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Abstract—This article presents a method to achieve a high

precision time-frequency analysis and detect the linearity of linear
frequency modulation continuous wave (LFMCW) radar system. At
first, discrete time domain window is used to make the target signal to
be discrete short-time pieces. The fractional Fourier transform (FRFT)
is used to calculate the frequency modulation (FM) rates of every
subsection. Let the short-time signal mix with a ideal linear frequency
modulation (LFM) signal, the intermediate frequency (IF) signal can
be obtained. The Wigner-Ville Distribution (WVD) transform can be
used to estimate the time-frequency function of the IF signal. The
time-frequency function of short-time signal can be calculated from
the relation between the IF signal and the ideal LFM signal. This
method can achieve a high precision time-frequency analysis. The
simulation can show a significant resolution performance
improvement over the conventional method. At last, a practical
engineering application measurement is presented.

Keywords—Time-Frequency Analysis; Fractional Fourier
Transform; Wigner-Ville Distribution.

I. INTRODUCTION
HE signal to be processed generally has time parameters
and frequency parameters. The frequency of non-stationary

signals changes with time and the relation is called
time-frequency function of the signal. The time-frequency
function of the radar signal can be used to check the linearity of
linear frequency modulation signal [1], estimating surface
water flow speeds[2], radar emitter signal recognition[3],
plastic landmine detection[4], heart murmurs analysis[5] and
efficient analysis of phase-locked loops[6]. It is significant and
necessary to do time-frequency analysis.
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In signal processing field, the most used transformation is
fast Fourier transform (FFT) and FFT can calculate the
frequency of the signal. However, FFT is a holistic conversion
from the time domain to the frequency domain so that it does
not have time resolution. Because of the defect of FFT, Gabor
presented the short-time Fourier transform (STFT) [7] in 1946
and it contains two steps: use time domain window function to
choose a subsection and do FFT. Because the time length of
window function is short enough to regard the segmented signal
as stationary signal, we can calculate the time-frequency
function through moving the window function. There is no
crossing-term, but its self-term is not concentrated. When the
frequency of segmented signal changes tremendously, the
bandwidth of FFT is too wide and STFT cannot calculate the
exact frequency of the signal. The common time-frequency
analysis methods have Wigner-Ville Distribution (WVD) [8]
and wavelet [9]. The STFT need to balance the resolution
between time domain and frequency domain, and the WVD can
avoid it, but theWVD is effected by the crossing-term and there
are some ways to restrain the crossing-term [10][11]. Wavelet
transformation need choose a suitable wavelet base according
to the signal types, but sometimes we do not know the type of
the signal.
Fractional Fourier transform (FRFT) can overcome the

shortcomings of traditional STFT. Especially for chirp signal,
FRFT has a good time-frequency aggregation and do not have
crossing-term, so FRFT has an advantage in the time-frequency
analysis of linearity detection. References [1] presents an
infinitesimal method to measure the linearity of the VCO, but
this method is seriously affected by noise and not very accurate.
We need to use a high sampling frequency to sample the
transmitting signal of FMCW radar system and the little error
can lead to a big mistake. This article presents a method to
measure the linearity and achieve a high resolution
time-frequency analysis.

II. TIME-FREQUENCY CALCULATION

A. Rough calculation of time-frequency
The WVD of signal is defined as:

*( , ) ( ) ( ) exp( 2 )
2 2sW t f s t s t j f d    




      (2.1)

s(t) is analytic signal and let the integral part of equation (2.1)
be expressed as:
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*
, ( , ) ( ) ( )

2 2s sr t s t s t      (2.2)

The equation (2.2) is an instantaneous self-correlation. The
instantaneous self-correlation leads the frequency of signal
double.
The non-stationary signals can be regarded as LFM signals

during a pimping time[1]. If there is no noise, during a pimping
time wT the signal can be written as:

2
0( ) exp( 2 ( ) )

2w
ks t A j f t t j       ， [0, ]wt T (2.3)

A is the amplitude and  is the initial phase. 0f is the initial
frequency and k is the frequency modulation (FM) rate. When
we sample the signal ( )ws t with sampling rate Fs and the
sample points is N, the frequency resolution can be written as:

