradation pattern is 

thus beneficial for anticipating the incoming failure and 

alerting the maintenance crew such to properly schedule the 

EHA replacement. This avoids a servomechanism failure in 

service, thereby ensuring improved equipment availability and 

minimizing the impacts onto the logistic line. The choice of 

the best algorithms able to detect and evaluate a particular kind 

of incipient failure is driven by their ability to detect the failure 

itself, so proper tests are needed. In order to develop the above 

mentioned research, a typical aircraft primary command 

electrohydraulic actuator (EHA) has been modelled in the 

MATLAB Simulink® environment and several sets of 

simulations (performed in nominal conditions or under various 

combinations and magnitude of failures) have been run. 
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The present work started with an extensive literature review, 

focused both on the most common EHA fault modalities and 

propagation models and on the techniques and algorithms 

allowing their detection and evaluation. Then, the numerical 

models, implemented in MATLAB Simulink® and used to 

analyze the progressive fault modes have been described.  

The first model, reported in Section 3, represents the typical 

electrohydraulic servomechanism, and allows simulating the 

effects due to the four different types of progressive faults 

previously mentioned. This model was coupled to the second 

one (Section 4), which represents a simplified model of the 

same EHA. Operatively speaking, the proposed approach aims 

to identify the health condition of the real EHA by comparing 

its dynamic response with the corresponding one provided by 

the said simpler monitoring model (i.e. calculated for the same 

command inputs and boundary conditions): the FDI algorithm 

identifies the value of appropriate coefficients of the monitor 

that minimize the quadratic error and, subsequently, allows to 

correlate them with the actual amount of the corresponding 

damages. In Section 5, the numerical modeling of the above-

mentioned faults was discussed in detail, such as their effects 

on the system and the parameters allowing each fault to be 

detected. Sections 6, 7 and 8 show respectively the failure 

precursors, the proposed FDI method (describing the authors' 

algorithm and providing some explanatory results), the main 

conclusion and the directions for future works. 

II. AIMS OF WORK 

The aims of the work are: 

1) The proposal of a detailed numerical model able to 

simulate the dynamic behavior of EHAs taking into 

account the effects due to two different types of 

progressive failures (dry friction acting on servovalve 

spool and contamination of the first stage filter). 

2) The proposal of an innovative fault detection and 

evaluation method able to detect the EHA failure 

precursors and estimate the failures entity. 

To assess the robustness of the proposed techniques, a 

dedicated simulation test environment has been developed;  

in particular, in order to evaluate the effects due to the 

abovementioned failures on the EHA behavior, several 

simulations (related to different combinations of damages as 

well as different entity) have been performed. The results 

obtained from each simulation have been compared with the 

ones provided by a monitoring model (a simplified model that 

works in nominal conditions) to evaluate the differences and 

define an association with the corresponding failures. 

III. EHA REFERENCE MODEL   

The considered actuation system, schematically shown in 

Fig. 1, is a typical electrohydraulic position servomechanism 

(SM) widely used both in primary and secondary aircraft flight 

controls. As shown in [6-8], this servomechanism consists of 

three main subsystems, listed below: 

 

1) Controller subsystem: the control electronics may be a 

computer, microprocessor or guidance system and creates 

a command input signal; the servo-amplifier (SA) 

provides a low power electrical actuating signal which is 

the difference between the command input signal and the 

feedback signal generated by the feedback transducer. The 

SA usually implements an embedded PID control logic 

(proportional-integral-derivative); it must be noted that it 

is possible to implement more simplified control logics. 

This work is referred to simple proportional control logic. 

2) Electrohydraulic two stage servovalve (SV): responds to 

the SA low power electrical signal and controls the high 

pressure hydraulic fluid [9]. 

3) Hydraulic piston (symmetrical double acting linear 

cylinder subject to Coulomb friction) [10]: actuates the 

flight control surface closing the position feedback loop 

by means of a network of integrated position transducers. 

 

 
Fig. 1 schematic of EHA system layout 

Wider descriptions of the servomechanism employed in this 

work and of its mathematical model are shown by Maggiore et 

al. in [11]; the scheme of the said logic is shown in Fig. 2. 

