
 

 

  
Abstract—Subband adaptive filter algorithms are able to improve 

the convergence behavior by performing the pre-whitening procedure 
on the input signals. In this paper, we propose a new variable step size 
improved multiband-structured subband adaptive filter algorithm 
which dynamically selects subband filters (VSS-DS-IMASF) in order 
to reduce the computational complexity. The subbband selection 
scheme which is designed to select the meaningful subbands is based 
on comparing the steady state subband mean square error (SMSE) with 
the subband error power throughout the algorithm execution, checking 
whether the subband filters converge to the steady state. In addition, 
the step size is controlled by the estimated mean square deviation 
(MSD) in order to achieve better steady state performance. Simulation 
results show that the proposed algorithm has lower steady state MSD 
and less computational complexities compared with the existing 
subband algorithms. 
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I. INTRODUCTION 
ubband adaptive filtering has been received much attention 
in recent years, due to its capability of improved 

convergence performance for highly correlated input signals. 
For the conventional subband adaptive filters(SAFs), the 
adaptive subfilter coefficients are updated independently in 
each subband, and thus the convergence performance is 
degraded by the band-edge and aliasing effects [1]. To 
overcome this drawback, several subband structures have been 
presented [2-6]. Pradhan-Peddy subband model [2] is designed 
by use of the polyphase decomposition and noble identity. 
Furthermore, combining the characteristics of the affine 
projection (AP) algorithm [7] with Pradhan-Peddy subband 
model, a subband AP (SAP) algorithm has been reported in [3], 
which improves the convergence rate and reduce the 
computational complexity of the AP algorithm. Lee and Gan [4] 
presented a normalized subband adaptive filter (NSAF) 
algorithm which made use of all the subband signals, 
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normalized by their respective subband input variance, to 
update the full-band adaptive filter coefficients. Recently, to get 
better convergence performance, an improved multiband struct 
 -ured subband adaptive filter (IMASF) algorithm has been 
proposed [5-6]. It applies the most recent P input signal vectors 
(projection orders) to participate in the full-band filter updating. 
The IMSAF algorithm can be considered as a generalized form 
of normalized least mean square (NLMS), AP and NSAF 
algorithms. However, it encounters higher computational 
complexity with the increased projection orders and long 
unknown system.  

For SAFs, the convergence rate, steady state performance and 
computational complexity have been intensively investigated 
for many years. It is known that the fixed step size in SAFs 
reflects a tradeoff between fast convergence rate and low steady 
state misadjustment. To address this problem, several variable 
step size (VSS) subband algorithms have been proposed such as 
set-member NSAF (SM-NSAF)[8], VSS matrix for NASF [9], 
VSS-NASF [10-11], etc. The computational complexity is 
another subject for SAFs, it is showed that the computational 
complexity of SAF is depends on the number of subband [13]. 
Although the VSS subband algorithms mentioned above 
achieve both better steady state performance and the faster 
convergence simultaneously, their computational complexity 
remains invariant throughout the convergence process. 
Especially, they suffer from huge complexity for some 
applications such as acoustic echo cancellation (AEC) 
involving extremely long unknown system. Abadi and Husϕy 
have presented the simplified selective partial-update subband 
adaptive filter (SSPU-SAF) algorithm [12] with a lower 
computational complexity compared with the NSAF algorithm. 
The dynamic selective NSAF (DS-NSAF) presented in [13] 
adopts the subband filters dynamically based on the maximum 
mean square deviation (MSD) decrease principle, which retains 
the convergence performance and reduce the computational 
complexity. Song’s selective subband scheme [14] is derived 
from the larger ratio of the squared error to an input power for 
each subband. It has better convergence performance and lower 
complexity. Yang [15] makes an analyses on the computational 
complexity of the IMSAF algorithm and proposes several 
simplified computation approaches to reduce its complexity. 
These simplified variants for IMSAF acquire the decrease of the 
complexity. 
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For the subband number N =1 in the IMSAF, it is reckoned as 
AP algorithm [5]. Thus, the steady state subband mean square 
error (SMSE) for the IMSAF algorithm can be given through 
the idea illustrated in [16]. In this paper, we present a new 
VSS-IMSAF algorithm which dynamically selects subband 
filters in order to reduce the computational complexity. The 
variable step size is obtained based on the method of delay 
coefficients [17-18]. In addition, the subband selective criterion 
is derived by use of comparing the subband error power with the 
steady state SMSE. In other words, when a suband filter reaches 
its steady state, its adaptation is broke off. Thus, we call this 
proposed VSS-IMSAF as subband dynamic selection 
VSS-IMSAF (VSS- DS-IMSAF). Simulation results show that 
the proposed algorithm provides a lower steady-state 
normalized MSD (NMSD) compared to the existing subband 
algorithms. In addition, it gains a lower computational 
complexity. 