/ 1/ wFs N T . The discrete signal of ( )ws t is ( )ws n ,

where 0,1 , 1.n N  Let ( )ws n do discrete WVD
transform and there is fence effect. The fence effect is caused
by the discretization of the signal and here we discuss the
discrete Fourier transform (DFT) and discrete time Fourier
transform (DTFT) to show the fence effect. The spectrum of
DFT and DTFT are shown as Fig.1:

(a) (b) (c)
Fig. 1 The DFT and DTFT frequency spectrum

In the Fig. 1, the solid-line curves stand for the spectrum of
DTFT and the solid points stand for the spectrum of DFT.
Analyzing the Fig. 1, following conclusions can be
summarized:
① DFT spectrum is the discrete samples of the DTFT

spectrum. The frequency interval between every two DFT
spectrum lines is equal to the one frequency resolution 1/ wT .
From the spectrum of DFT, we can calculate the frequency of N
DFT spectrum line and the frequency can be written as:

wTnF /1 , where n is the number of every DFT spectrum
line and n is discrete. In digital signal processing field,
researchers use the maximum DFT spectrum line of DFT to
calculate the frequency of the signal.
②As the frequency varies and when the maximum DFT

spectrum line is alternating, and the frequency of the signal is
F1 which is approximately equal to an integral multiple of
frequency resolution plusing one-half frequency resolution.
The F1 can be expressed as 1 ( 1/ 2) 1/ wF M T   , where
M is an inter and is equal to the number of the maximum
spectrum line. The DFT-DTFT picture is similar to the picture
(b) in Fig. 1.
③ As the frequency varies and when the DFT spectrum is

similar to a pulse, the frequency of the signal is F2 which is an
integral multiple of frequency resolution. The F2 can be
expressed as 2 1/ wF K T  , where K is an inter and is equal
to the number of the maximum DFT spectrum line. The
DFT-DTFT picture is similar to the picture (c) in Fig. 1.
Since the frequency spectrum of the LFM signal varies

against time and the number of maximum spectrum line cannot
vary gradually because of fence effect. When the frequency of
signal linearly increases from 0f to 0 wf k T  , the
time-frequency function of WVD appears as a ladder. If

0 600f Hz and 0.1wT  , there are N sampling points and

the discrete time is t: ( / ) ,0 1wt T N n n N    . We use

WVD to calculate the frequency during wT . When the FM rate

k is bigger, the steps of the ladder is more and it is as Fig.2.
When the FM rate k is smaller, the steps of the ladder is less
and it is as Fig.3. In this article, the length of every jump on the
horizontal axis is call time-step and the length of every jump on
the vertical axis is call frequency-step.

Fig.2 time-frequency analysis with bigger k

Fig.3 time-frequency analysis with smaller k

B. Precise calculation of time-frequency
The sampling rate is Fs and the sampling points are N. The

frequency resolution is: / 1/ wF Fs N T   . The WVD
needs to do instantaneous self-correlation, and this action leads
the frequency of signal double and the calculated frequency
needs to be divided by two at last. After the WVD
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transformation we can calculate the frequency of the maximum
DFT spectrum line and we can obtain the ladder frequency
picture as Fig.2 and Fig.3. If there are M times jump during wT
and there are in discrete time points during every jump, the

relation can be gotten:
0

M

m
m

N n


 and 0n stands for the

number of points before the first jump. in stands for the i-th
time-step and is corresponding to the horizontal axis. The
schematic diagram of discrete time in is shown in the Fig.4.

Fig. 4 time-step and frequency-step

If the number of maximum DFT spectrum line is iP before

the i-th jump and the frequency is: ( ) ( / )WVD i iF P Fs N P  .
The instantaneous time of the last point before the i-th jump is

0

i

i m
m

Tb n


 .

If the number of maximum DFT spectrum line is 1iP after
the i-th jump and the frequency is

1 1( ) ( / )WVD i iF P Fs N P   . The instantaneous time of the

first point after the i-th jump is
0

1
i

i m
m

Ta n


  .