 

 

Fig. 2 schematic concept of EHA actuator 

The aforesaid servomechanism belongs to the fly-by-wire 

paradigm: the pilot’s command depends upon transducers that 

express the pilot wishes by an electric or a digital reference 

signal; this signal is continuously compared via a feedback 

loop with the actual position of the control surface generating 

the instantaneous position error as input to the control law.  

So, the error is processed and transformed into an electric 

current operating the electrohydraulic servovalve.  
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The servovalve drives an actuator that moves the control 

surface continuously pursuing, by a proper control law in order 

to obtain the reduction of the error between pilot’s 

commanded position and flight surface actual position. 

The servovalve is a high performance two-stage valve  

(Fig. 3); its second stage is a closed center, four-way, sliding 

spool, while the pilot stage is a symmetrical double nozzle and 

flapper, driven by a torque motor. Since its natural frequency 

is supposed to be orders of magnitude higher than the desired 

closed loop bandwidth of the whole servomechanism, only its 

orifices resistive effects were taken into account. 
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Fig. 3 schematic of the flapper-nozzle servovalve 

Its behavior could be efficiently described, for the purpose 

of the paper, with a lumped parameter second order electro-

mechanical model for the pilot stage (first stage) and a first 

order for the sliding spool (second stage) and the related 

feedback spring (Fig. 4). 

 

 

Fig. 4 proposed servovalve Simulink model 

Moreover, in order to take in account, the feedback 

response between the second stage and the first one, we have 

modelled the saturation of the differential pressure itself as 

well as some other minor effects (e.g. oli leakage acting on the 

second stage SV spool). 

 

The hydraulic linear actuator considered in the present 

paper is a double acting symmetrical one. It has been modelled 

considering inertia, dry friction (according to the dry friction 

Karnopp model shown in [12]), viscous friction and leakage 

effects through the piston seals developing a not working flow. 

It is also able to take in account the effects due to its 

interactions with the mechanical ends of travel as well as the 

external (aerodynamic) loads acting on the flight surface. 

A. EHA Analytical Model 

In order to develop the abovementioned research, a typical 

aircraft primary command EHA has been mathematically 

modelled (according to considerations previously reported and 

widely explained in [11]) and, subsequently, implemented in 

MATLAB Simulink® numerical simulation environment.  

This model has been used to simulate the dynamic behavior 

of a real actuator allowing to perform several sets of 

simulations (in nominal conditions or under several failures 

level). Its Simulink block diagram is shown in Fig. 5: the 

position error (Err), coming from the comparison of the 

instantaneous value of commanded position (Com) with the 

actual one (XJ), is processed by means of a PID logic giving 

the suitable current input (Cor) acting on the servovalve first 

stage torque generator; the aforesaid engine torque (expressed 

as a function of Cor through the torque gain GM), reduced by 

the feedback effect due to the second stage position (XS), acts 

on the first stage second order dynamic model giving the 

corresponding flapper position (XF) (flapper and spool 

positions are limited by double translational hard stops).  

The above mentioned flapper position causes a consequent 

spool velocity and, by time-integrating, gives the displacement 

XS (limited by double translational hard stops ±XSM); it must 

be noted that the second stage dynamics is modelled by means 

of a second order numerical model able to take into account 

the dry friction forces acting on the spool. From XS, the 

differential pressure P12 (pressure gain GP taking into account 

the saturation effects) effectively acting on the piston is 

obtained taking into account the pressure losses due to the 

flows through the hydraulic motors QJ (valve flow gain GQ).  

The differential pressure P12, through the piston active area 

(AJ) and the equivalent total inertia of the surface-motor 

assembly (MJ), taking into account the total load (FR), the 

viscous (coefficient CJ) and dry friction force (FF), gives the 

assembly acceleration (D2XJ); its integration gives the 

velocity (DXJ), affecting the viscous and dry frictions and the 

linear actuator working flow QJ that, summed to the leakage 

one, gives the above mentioned pressure losses through the 

valve passageways, while velocity integration gives the actual 

jack position (XJ) which returns as a feedback on the 

command comparison element of the SM control logic.  