The paper is organized as follows. The IMSAF algorithm is 
reviewed in Section 2.  In Section 3, we derive the 
VSS-DS-IMSAF algorithm and its computational complexity is 
analysed. Simulation results are illustrated in Section 4, and 
Section 5 gives the conclusions. 

II. IMSAF ALGORITHM 

A. Review Stage 
Consider the desired response ( )d n  that arises from the 

model 
( ) ( ) ( ).T

od n n v n= +w u  (1) 
where n  is the time index, superscript T  denotes transposition. 

,0 ,1 , 1[ , , , ]T
o o o o Mw w w −=w   is the unknown system of length 

M , [ ( ), ( 1), ,) )]( ( 1 Tu n nn u u n M− − +=u   is the input signal 
vector and ( )v n  is the background noise, assumed to be zero 

mean ,and independent of ( )u n , its variance is 2
vσ . 

The structure of the IMSAF algorithm is shown in Fig. 1. The 
input signal ( )u n  and desired signal ( )d n  are partitioned into 
N  subband signals ( )iu n  and ( )id n  via the analysis filters 

( )iH z , 0,1, 1.i N= −  The subband signals, ( )id n  and 
( )iu n  are critically decimated to a lower sampling rate 

commensurate with their bandwidth. We use the variable n  to 
index the original sequences, and k  to index the decimated 
sequence for all signals. The decimated subband signals can be 
defined as , ( ) ( ) ( ) ( )T

i D i iy k y kN k k= = w u  and , ( ) ( )i Dd k d kN= , 

where ( ) [ ( ), ( 1), , ( 1)]T
i i i ik u kN u kN u kN M= − − +u   is the 

input data vector for the thi subband and the vector 

0 1 1( ) [ ( ), ( ), , ( )]T
Mk w k w k w k−=w   represents the fullband 

weight vector of the adaptive filter. 

 
Fig. 1 Structure of the IMSAF 

 
Define the input signal matrix ( )kU , the desired signal 

vector ( )D kd , the estimated signal vector ( )D ky , the subband 
noise vector ( )D kv and the error signal vector ( )D ke as follows 

[ ]0 0 1( ) ( ), ( ), , ( ) ,Nk k k k−=U U U U

 (2) 

0, 1, 1,( ) ( ), ( ), , ( ) ,
TT T T

D D D N Dk k k k− =  d d d d

 (3) 

0, 1, 1,( ) ( ), ( ), , ( )

( ) ( ),

TT T T
D D D N D

T

k k k k

k k
− =  

=

y y y y

U w

  (4) 

0, 1, 1,( ) ( ), ( ), , ( ) ,
TT T T

D D D N Dk k k k− =  v v v v

 (5) 

0, 1, 1,( ) ( ), ( ), , ( )

= ( ) ( )= ( ) ( ) ( ).