The positions of Tbi and Tai in the time-frequency picture
can be shown in the Fig. 5:

Fig. 5 positions of Tbi and Tai

If the FM rate k is positive, there is the relation:

1 1i iP P   because the frequency of LFM signal is gradient
change. If the FM rate k is negative there is the relation:

1 1i iP P   . In this article, we only analyze the situation of
positive FM rate and the situation of negative FM rate can be
analyzed with the same method. From the above relation, the
frequency difference of WVD corresponding to every jump is
equal to one frequency resolution:

1( ) ( )WVD i WVD iF P F P F    (2.4)
In this article, the WVD frequency difference of every jump is
called frequency-step and is corresponding to the vertical axis
as shown in the Fig.4. Therefore, in Fig.2 and Fig.3, every
frequency-step of the ladder is equal to one frequency
resolution. Let the frequency of the i-th jump point be equal to
the mean of ( )WVD iF P and 1( )WVD iF P :

1( ) ( )( )
2

WVD i WVD i
jump

F P F PF i 
 (2.5)

The discrete time from (i-1)-th jump to i-th jump is regarded
as a period or time-step. If the number of total jumps is M and
the mean time-step can be calculated by:

1

1

1
2

M

T i
i

N n
M






  (2.6)

The time-frequency function of LFM signal can be written as:

0( )F t f k t   and its discrete form is:

0( )
1
wk TF n f n

N


  


， [0, 1]n N  (2.7)

Taking the discrete time of i-th and (i-1)-th jumps into equation
(2.7), the following equation can be obtained:

1( ) ( )
1
w

i i i
k TF Tb F Tb n
N


 


(2.8)

If we plot the time-frequency function of WVD and the
time-frequency function of LFM signal into one picture, the
Fig.6 can be obtained:

Fig.6 time-frequency function of WVD and LFM signal

In the Fig.6, the blue line stands for the time-frequency
function of WVD and the red line stands for the time-frequency
function of LFM signal. The two black points Ai and Bi are the
intersections during the i-th jump period. The following
analysis tries to estimate the frequency of all intersections Bi
and linear interpolation algorithms can be used to obtain the
whole time-frequency function of the signal.
Combining the equation (2.4) and (2.8), the following

relation can be obtained:
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1
w

i
k T n F
N


 


(2.9)

Let the mean time-step TN replace the in :

( )
1
w

T T
k TF N N F
N


  


(2.10)

1
w

T

k T F
N N
 




(2.11)

In fact, around the i-th jump point the DFT spectrum is like
picture (b) in Fig. 1 and the frequency of Bi is around

1 /
2

i iP P Fs N
 . When the discrete time is Tbi, the

frequency of LFM signal is less than 1 /
2

i iP P Fs N
 and

When the discrete time is Tai, the frequency of LFM signal is

bigger than 1 /
2

i iP P Fs N
 :

1

0

1

0

( ) ( 1)
2

( 1) ( 2)
2

i
i i

m
m
i

i i
m

m

P PF n n F

P PF n n F










  


     






(2.12)

The 1n and 2n are tiny variables, and they satisfy the
relation: 1 2 0n n   . When the FM rate k is positive, the

1n and 2n are positive. When the FM rate k is negative,
the 1n and 2n are negative. The frequency difference of

0

( 1)
i

m
m

F n


 and
0

( )
i

m
m

F n

 is:

0 0

( 1) ( ) ( 2 1)
i i

m m
m m

F n F n n n F
 

       (2.13)

Combining the equation (2.7), the frequency difference of

0

( 1)
i

m
m

F n


 and
0

( )
i

m
m

F n

 is:

0 0

( 1) ( )
1

i i
w

m m
m m

k TF n F n
N 


  

  (2.14)

From the equations (2.11) to (2.14), the following equation can
be deduced:

11 2
T

n n
N

    (2.15)

When we use WVD to calculate the frequency just as the
above analysis, we can get the i-th jump frequency:

1

( )
( ) ( 1)
WVD i i

WVD i i

F P P F
F P P F

 
   

(2.16)

When the FM rate k is positive, 1( ) ( 1)WVD i iF P P F    .