It must be noted that the proposed numerical model is also 

able to take in account the effects of EMC (Electromagnetic 

Compatibility) phenomenon by considering the electrical noise 

acting on the signal lines and the disturbances generated by 

position transducers affected by electrical offset. 
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Fig. 5 Matlab-Simulink block diagram of the considered EHA 
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Fig. 6 Matlab-Simulink block diagram of the EHA monitoring model 

IV. EHA MONITORING MODEL   

The proposed detailed EHA Simulink model, as explained 

in the previous paragraphs, is able to simulate the dynamic 

behavior of an actual electro-hydraulic servomechanism taking 

into account the effects due to command inputs, environmental 

boundary conditions and several failures; therefore, it allows 

simulating the dynamic response of the real system evaluating 

the effects of different faults and testing new diagnostic and 

prognostic strategies. In order to conceive a smart system able 

to identify and evaluate the progressive failures, the authors 

propose a new method able to identify the health condition of 

the real EHA by comparing its dynamic response with the 

corresponding one provided by a simpler monitoring model 

properly designed: practically, the proposed FDI algorithm 

compares the two dynamic responses (EHA detailed model vs. 

monitor, calculated for the same command inputs and 

boundary conditions) identifying the value of appropriate 

coefficients of the monitoring model that minimize the 

quadratic error and, subsequently, correlates them with the 

actual amount of the corresponding damages.  

 

To this purpose, on the basis of the algorithm shown in [11], 

a new EHA monitoring model has been developed. As shown 

in Fig. 6, this monitor represents a simplified version of the 

detailed EHA numerical model having the same logical and 

functional structure; such a model, with respect to the detailed 

one, is able to give similar performance (although less 

detailed) requiring less computational effort and more reduced 

computational time. The coefficients reported into the block 

diagram of Fig. 6 are defined in Table1. 

V. MODEL PROGRESSIVE FAILURES EFFECTS  

As previously mentioned, the electrohydraulic actuators, 

and in particular the servovalves regulating their hydraulic 

power, are complex devices and can fail in several ways: 

according to the above considerations, in this work authors 

focused on some of the typical faults that affect the servovalve. 

It must be noted that a few servovalves failures are a sudden 

occurrence and there is at present no conceivable way of 

predicting them (e.g. some electrical failures of the SV first 

stage servo-amplifier or a feedback spring breaking).  
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Table 1: list of EHA Monitoring Model coefficients 

Symbol Definition 

Com Position command 

Cor Servovalve current 

Err Position error 

F12 Hydraulic actuation force 

FV Actuator viscous force 

P12 Actuator pressure differential 

QJ Actuator flow 

s Laplace variable 

Tact Net torque on flapper 

TM Servovalve motor torque 

XF Flapper position 

XJ Actuator position 

DXJ Actuator speed 

D2XJ Actuator acceleration 

XS Spool position 

DXS Spool speed 

AJ Actuator area 

ASV Spool end area 

CJ Actuator viscous resistance coefficient 

GP Servovalve pressure gain 

GQ Servovalve flow gain 

GQF 1st stage flow gain 

GAP Control law proportional gain 

GM Torque motor gain 

KFt 1st stage mechanical gain (spring stiffness) 

KSF Servovalve feedback spring stiffness 

PSR Maximum pressure differential 

MJ Actuator mass 

XFM Flapper max. displacement (half stroke) 

XSM Spool max. displacement (half stroke) 

XJM Actuator max. displacement (half stroke) 

 

Failures of this type are the interruption of the electrical 

coils, the breaking of the internal feedback spring, the clogging 

of a nozzle or of the jet-pipe due to large size debris in the oil, 

a spool seizure resulting from a large metallic chip stuck in the 

radial clearance between spool and sleeve of the SV or eroviso 

wear phenomenon [13]. However, as shown in [4,11], there are 

several other scenarios in which a progressive degradation of a 

servovalve occurs that does not initially create an unacceptable 

behavior; if undetected, these faults may lead to conditions in 

which the servovalve, and hence the whole EHA operation is 

impaired. As previously reported, the progressive SV faults 

considered in this work are the contamination of the first stage 

filter and the dry friction acting on servovalve spool. 

A. Contamination of First Stage Filter 

As dirt and debris accumulate in the SV first stage filter, its 

hydraulic resistance increases with a consequent reduction of 

the supply pressure available at the first stage and hence the 

pressure differential applicable to the spool: this progressive 

damage results in a slower response of the SV, with increased 

phase lag and reduction of the EHA stability margin (Fig. 7). 