TT T T
D D D N D

T
D D D

k k k k

k k k k k
− =  

− −

e e e e

d y d U w

  (6) 

where 
[ ]( ) ( 1) ( 1)( ) , , , ,i i

T
ii k k k k P− − += uU u u 

 (7) 

, ,, ,( ) ( 1) ( 1)( ) , , , ,i D i i
T

Di D Dd k d k dk k P− =  − + d 

 (8) 

, , ,, ( )( ) , , ,

= (

( 1) ( 1)

) ( ),
i D i Di

i

i
T

DD

T

y k y k y kk

k k

P− − + =  y

U w

  (9) 

, ,, ,( ) ( 1) ( 1)( ) , , , ,i D i i
T

Di D Dv k v k vk k P− =  − + v 

 (10) 

, , ,,

, , ,

( ) ( 1) ( 1)( ) , , ,

( ) ( )= ( ) ( ) ( ).
i D

T
i D

T
i D

i

i D i D i

D i De k e k e

k

Pk

k k

k

k k

 =  −

−

−

−

+

=

e

d y d U w

 (11) 

By reusing the last P  subband input vectors and solving the 
constrained optimization problem based on the principle of 
minimal disturbance, the updating equation of the IMSAF 
algorithm can be expressed as 

1( 1) ( ) ( )[ ( ) ( )+ ] ( ).T
Dk kk k k kµ δ −+ = +w w U U U I e  (12) 

where µ  is the step-size and δ  is the regularization parameter 
which avoids division by zeros. I  is a NP NP×  identity 
matrix. Note that the weight vector is updated for each N  input 
samples. 

Because the cross-correlation of two arbitrary subband 
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signals is small, the cross-correlation items in ( ) ( )T k kU U  can 
be neglected. Thus, a simplified version of the IMSAF 
algorithm (SIMSAF) is written as[15] 

,

1
1

.
0

( 1) ( ) ( ( )) ( ) .
N

i i i i D
i

k k k kk µ
−

−

=

+ = + ∑w w eU R  (13) 

where , 0( ) ( ) ( )+T
i i i ik k k δ=R U U I  is the subband autocorrelation 

matrix, and 0I  is a P P×  identity matrix. 
Define the weight error vector ( ) ( )ok k∆ = −w w w , the 

undisturbed error vector ( )D kξ  can be given as 
( )= ( ) ( )T

D k k k∆ξ U w , we get 
( ) ( ) ( ).D D Dk k k= +e ξ v  (14) 

Based on the maximum MSD decrease principle, the optimal 
step size of the IMSAF algorithm is expressed as [5] 

1

opt 1

[ ( ) ( ) ( )]
( )= .

[ ( ) ( ) ( )]

T
D D
T
D D

E k k kk
E k k k

µ
−

−

ξ R e
e R e

 (15) 

where ( ) ( ) ( )+Tk k k δ=R U U I , [ ]E  denotes the expectation 
operation . If the background noise is absent, we obtain 

( ) ( )D Dk k=e ξ from (14) and the fast convergence rate is 
achieved for opt =1µ . 

III. PROPOSED IMSAF ALGORITHM 

A. Variable Step Size for IMSAF Algorithm 
Assuming that the weight error vector ( )k∆w  is independent 

of the input ( )kU [17], the undisturbed error power 2 ( )kξσ  

which is defined as 2 ( )= [ ( ) ( )]T
D Dk E k kξσ ξ ξ  can be approximated 

as [17-18] 

                     

2 ( )= [ ( ) ( )]

= [ ( ) ( ) ( ) ( )]
{ [ ( ) ( ) ( ) ( )]}

(1 ) ( ) { [ ( )]}.

T
D D

T T

T T

k E k k

E k k k k
E tr k k k k

M D k tr E k

ξσ

∆ ∆

= ∆ ∆

≈ ⋅

ξ ξ

w U U w
w w U U

R

 (16) 

where 2( ) [ ( ) ]D k E k= ∆w  is defined as MSD, 

( )= ( )= ( ) ( )T Tk k k kR R U U  , { }tr  denotes the trace of a matrix 

and 2
  represents Euclidean norm of a vector . 