When the FM rate k is negative, 1( ) ( 1)WVD i iF P P F    .
The following analysis is based on the positive k and the
negative k is the same analysis.
The equation (2.5) also can be written as:

2 1( ) ( )
2
i

jump
PF i F 

  (2.17)

Because FM rate of non-stationary signal can be regarded as a
constant during a short time wT , and from the equation (2.12),

the frequency of middle time of discrete time
0

i

m
m
n


 and

0

1
i

m
m
n



 can be written as:

0 0 0 0

1 ( ) ( 1)
( )

2 2
2 1 2 1( )

2

i i i i

m m m m
m m m m

i

n n F n F n
F

P n n F

   

   


  
 

   
(2.18)

Let the equation (2.18) minus the equation (2.17), we can get
the absolute value of error:

0 0

1
2 1( ) ( )

2 2

i i

m m
m m

jump

n n
n nerror F F i F 

 
 

   
 

(2.19)

Because 1n and 2n are positive, we can deduce the
relation:

1 2 2 1n n n n      (2.20)
Combining the equations (2.15), (2.19) and (2.20), The
following relation can be deduced:

2 1
2 2 T

n n Ferror F
N

  
  


(2.21)

From the above analysis, if we use equation (2.17) to
estimate the frequency of the jump point Bi, the error can be

TN2 times smaller than one frequency resolution. If there are
M jump points and we can estimate the frequency of M points,
and we can use linear interpolations to calculate the frequency
of the rest discrete points.
Using the above method to do time-frequency analysis, this

method can achieve a high precision and the precision is related
to the mean time-step TN . The equation (2.11) indicates that

TN is based on the FM rate k . When the absolute value of k
is big, the TN is small and the frequency error is relatively big.
But the number M of jump points is big, which is good to
calculate more frequency of jump points and is good to linear
interpolation; When the absolute value of k is small, the TN is
big and the frequency error is relatively small. But the number
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M of jump points is small, which is bad to calculate more
frequency of jump points and is bad to linear interpolation.
Therefore, the absolute value of FM rate needs a compromise
value K, which can promise a relatively big TN and enough
jump points M.

C. The mixing of LFM signal
Supposing the compromised FM rate is K, the value of K is

based on the system request. When the FM rate k is not equal to
K, the time domain signal can be written as:

2
0( ) exp( 2 ( ) )

2w
ks t A j f t t j       (2.23)

In order to get the requisite FM rate K, we can produce a ideal
chirp signal to mix with ( )ws t . The initial frequency of the
ideal chirp signal is zero and the FM rate is (K-k):

2( ) exp( 2 ( ) ))
2chirp

K ks t j t 
 . Let ( )ws t mix with

( )chirps t , we can get a intermediate frequency (IF) signal
' ( )ws t whose FM rate is about K.

'

2
0

( ) ( ) ( )

exp( 2 ( ) )
2

w w chirps t s t s t
KA j f t t j 

 

     
(2.24)

After the mixing, the method in the section 2.2 can be used to
calculate the time-frequency function '( )F t of ' ( )ws t and let

'( )F t decrease the time-frequency function of )(tschirp , the

time-frequency function )(tF of ( )ws t can be gotten:
'( ) ( ) ( )F t F t K k t   .

Before the mixing, we need calculate the FM rate of ( )ws t .
In this article, FRFT is used to calculate the FM rate k of
( )ws t .

III. FM RATE COMPUTATION

A. Definition of FRFT
Reference [12] presents a detailed instruction of FRFT and

here give a brief explain. The FRFT is defined as:

( ) F [s( )] ( ) ( , )dpS u t s t K t u t





   (3.1)

p is the older of FRFT and the kernel of FRFT is ( , )pK t u :
2 21 cot exp(j cot j csc )..

2 2
( , ) ( ).................................... 2

( )............................. (2 1)

p

j t u tu n

K t u t u n

t u n

    

  

  

  
  

  



  

(3.2)

 is the impulse function and n is inter.  is the angle of
rotation and 2/ p .