 

 

Fig. 7 EHA step position response in case of 

increasing first stage filter contamination 

B. Dry Friction Acting on SV Spool 

This growth of the dry friction force acting between spool 

and sleeve is due to a silting effect (associated either to debris 

entrained by the hydraulic fluid or to the decay of the 

hydraulic fluid additives which tend to polymerize when the 

fluid is subjected to high temperatures or large shear stresses - 

as they occur in the flows through small clearances): in this 

case, the progressive reduction of the spool positioning 

accuracy (due to the said friction), degrading the position 

accuracy and the stability of the valve (according to [14]), 

generates a corresponding decrease of the stability margin of 

the whole servomechanism, while, about the jack fault, the 

effects due to an increase of the friction force acting on the 

linear hydraulic actuator. This dissipative force, caused by the 

cylinder sealing and guiding elements, has been considered 

because of its influence on dynamic behavior of the actuation 

system [15]: in this case, dry friction produces a reduction of 

EHA position accuracy and degradation of its breakaway 

resolution (Fig. 8) and, at the limit, it could generate stick-slip. 

For completeness, it should be noted that, in addition to 

these faults, the considered EHA system may also suffer 

electrical or electronic problems. Electrical and sensor failures 

are not less important than the others but, generally, their 

evolutions are usually very fast (if not instantaneous); then, the 

corresponding failure precursors are often difficult to identify 

and evaluate reasonably in advance on the onset of the 

corresponding fault. 
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Fig. 8 EHA ramp position response for increasing spool friction 

VI. FAILURE PRECURSORS 

The proposed approach performs the fault detection and 

identification (FDI) analysis by means of an algorithm (based 

upon comparison between real system and its monitoring 

model) able to detect the progressive failures and predict their 

evolution
1
. The health conditions of the real EHA are 

identified by comparing its dynamic response with the 

corresponding one provided by a simpler monitoring model 

properly designed. Operatively speaking, the proposed 

algorithm compares the two dynamic responses (generated by 

detailed model and by monitor, under the same command 

inputs and boundary conditions) in order to identify the value 

of appropriate coefficients of the monitoring model that 

minimize the quadratic error and, subsequently, to correlate 

the amount of the aforesaid coefficients with the actual level of 

the corresponding damages. It must be noted that, in order to 

limit costs, logistic problems and the reliability implications 

related to introduction of new components into the sensors 

network, this approach identifies potential system degradations 

without requiring any additional transducer. In conclusion, the 

proposed prognostic algorithm is based upon the detections of 

the precursor of degradations identified during the simulations: 

then now we are going to briefly explain what kind of result 

we have found during our analysis. In case of increased 

contamination of the first stage filter, we have observed a high 

correlation between this fault and the following parameters: 

1) Amplitude of the first overshoot. 

2) Time required for complete adjustment. 

Figure 7 puts in evidence how the EHA dynamic response 

changes even with a small increasing of the servovalve filter 

contamination (simulated by means of a chocking factor called 

Kintas), generating a measurable reduction of the stability 

margin of the whole system.  

 
1  This fact underlines a limit of prognostics: indeed, it could predict only 

failures which present a gradual growth and it is not able to detect sudden 

faults (or progressive faults having too rapid growth). 

Indeed, evaluating higher value of filter contamination 

(shown by red arrows in Fig. 7), it is possible to verify how the 

EHA evidences a progressively reduced stability margin (with 

broader overshoots and longer settling times). As regards the 

increasing of the friction force acting between spool and 

sleeve, the authors found some difficulties in discern the 

effects attributable to static friction and dynamic one. Indeed, 

especially in the considered application, these two phenomena 

tend to be hardly discernible each other. About the dynamic 

friction acting on spool, three parameters are considered: 

1) Breakaway resolution. 

2) Average position error during slope actuation. 

3) Frequency and amplitude of eventual stick-slip. 

In order to identify increasing of dry friction, the most 

effective was the slope command input that could easily 

identify the previous three parameters. To ensure a better 

prognostic level of the incipient failure, evaluation parameters 

about time response and steady-state have been introduced. 