Neglecting the dependency of the input and noise, the 
numerator of (15) can be given by 

                     

1

1

1

1

1

[ ( ) ( ) ( )]

= [ ( ) ( ) ( )]

= { [ ( ) ( ) ( )]}

{ [ ( ) ( ) ( ) ( ) ( )]}
(1 ) ( ) { [ ( ) ( )]}.

T
D D
T
D D

T
D D

T T

E k k k
E k k k
E tr k k k
E tr k k k k k

M D k tr E k k

−

−

−

−

−

= ∆ ∆

≈ ⋅

ξ R e
ξ R ξ
ξ ξ R

w U U w R
R R

 (17) 

And then, the denominator of (15) can be written as 

                
1

1 1

1 2 1

[ ( ) ( ) ( )]

= [ ( ) ( ) ( )] [ ( ) ( ) ( )]

(1 ) ( ) { [ ( ) ( )]}+ { [ ( )]}.

T
D D
T T
D D D D

v

E k k k
E k k k E k k k

M D k tr E k k tr E kσ

−

− −

− −

+

≈ ⋅

e R e
ξ R ξ v R v

R R R

 (18) 

Using these results in (15)-(18), the optimal step size can be 
written as 

              1

1 2 1

( ) { [ ( ) ( )]}( )= .
( ) { [ ( ) ( )]}+ { [ ( )]}v

D k tr E k kk
D k tr E k k M tr E k

µ
σ

−

− −

⋅
⋅

R R
R R R





 (19) 

Since the calculation of the expectation for input signal is not 
feasible in (19), we replace it by the instantaneous value. If the 
regularization parameter δ  is very small enough and the input 
signals fluctuate slowly from one iteration to the next. (19) can 
be implemented as 
                                    

2 1

( )( )= .
( )+ { ( )}v

D kk
D k tr k

µ
σ −R

 (20) 

For colored inputs, ( )kR  can only be approximated a block 
diagonal matrix[15]. However, for simplified calculation here, 
assuming that the diagonal components of ( )kR  is larger than 
the off-diagonal, we focus only on the diagonal components of 

( )kR [19], so the optimal step size can be approximated as 
                            

( )
1 1

22

0 0
( )

( )( )= .
( )+ 1

i
i

N P

v
l

D k

k l
k

D k
µ

σ
− −

= =

−∑∑ u

 (21) 

Note that the MSD cannot be calculated in practice due to the 
unknown system ow . We insert delay coefficients 0( ) [ ( )k h k=h  

1 1, ( ), , ( )]T
Lh k h k−

 whose length is L  prior to the adaptive filter 
artificially and the filter mismatch spreads evenly over all filter 
coefficients during the algorithm execution. Consequently, the 
MSD can be estimated as 
                                           2ˆ ( )= ( ) .MD k k

L
h  (22) 

B. Subband Steady State Mean Square Error 
For analytical simplicity, we consider the simplified version 

of the IMSAF algorithm, then (13) can be expressed in terms of 
the weight error vector as 
                   1

1
.

0
, (( 1) ( ) ( ) ( ) .)

N

i i i i D
i

k k k k kµ
−

−

=

∆ + = ∆ − ∑w w U R e  (23) 

Taking the expectation of the squared norm of the error 
weight vector in (23), we can obtain the MSD that satisfies 

                   
1

2 1
, .

0
,

1

0
,

1
, .

( 1) ( ) { ( ) ( ) }( )

( )2 { ( ) ( ) }.

N
T
i D i i

i
N

T
i D

i

Di i

D

i
i

D k D k E k k

E kk

k

k

µ

µ

−
−

=

−
−

=

+ = +

−

∑

∑

e

R e

e R

ξ

 (24) 

When the algorithm reaches the steady state, the MSD 
satisfies ( 1) ( )D k D k+ = , as k → ∞ . Thus, from (24) we have 

1 1
2 1 1

, . , .
0 0

, ,{ ( ) ( ) } 2 { ( ) ( ) }( ) ( )

as .