B. Calculation of FM rate
Supposing the primary non-stationary signal is:

32
32

0 1( ) exp( 2 ( ....))
2 3

k tk ts t A j f f t     ， [0, ]t T (3.3)

During a very short time, the non-stationary signal can be
regarded as stationary signal. When we use a short-time
window to cut off the signal to pieces, the time length of widow

is wT and the window move to right (2 1)
2
wTi   every piece:

2 3
2 3

0 1( ) [ exp( 2 ( ....))]
2 3

( (2 1) )
2

i

w

k t k ts t A j f f t

Tw t i

    

   
(3.4)

If the window function is rectangle, the primary non-stationary

signal can be written as:
1

( ) ( )
N

i
i

s t s t


 ,
w

TN
T

 .

After using time domain window processing, the every piece
signal can be regard as a chirp signal and the time is from zero
to wT . Because the length of the piece is very short, the power

series which is bigger than three of ( )is t can be ignored and
the equation (3.4) can be changed to:

2

0( ) [ exp( 2 ( ))] ( )
2 2

w
i

TKi ts t A j fi fi t w t 
       (3.5)

02 fi  is the initial phase of ( )is t and fi is the initial

frequency of ( )is t . Ki is the FM rate of ( )is t .

Then let the ( )is t do FRFT:
2

0 1

2 2

( ) F [s ( )] [ exp( 2 ( ))] ( )
2 2

1 cot exp((j cot j csc ))d
2 2

w
i i

i
i i

Ki t TSw u t A j fi fi t w t

j t u tu t


 

  







       

 
 



...................................................................................... (3.6)
After normalizing discrete and dimensional [13], the fast
algorithm [14] can calculate the ( )iS w u . The peak value of

( )iS w u can be obtained and the corresponding angle i also
can be obtained. The FM rate can be calculated by:

cot /i i wk Fs T   (3.7)

C. High order moments of FRFT
If we use the method of section 3.2 to calculate the FM rate

ik , it may lead some big errors because the FRFT is sensitive to
noise. The high order moments of FRFT can restrain the effect
of noise and can improve the anti-noise performance[15][16].
In this article, we use forth order moments to calculate the FM
rate. The forth order moments of FRFT can be written as:

4 4(u) (u m )iP S w du  




  (3.8)
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The m is first order moments of FRFT and it can be obtained
by:

2(u)im S w udu 




  (3.9)

When the SNR (signal and noise rate) is about -20 dB, we
use the above two equations to calculate the forth order
moments with  increasing from zero to  gradually, and the
forth order moments spectrum can be obtained:

Fig.7 The forth order moments spectrum of FRFT

In the Fig.7, we can find the peak valve of forth order
moments and the corresponding rotating angle also can be
obtained through the peak valve. The FM rate can be calculated
by the equation (3.7). If the SNR is lower, we can use higher
order moments to calculate the FM rate at the cost of more
calculation complexity.

IV. SIMULATION AND MEASUREMENT

A. Simulation
The simulation uses MATLAB to achieve the proposed

algorithm. In this simulation, the time-frequency function of
the signal is a sine function and the center frequency is 600Hz
and the max frequency variation is 500Hz/s. The signal can be
written as:

( ) cos(2 (600 500 cos(2 ))) ( )
2 n
T ts t t A N t

T
 


      (4.1)

In the equation (4.1), T is the length of time, N(t) is white
Gaussian noise, nA is the coefficient of white Gaussian noise

and it can change the SNR by changing nA . The
time-frequency function of the signal is:

( ) 600 500sin(2 )tF t
T

  (4.2)

The sampling rate Fs is equal to 20480 and the length of

window is
50w
TT  . So the signal is sectioned to 50 pieces.

When the SNR is about 5dB, the frequency estimation picture
and error picture of this method is shown in Fig.8.

Fig.8 frequency estimation picture and error picture

In the Fig.8, picture (a) is the time-frequency estimation
picture of the proposed algorithm and picture (b) is the error
picture of time-frequency estimation. The error is below 0.5Hz
when the SNR is about 5dB.
Moreover, the simulation also compare the error of the three

algorithm: the proposed algorithm, ordinary WVD [8] and
infinitesimal method [1].