 

 

Fig. 9 command input used to perform the FDI analysis 

VII. FAULT DETECTION AND IDENTIFICATION 

The effects of the progressive faults on the characteristic 

parameters of the prognostic model have been firstly assessed 

separately, by considering the degradation of the single 

parameters, and then simultaneous degradations have been 

simulated to evaluate their effects. With the purpose to achieve 

a timely identification and evaluation of these failures, the 

authors have analyzed how the previous parameters evolve 

during the degradations of system: many scenarios have been 

evaluated and the so acquired know-how has been used to 

identify a suitable sequence of position command inputs 

(shown in Fig. 9) useful to perform with satisfactory accuracy 

the FDI of these progressive faults. The proposed prognostic 

procedure could be performed during the preflight checks (or 

the daily maintenance): the dynamic response produced by the 

real actuator as a consequence of the proposed command input 

will be acquired and, then, analyzed with post-processing 

software in which, by the comparison with the monitor, the 

EHA health status is esteemed.  
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In the first part of this paragraph we are going to consider 

single degradations (i.e. just one parameter). In order to 

perform a faster and more precise identification of the level of 

damage of the valve, the authors have considered responses 

within some predetermined band (as shown in Fig. 10, 11 and 

12). This simple approach allows establishing if the actual 

performances of the SV are still acceptable and, moreover, in 

this way it is possible to provide a first identification of the 

failure level. The bands identification algorithm analyzes 

specific parts of the command input (Fig. 9) in order to use the 

most suitable command to identify the contamination of the 

first stage filter or the increasing of dry friction action on SV 

spool. In particular, as reported in paragraph 5.1 and 5.2, step 

position command input performs best in identification of first 

stage contamination; on the contrary, small amplitude slope 

ramp is best to identify dry friction. To ensure the 

identification of the prevailing failure, the algorithm compares 

the actual EHA response with a couple of “degraded” bands 

(Fig. 10-12); therefore, the algorithm is able to discern three 

failure levels: 

1) Acceptable level (failures are barely distinguishable from 

measurement uncertainties and EM noise). 

2) Maintenance required (Midband). 

3) Non-nominal performance (MaxBand). 

Finally, comparing the two classification levels assigned, the 

algorithm indicates which is the ruling (i.e. most probable) 

faults combination. In case of events of over bands, the 

algorithm is also able to evaluate these two main factors: 

1) Number of events outside the band, in order to avoid false 

positive detections. 

2) Time of entry and exit point of over band, in order to 

evaluate the health of the whole EHA. 

To obtain suitable performance in classification of the 

failure level, it is important properly define the aforesaid 

bands; to this purpose, in order to assess the best FDI 

performance, the authors have performed several evaluations 

on the dynamic response of the real system under failures.  

 

 

Fig. 10 particular of EHA response vs. command input: 

initial step section and related post-processing bands 

 

Fig. 11 particular of EHA response vs. command input: 

small slope section and related post-processing bands 

 

Fig. 12 particular of EHA actuation speed calculate for 

small slope section and related post-processing bands 

It has been found that below the values reported as “mid 

band” in the Table 2, the performance of the EHA are still 

acceptable, so the identification is much harder and not always 

accurate; differently, within the two bands it is possible to 

operate a prognostic analysis in order to avoid a further 

increasing of the failure. In particular, the max band values 

represent an operational limit beyond which the performances 

of the actuation system are not still acceptable. 

 

Table 2: definition of the bands failure level 

Kintas [#] FSS [N] 

MidBand 0.25 MidBand 35  

MaxBand 0.35 MaxBand 70  

 

It must be noted that, despite its simplicity, the proposed 

bands method performs properly the identification of a single 

failure and, in our tests, it has been always possible recognize 

a possible degradation. 
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Furthermore, a first coarse estimation of the failure presence 

could be directly performed by comparing the actual response 

with the band failure level. Anyways the algorithm is not able 

to estimate the actual degradation level, in facts, it operates a 

discrete identification and classification, this type of approach 

is quite common in prognostic algorithm even with more 

advanced ones (e.g. FDI algorithms based upon neural 

networks [16] or pattern recognition methods implemented by 

means of multinomial logistic regressions [17]). In case of 

multiple progressive degradations, an improvement of the 

prognostic method is required (in order to be able to 

discriminate between different combinations and levels of 

failure). To this purpose authors propose to use the monitoring 

model as a tracker of the response of the system: the health 

status of the real EHA (affected by a given combination of 

progressive failures) is evaluated comparing its dynamic 

response (generated by the command input shown in Fig. 9) 

with the corresponding output of the monitor. Indeed, as 

already shown in paragraph five, it is possible to evaluate the 

growth of the contamination of the SV first stage filter by 

means of a step command input as well as a low slope ramp 

command is the best way to evaluate the magnitude of the 

eventual dry friction acting on the servovalve sliding spool.  