N N
T T
i D i i i D i i

i i
i D i DE k k E k kk k

k

µ µ
− −

− −

= =

=

  → ∞

∑ ∑e ee R ξ R  (25) 

Assuming that the decimated subband signals are 
uncorrelated [20], the thi  terms of summations on both side of 
(25) correspond to each other as follows 
    

2 1 1
, . , ., ,( ){ ( ) ( ) } 2 { ( ) ( ) }

0,1, , 1, a .
(

s
)T T

i D i i i D i Di D i iE k k E k k
i N k

k kµ µ− −=

= −     → ∞

e R eξ Re


 (26) 

Substituting (14) into (26), we obtain 
    

1 1
, , ,. , .(2 ) { ( ) ( ) } { (( ) ( ) }

0
) (

,1, , 1, .
)

as

T T
i D i i ii D i DD i iE k k E k k

N
k

k
k

i
µ µ− −− =

= −     → ∞

ξ v R vξ R


 (27) 

Utilizing the assumption in [16] that ( )i kU  is statistically 

independent of , ( )i D ke  and 2

, , ,{ ( ) }= (( ) )T
i D i Di D kE k E k Sξ ⋅ξ ξ  in 



 

 

the steady state, where 0S ≈ I  for small µ , and ( )TS I I≈ ⋅  for 
large µ , where [ ]= 1 0 0 .TI 

 Hence，the right-hand side 
(RHS) of (27) can be expressed as 

                   

1
, .

1
, .

2 1
, .

,

,

(2 ) { ( ) ( ) }

(2 ) { [ ( ) ( )]}

(2 ) ( ) { [ ( )}

0,1, , 1, as

( )

( )

T
i D i i

T
i D i i

i D i i

i D

i D

E k k

tr E k k

E k tr S E

i N

k

k

k

k

µ

µ

µ ξ

−

−

−

−

= −

= − ⋅

= −     → ∞

ξ

ξ

ξ

R

R

ξ

R

 ,

 (28) 

and the left-hand side (LHS) of (27) can be given by 
                 

1 2 1
, .,. ,{ ( ) ( ) } { [ ( )]}

0,1, , 1 as

(

,

)
i

T
i D i i v D ii iDE k k tr E k

i N k

kµ µσ− −=

                              = −     → ∞

vv R R

 ，

 (29) 

where 2
,iv Dσ  is the subband noise and 2 2

, =
iv D v Nσ σ  [21].  

Combining (27) , (28) with (29),  we get the steady state 
subband excess mean square error (SEMSE) as 

                 
2 1

2 , .
, 1

.

{ [ ( )]}
( )

(2 ) { [ ( )}
0,1, , 1, as

iv D i i
i D

i i

tr E k
E k

tr S E k
i N k

µσ
ξ

µ

−

−=
− ⋅

= −     → ∞

R
R

 ，

 (30) 

and therefore, the steady state subband MSE (SMSE) is given 
by 

                 
2 1

, 2.
,1

.

{ [ ( )]}
SMSE

(2 ) { [ ( )}
0,1, , 1, as .

i

i

v D i i
v D

i i

tr E k
tr S E k

i N k

µσ
σ

µ

−

−= +
− ⋅

= −     → ∞

R
R



 (31) 

If the step size is small and 0S ≈ I , we have 

                                          
2

,2
SMSE ,

2
iv Dσ
µ

=
−

 (32) 

and if ( )TS I I≈ ⋅ , we get 

               
2

2, 2
. ,SMSE { ( )} [ (

2
) ] .i

i

v
i

D
i i v Dtr k E P k

µσ
σ

µ
= +

−
R u  (33) 