Fig.9 Ordinary WVD and the method of this article

Fig.10 Infinitesimal method and the method of this article

The Fig.9 is the absolute error picture of ordinary WVD and
the proposed algorithm and the blue line stands for the error of
the ordinary WVD and the red line stands for the proposed
algorithm.
The Fig.10 is the absolute error picture of infinitesimal
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method and the proposed algorithm and the black line stands
for the error of the infinitesimal method and the red line stands
for the proposed algorithm. From the Fig.9 and Fig.10, the
time-frequency precision of the proposed algorithm is higher.
The following table 1 shows the mean square errors at

different SNR:

Table 1 The mean square errors of the three algorithm

SNR(dB) Ordinary
WVD (Hz)

Infinitesimal
method (Hz)

the proposed
algorithm (Hz)

60 1.4247 0.4317 0.0854
50 1.4247 0.4377 0.0848

40 1.4248 0.4355 0.0855

30 1.4249 0.4512 0.0883
20 1.4253 0.4749 0.0975
15 1.4262 0.4863 0.1090
10 1.4272 0.5042 0.1192
5 1.4318 0.5746 0.1623
From the outcome of table 1, the proposed algorithm has a

better precision than the ordinary WVD and the infinitesimal
method when the SNR is from 60dB to 5dB.

B. Measurement
In this article, a practical linearity detection of the radar

system is presented and the system chart and circuit board of
the radar system is shown in Fig.11 and Fig.12.

Fig.11 The system chart of the radar system

Fig.12 Circuit board of the radar system

In this system, Field Programmable Gate Array (FPGA)
utilizes the Direct Digital Frequency Synthesizers (DDS) to
produce a chirp baseband signal and the baseband signal

controls the Vector-Controlled Oscillator (VCO) to produce the
24GHz chirp transmitting signal. The frequency divider and
phase locked loop (PLL) are used to form a feedback loop and
the feedback loop plays a self-correction role in this system.
The linearity of chirp baseband signal and chirp transmitting

signal is very important in this system. If the linearity is not
good enough, when the local oscillator signal is mixed with the
echo signal and it cannot get a good IF signal. Therefore, it is
necessary to detect the linearity of chirp baseband signal and
chirp transmitting signal. The proposed algorithm is used to get
the time-frequency function and the linearity can be detected.
The initial frequency of chirp baseband signal is about

100MHz. We use an oscilloscope to sample the signal with
500MHz sampling rate. After the analysis, the following
time-frequency picture can be obtained:

Fig.13 Time-frequency picture of chirp baseband signal

The initial frequency of the chirp transmitting signal is about
24GHz and the bandwidth is about 600MHz. The vector
network analyzer produces a 24GHz signal to mix with the
chirp transmitting signal and we can use an oscilloscope to
sample the mixing signal with 5GHz sampling rate. After the
analysis, the following time-frequency picture can be obtained:

Fig.14 Time-frequency picture of chirp transmitting signal

From the Fig.13 and Fig.14, we use the proposed algorithm
to estimate the time-frequency function. Many precision
instruments require a very good linearity of the radar system
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and a bad linearity may lead big error to the results. Therefore,
when we estimate the time-frequency function of the baseband
signal and transmitting signal, we can calculate the linearity of
the system and we also can calculate the max error brought by
linearity. In a word, the linearity detection is indispensable.

V. CONCLUSION
In this article, a method of time-frequency analysis is to be

submitted and this method can achieve a high precision. This
method sections the signal into short-time pieces and uses
FRFT to calculate the FM rates of the every piece signal. An
ideal chirp signal is produced to mix with the short-time pieces
signal and the IF signal with compromised FM rate can be
gotten. Afterwards, let the IF signal do WVD transformation,
and a jumping frequency picture can be obtained. From the
frequency jumping points, we can estimate the frequency of
jump points. After that, a linear interpolation is used to obtain
the time-frequency function of all the piece signal. From the
above way, all the time-frequency function of the signal can be
estimated. The simulation proves this method has a better
precision than the other two existing time-frequency analysis
methods. In the measurement, a practical linearity detection of
radar system is presented.

ACKNOWLEDGMENT

Wenxin Zhang is the corresponding author. The research was
supported by Beijing Postdoctoral Research Foundation of
China. The authors thank the referee for his or her careful
reading of the paper and useful suggestions.

REFERENCES
[1] Baosong Xu, Yaqing Tu, Liangbing Liu, VCO nonlinearity detection

method based on element analytic and FRFT, J. Journal of Electronic
Measurement and Instrument. 05 (2008) 117-122.