In this way, minimizing the RMS error (1) calculated between 

the responses provided by EHA and monitoring model, it is 

possible estimate the value of the parameters considered. 

EHAMONITOR RMSRMS −  (1) 

The logic of proposed multi-failure FDI algorithm is 

depicted by the flowchart shown in Fig. 13.  

The dynamic response calculated by the monitoring for the 

different combinations of faults is compared with that of the 

real system, so as to identify the possible couples of failure 

which minimize the RMS error. To avoid missing or incorrect 

failure identification and, at the same time, to allow a lighter 

computation cost, the possible combinations of faults are 

discretized obtaining the failure grid shown in Fig. 14. 

Figures 14 and 15 show how the FDI algorithm evaluates 

the estimate combination of faults, starting from the two point 

of minimum RMS for each of the two commands then 

according to the distance from the first bisector is possible to 

compute a numerical weight, in order to compute a gravity 

center between these two points. Operatively speaking, the 

minimum RMS point, that is calculated by the step command 

(Fig. 10), has its maximum weight on the right side of the 

graph (Kintas = 0.35) whereas, on the contrary, for the ramp 

command (Fig. 11) the maximum weight is on the left side 

(Kintas = 0.15). Once identified this minimum area, it is then 

possible to implement a more accurate analysis using more 

refined methods (but more expensive in terms of time and 

power) such as deterministic optimization algorithms, 

Simulated Annealing or Genetic Algorithms
2
. 

 
2  It should be noted that, compared to other most common model-based 

prognostic approaches (e.g. based on genetic algorithms, simulated 

annealing or more advanced optimization methods), the proposed method 

 
Fig. 13 schematic of the proposed multi-failure FDI algorithm 

 

 

Fig. 14 schematic of FDI failure grid (Kintas=0.25; FSS=6·FSSNC): 

black arrows identify the actual degradation level of the EHA 

 

 

Fig. 15 schematic of FDI failure grid (Kintas=0.17; FSS=9·FSSNC): 

black arrows identify the actual degradation level of the EHA 

                                                                                                     
provides more coarse, and not necessarily unique, results but, as already 

mentioned in Section 7, it is not intended to be a standalone alternative to 

the most common FDI methods, but rather wants to provide a pre-

assessment procedure, to foresee upstream of these FDI algorithms, that 

should be used as a startup step of the said prognostic process. 
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VIII. CONCLUSIONS AND FUTURE WOKS 

This work analyses the effects of two progressive failures on 

the dynamic behavior of EHA in order to identify system-

representative parameters which are suitable for prognostic 

activities and to propose a new model-based fault detection 

and identification (FDI) method. The study has been 

performed on a numeric test bench (simulating the real EHA) 

that implements several kinds of failure; by means of proper 

simplifications, the aforesaid numerical model was then 

reduced obtaining the monitoring model. The robustness of the 

proposed technique has been assessed through a simulation 

test environment, built for the purpose. Such simulation has 

demonstrated that the methodology has adequate robustness; 

also, the ability to early identify an eventual malfunctioning 

has been proved with low risk of missed failures or false 

positives. Overall the proposed algorithm demonstrates good 

statistical confidence in identification of the failure; 

furthermore, it could be used without any other additional 

sensors required and all the post-processing proposed could be 

executed to a common PC on the ground. In the authors' 

opinion, these aspects are more important, especially in order 

to improve the predictive maintenance of the analyzed 

component (i.e. prognostic analysis performed daily during the 

usual on-field operations). It is possible to conclude that this 

kind of damage estimator, while constituting a particularly 

simplified and coarse preliminary approach, can be considered 

a good approach for prognostics applications, even for 

combined failures. A broader evaluation of different study-

cases is envisaged to assess the validity and the robustness of 

this method at all the possible different conditions. 
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