C. Subband Selection Scheme 
When a subband adaptive filter reaches the steady state, the 

error power for this subband approches the SMSE. 
Consequently, the continuous adaptation at this moment is 
un-meaningful and the reduction of error becomes not obvious. 
Along this line of thought, we select the meaningful subband 
inputs to update the filter weights based on checking whether 
the subband filters converge to the steady state. Therefore, by 
using of the SMSE presented in (32), the condition for subband 
input selection is 

               
2

2 ,
, , ,, ,

2 2( ) ( ) .
2 2

i

i

v D
i D ii D v D

P Pk k
σ

σ
µ µ

> → >
− −

e e  (34) 

where 
2

, , ( )i D ke  is defined the estimation for the thi  subband 

error power, which can be computed as 
               

,

2 2 2

, , , , ( -1) (( 1 ) () )= ,i D D ii Dk kk α α+ − ee e  (35) 

in addition , for simplified calculation here, we use (32) as 
SMSE for the suband selection. 

Let { }( ) 1 2 ( ), , ,N k N kt t tΘ = 
 denote a subset with ( )N k  

numbers of the set { }0,1, , 1N −
, where lt  means the index of 

the selected subband filters, and ( )N k  is defined as the number 
of the selected subband filters at iteration k . Then, Substituting 
(21) into (13), and utilizing the subband selection scheme, the 

DS-VSS-MSAF algorithm is established as 

          
(

,

)
1
,

0

( ), if ( )
( 1) ( 1) ( )

( ) ( ) ( ) , other( w e) isl ll l

N k

t tt t
l

D

k N k
k k k

k k kkµ −

=


                                         = 0    + = + = +


    


∑

w
w w w

U R e

 (36) 

where , ,( ) 2 /[2 ( )] ( 1,2, , ( ))l tlt D v Dn P k l N kµ σ> −   =e 
.  

D. Computational Complexity 
In this section, the computational complexity of the IMSAF, 

SIMSAF and proposed DS-VSS-IMSAF algorithms are 
compared, estimated by the number of multiplication for one 
iteration. Note that the weights of the subband adaptive filter is 
updated every N  samples. For all three algorithms, the 
subband input signal and desired signal partition needs 
( 1)N K+  multiplications, where K  is the length of the analysis 
and synthesis filters. For error signal synthesis, the algorithms 
need K  multiplications.  For error estimation, due to the 
increased L  taps of the adaptive filter for variable step size 
estimation, the DS-VSS-IMSAF requires ( )P M L+  
multiplications compared to PM  multiplications needed in the 
IMSAF or SIMSAF algorithm. Using the recursive approach, 
calculation of auto-correlation matrix ( ) ( )T k kU U  requires 

22PN  multiplications for IMSAF, while the SIMSAF and 
DS-VSS-IMSAF need 2P  and 2 ( )r k P  multiplications for 
calculating subband auto-correlation matrix ( ) ( )T

i ik kU U  
respectively, where ( )= ( )r k N k N ( ( ) 1r k < ). It is well known 
that the O O×  matrix inversion which can be performed with 
standard LU decomposition needs 3 2O  multiplications [22], 
where O  is the rank of a square matrix. Consequently, for 
tap-weight adaptation, the MSAF needs 2 3 2N P PM+  
multiplications [15], the SIMSAF requires 3 2P PM+  
multiplications and the DS-VSS-IMSAF requires 3( )[ 2r k P  

( )]P M L+ +  multiplications.  
Table 1. Comparison of the computational complexities 

 
 

In addition, the calculation of variable step size for the 
DS-VSS-IMSAF requires extra 1L +  multiplications. For the 
DS-VSS-SAP, due to the small number of selected subband 
filters, the number of multiplication is reduced compared with 
the SIMSAF. On the other hand, the larger value of L  results in 
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the increasing multiplications, as can be seen in Table I. The 
simulated average multiplications per iteration is obtained by 
averaging over the 500 steady-state samples from 100 trials with 
AR(1) inputs illustrated in Section 4, =1.0µ  for the IMSAF 
and SIMSAF and (0)=1.0µ for the DS-VSS-IMSAF. Hence, the 
proposed DS-VSS-IMSAF has lower overall computational 
complexity compared to the SIMSAF if the following inequality 
holds 
                      3[1 ( )]( 2 2 ) 1.