[2] P.R. Kersten, R.W. Jansen, T.L. Ainsworth, J.V. Toporkov, M.A. Sletten,
Estimating surface water flow speeds using time– frequency methods,
IET Signal Processing, Volume 4, issue 4, 2010 , p. 406 - 412.

[3] L.B. Yang, S.S. Zhang, B. Xiao, Radar emitter signal recognition based
on time-frequency analysis, IET International Radar Conference
2013, 2013, p. 0412 - 0412.

[4] Y. Sun, J. Li, Time–frequency analysis for plastic landmine detection
via forward-looking ground penetrating radar, IEE Proceedings - Radar,
Sonar and Navigation, Volume 150, issue 4, 2003 , p. 253 - 261.

[5] E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for
publication),” IEEE Trans. Antennas Propagat., to be published.

[6] Sancho, S. ; Suarez, A., Efficient analysis of phase-locked loops through
anovel time-frequency approach, based on twoenvelope transient
formulations, Microwave Symposium Digest, 2003 IEEE MTT-S,
Volume .3 ,2003, p. 2153-2156

[7] Gabor.D. Theory of communication, J. IEE, 93 (1946) 429-497.
[8] Kumar, B.V.K.V., Carroll. C.W., Performance of Wigner distribution

based detection methods, Optical Engineering, 1984, Vol.23, No. 6. pp.
732-738.

[9] S.Mallat, W.L.Hwang, Singularity detection and processing with
wavelets, J. IEEE Trans. On Inform. Theory, 38 (1992).

[10] Barbarossa S,A Zanalda.A combined Wigner-Ville and Hough transform
for cross-terms suppression and optimal detection and parameter
estimation[A].Proc ICASSP.92[C].SanFrancisco: IEEE
Society,1992.173 -176.

[11] Leon Cohen.Time-frequency distributions-a review[J]. Proceedings of
the IEEE,1989,77(7):941-981.

[12] Haldun M O，Orhan A M,Alper K, et al. Digital computation of the
fractional Fourier transform, J. IEEE Transaction on Signal Processing,
44 (1996) 2141-2150.

[13] Zhao Xinghao, Deng Bing, Tao Ran, Dimensional normalization in the
digital computation of the fractional Fourier transform. J. Transactions of
Beijing Institute of Technology, 25 (2005) 360-364.

[14] Namias V. The fractional order Fourier transform and its application to
quantum mechanics, J. J Inst Math App, 25 (1980) 241-265.

[15] Tatiana Alieva, Martin J.B., On fractional Fourier transform moments,
IEEE signal processing letters, 7 (2000),320-323.

[16] Wang Fei, Cao Fan, Multi-component chirp signal separating and
enhancing based on SVD of time-frequency space, Journal of data
acquisition and processing,, 24 (2009), 767-771.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 243

http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2009.0074
http://digital-library.theiet.org/content/journals/iet-spr/4/4
http://digital-library.theiet.org/content/conferences/10.1049/cp.2013.0335
http://digital-library.theiet.org/content/conferences/10.1049/cp.2013.0335
http://digital-library.theiet.org/content/conferences/cp617
http://digital-library.theiet.org/content/conferences/cp617
http://digital-library.theiet.org/content/journals/10.1049/ip-rsn_20030681
http://digital-library.theiet.org/content/journals/10.1049/ip-rsn_20030681
http://digital-library.theiet.org/content/journals/ip-rsn/150/4
http://digital-library.theiet.org/content/journals/ip-rsn/150/4
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sancho, S..QT.&searchWithin=p_Author_Ids:37266794800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Suarez, A..QT.&searchWithin=p_Author_Ids:37275118000&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1210589&queryText=Efficient+analysis+of+phase-locked+loops+through+a+novel+time-++frequency+approach,+based+on+two+envelope+transient+formulations
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1210589&queryText=Efficient+analysis+of+phase-locked+loops+through+a+novel+time-++frequency+approach,+based+on+two+envelope+transient+formulations
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1210589&queryText=Efficient+analysis+of+phase-locked+loops+through+a+novel+time-++frequency+approach,+based+on+two+envelope+transient+formulations