( ) 1
r k P PM KL

r k P
− + + −

<
+ +

 (37) 

IV. SIMULATION RESULTS 
To confirm the performance of the proposed algorithm in this 

paper, we present the simulation results of the proposed 
algorithm for the system identification and echo cancellation. 
All the following results are obtained by averaging over 100 
Monte Carlo trials. An independent white Gaussian noise 
signal, ( )v n ,is added to the output of the unknown system, with 
30-dB signal to noise ratio (SNR). Assume that the variance of 
noise is known, because it is can be easily estimated during 
silences and on line [23]. For signal partitioning in all 
experiments, The cosine-modulated filter banks [24] with 
subband number 8N =  are used and the length of their 
prototype filter, K , is set to 128. The number of projection 
order 8P = . The default values 41 10ε −= × , 0.9α =  are 
employed. For the proposed algorithm, we choose the length of 
extended filter 120L = . The performance is measured by use of 
normalized MSD (NMSD) defined as 

                     
2

10 2

( )
NMSD( ) 10log .o

o

k
k

 −
 =
 
 

w w

w
 (38) 

In the first set of simulations, we evaluate the dynamic 
selection (DS) scheme for the  IMSAF algorithm under the 
system identification. The IMSAF with DS-IMSAF algorithm 
are compared. The input is an AR(1) process with the 
coefficients (1,-0.9). The unknown system model is generated 
with coefficients being a white Gaussian noise sequence with 
zero-mean and unit variance, and its length is 1024M = . For 
two algorithms, µ  is set to 0.2 and 1, respectively. It can be 
seen from Fig. 2 that dynamic selection scheme leads to lower 
steady state NMSD with reduced computation complexity, 
while the convergence rate is decreased slightly due to the 
absent subband inputs, especially for large step size. Fig. 3 
shows the average number of selected subbands of the 
DS-IMSAF, we can find that the number of selected subbands 
becomes small during the convergence phase. As a result, the 
DS scheme leads to low computational complexity for the 
tap-weight adaptation because of a fewer selected subbands. 

The performances of the IMSAF, APA, NSAF, DS-NSAF, 
proposed VSS-IMSAF and VSS-DS-IMSAF algorithms are 
compared in Fig.4. Except for the VSS-IMSAF and 
VSS-DS-IMSAF algorithm, the step size µ  is set to 0.6, and 
the initial step size (0)µ  for two abovementioned VSS 
algorithms are set to 0.15. Other experimental parameters are 

identical with those in Fig.2. As shown in Fig.4, the proposed 
VSS-IMSAF and VSS-DS-IMSAF algorithms achieve the 
lowest steady state NMSD among these algorithms. However, 
due to the effect of the subband input selection, the convergence 
rate of the VSS-DS-IMSAF is lower than that of the IMSAF and  
VSS-IMSAF algorithms. Fig.5 shows the step size learning 
curve of the VSS-IMSAF, it is clear that the step size becomes 
small gradually, resulting in the lower NMSD, which ascribes to 
the step size controlled by MSD. In other words, the MSD 
decreases during the convergence process, so the variable step 
size which is presented in (21) inherits this property. 

 

                 Fig. 2  NMSD curves of the IMSAF and DS-IMSAF. 

                

   Fig. 3 Average number of selected subband  
      (a) with 0.2µ = (b) with 1µ = . 

 

             Fig. 4  NMSD curves of the IMSAF, APA, NSAF,        
DS-NSAF, proposed VSS-IMSAF and VSS-DS-IMSAF. 
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Fig. 5 Step size curve for the VSS-IMSAF. 

 

Fig. 6 Measured room acoustic impulse response. 

Tracking ability is a very important issue for adaptive 
algorithms. In the second set of simulations, we focus on the 
tracking performance of these algorithms. The unknown 
systems to be identified is the acoustic echo responses of a room 
which are truncated to 1024 taps with a 8-kHZ sampling rate, as 
shown in Fig.6. In the experiments, the system sudden change 
occurs after 5000 iterations, from acoustic channel 1 show in 
Fig.6 (a) to acoustic channel 2 presented in Fig.6 (b). The input 
signal is generated by an AR(10) process with the coefficients 
(5.3217, -9.2948, 7.0933, -2.8125, 2.5805, -2.4230, 0.3747, 
2.2628, -0.3028, 1.7444, 1.1053), which is highly colored 
signal like speech. Fig.7 shows that all three algorithms have 
good tracking performance after the sudden change of the 
unknown system. We also find that the VSS-IMSAF and 
VSS-DS- IMSAF can retain lower steady state NMSD. Fig.8 
and Fig.9 show the tracking ability of the variable step size and 
average selected subband for the VSS algorithms. It can be seen 
that both step size and average selected subband are able to 
resist the occurrence of the sudden change for the unknown 
target system. 

In the third set of simulations, we evaluate the performance of 
the proposed algorithms in the context of acoustic echo 
cancellation (AEC). Two acoustic channels shown in Fig.6 are 
also utilized. The speech signal input shown in Fig.10 (a) is 
sampled at 8kHz. Fig.10 (b) shows the near-end speech also 
sampled at 8kHz, which indicates the occurrence of the double 

 

   Fig. 7  NMSD curves of the IMSAF, VSS-IMSAF and 
VSS-DS-IMSAF for system sudden change 

 

   Fig. 8  Step size curves of the VSS-IMSAF and 
       VSS-DS-IMSAF for system sudden change 

 

Fig. 9   Average number of selected subband of the  

                         VSS-DS-IMSAF for system sudden change. 

-talk after 12.5s. Fig. 11 compares the NMSD curves of the 
IMSAF, VSS-IMSAF and VSS-DS-IMSAF algorithms. In this 
simulation, the system sudden change happens after 10s, from 
acoustic channel 1 to channel 2, and no near-end speech is 
present. It is can be seen that the two VSS algorithms have better 
steady state performance than the IMSAF algorithm. In Fig. 12, 
the algorithms are tested in the double-talk situation, the 
near-end speech presents after 12.5, which deteriorates the 
convergence performance for all three algorithms. However, we 
can see that two VSS algorithms also ensure more robust than 
the IMSAF algorithm. 
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Fig.10. (a) Speech signal inputs. (b) Near-end speech 
 occurred after 12.5s. 

 

Fig.11  NMSD curves of the IMSAF, VSS-IMSAF and 
      VSS-DS-IMSAF for system sudden change. 

 

Fig.12  NMSD curves of the IMSAF, VSS-IMSAF and 
VSS-DS-IMSAF for double-talk situation. 

V. CONCLUSION 
In this paper, a new variable step size IMSAF algorithm with 

dynamic selection of subband filters is proposed. The variable 
step size is controlled by use of the MSD, which is estimated 
through the artificial delay coefficients. To design the subband 
input selection scheme, we check whether the subband filters 
converge to the steady state based on comparing the subband 
error power with the steady state subband MSE. The step size is 
optimized to maximize the MSD, and the meaningful subband 
inputs during the transient phase are selected. Simulation 
results, achieved in the context of the system identification and 

acoustic echo cancellation, demonstrate the proposed algorithm 
not only gains a lower NMSD compared with the existing 
SIMSAF algorithm, but also lessens the computational burden, 
only slightly encountering decrease of the convergence rate.  
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