
 

 

  

Abstract—Background. Tactile perception is an essential source 

of information. However instrumental registration and automated 

analysis of tactile data is still at an initial point of the development. 

Recently a Medical Tactile Endosurgical Complex (MTEC) has been 

introduced into clinical practice as a universal instrument for 

intrasurgical registration of tactile images. Images registered by 

MTEC have very limited resolution both in terms of a number of 

tactile pixels and a number of discretization levels. In this study we 

investigated whether this resolution is sufficient for reliable pattern 

recognition. 

Methods. Our study used a set of artificial samples which included 

six sample types. In particular, four of these types directly tested the 

ability to discriminate patterns with the same embedment projection 

sizes but different curvatures, or similar curvatures but different 

projection sizes.  Two widely used machine learning methods were 

evaluated: random forests and k-nearest neighbors. These methods 

were applied to points representing registered tactile images in a 

relatively low-dimensional feature space. Additionally an in-silico 

cloning of images was used to increase classification reliability. 

Results. Both classification methods – random forests and k-

nearest neighbors – showed good classification reliability with 

accuracy 68.6% and 72.9% on the validation set, respectively. These 

values are more than four times higher than an accuracy of six-class 

“random classifier”. Random forests additionally provided evaluation 

of importance of features used for classification.  

Conclusion. Despite poor resolution of tactile images registered by 

MTEC a combination of conventional machine learning methods  

with a specific feature set and specific tricks provides highly reliable 

results of automated analysis of these images even in case of 

nontrivial tasks such as sample classification with very similar 

classes. 

 

Keywords—Classification, k-nearest neighbors, Medical Tactile 

Endosurgical Complex, random forests, tactile image. 

I. INTRODUCTION 

ACTILE perception is an essential source of information. 

However instrumental registration and automated analysis 

of tactile data is still at an initial point of the development. At 

the same time, recently a number of specialized medical 
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devices for instrumental registration of tactile images have 

been designed and introduced into clinical practice. Whereas 

the majority of these devices, such as Breast Mechanical 

Imager [1], Vaginal Tactile Imager [2], [3] or Prostate 

Mechanical Imaging System [4], have a narrow (organ-

specific) application domain, Medical Tactile Endosurgical 

Complex (MTEC) [5], [6] is more universal. MTEC has been 

designed to perform instrumental palpation in minimally-

invasive surgery, where conventional (manual) palpation is 

impossible, providing identification and localization of 

visually undetectable pathologies. This complex is successfully 

applied in thoracoscopic surgery (where its utilization 

decreases the conversion rate [5]) and gastrointestinal surgery 

[7,8]. In robot-assisted surgery MTEC partially solves the 

problem of insufficient feedback related to touch [6]. 

A tactile mechanoreceptor, which is a key component of 

MTEC, allows tactile inspection of an arbitrary sample with a 

flat or almost flat surface. But inspection results have very 

limited resolution both in terms of a number of tactile pixels 

and a number of discretization levels, and in clinical 

applications they are used mainly for manual or automated 

identification of heterogeneities associated with lesion 

boundaries [6], [9], without subsequent deeper analysis of 

registered tactile images. In this research we investigated 

whether this resolution is sufficient for reliable pattern 

recognition. More specifically, we evaluated the results of 

classification of instrumentally registered tactile images into 

six predefined classes using two widely applied machine 

learning approaches – random forests [10] and k-nearest 

neighbors [11], [12]. 

II. MATERIALS AND METHODS 

A. A structure of tactile images 

MTEC registers tactile images with a tactile 

mechanoreceptor (Fig. 1). This device has an operating head 

with either 7 or 19 pressure sensors which geometrically form 

a non-rectangular grid associated with a hexagonal plane 

tessellation (Fig. 2). A diameter of these operating heads is 10 

mm and 20 mm, respectively. During a press on an examined 

sample sensors simultaneously perform pressure 

measurements, a mechanoreceptor combines these values into 

a frame and sends it to a computer for the processing and 

analysis. The measurement frequency is 100 Hz, and the 

number of discretization levels after preprocessing is 256. 
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Fig. 1. MTEC tactile mechanoreceptor with 7 sensors (a) and 19 sensors (b). 

Thus, an individual tactile frame consists of 8-bit pressure 

values associated with 7 or 19 pixels, and a tactile image 

consists of several hundreds of consecutive tactile frames. In 

this research we consider the case of 19-pixel frames (i.e., use 

19-sensor mechanoreceptor for registration of tactile images). 

A press on an examined sample by a tactile 

mechanoreceptor is performed manually, so differences in 

pressing parameters are inevitable. Moreover, if a sample is 

examined twice with a slight shift or slight rotation of an 

operating head in one examination in comparison with the 

other one, registered tactile frames (considered as points in a 

19-dimensional space or as arrays with 19 elements) can differ 

essentially. For example, in one examination a small firm 

embedment in a soft sample can be located against one sensor, 

so only one pressure value will achieve high levels, but after 

a small shift this embedment can be detected by two or more 

adjacent sensors, leading to several high values (Fig. 3). 

Larger shifts and rotations can lead to more essential changes 

of registered tactile frames (Fig. 4). Thus, tactile images 

associated with the same sample can be significantly different, 

and it is really observed in clinical applications, where an 

orientation (e.g., an axial rotation) of a mechanoreceptor 

operating head with respect to a lesion is uncontrolled and 

random. 

B. A structure of a set of tactile images 

In order to test whether resolution of MTEC is sufficient for 

pattern recognition, we manufactured samples of six types. 

Similarly to [13], [14], the samples were made of a soft 

silicone (Shore hardness 00-10A) and had a shape of a 

rectangular block with size 40 mm × 35 mm × 10 mm. The 

difference between types was in embedments: 

− E-type samples were homogeneous (i.e., contained no 

embedment); 

− LF-type and LC-type samples contained a firm 

embedment which had a form of a spherical cap with base 

diameter 8 mm and height 2.4 mm, oriented for palpation 

from the convex side and the flat side, respectively; 

−  SF-type and SC-type samples were similar, but have a 

different size of embedment (base diameter 4.7 mm and 

height 1.7 mm); 

 

 
Fig. 2. Location of pressure sensors on an operating head of a 

MTEC tactile mechanoreceptor. Sensors are shown by circles; for 

each sensor an associated cell of a hexagonal plane tessellation is 

depicted. Seven-sensor version of a tactile mechanoreceptor has 

only sensors colored in black. 
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− T-type samples contained a segment of a medical 

perfusion line (B. Braun Original Perfusion Line, 

diameter ca 2 mm) as an embedment. This segment had 

length of at least 20 mm and was oriented horizontally. 

LF, LC, SF and SC types of samples tested the ability to 

discriminate patterns with the same embedment projection 

sizes but different curvatures, or similar curvatures but 

different projection sizes.  T-type samples modeled blood 

vessels. E-type samples models homogeneous tissue. 

Two lots of samples were manufactured independently. The 

first one was used for construction and tuning of classifiers and 

the second one was used for an independent validation. The 

first lot contained at least 6 samples for each type. Multiple 

examinations of these samples resulted in a training set of 

tactile images with 100 images per type. The second lot 

contained at least 4 samples for each type which multiple 

examinations resulted in a validation set with 40 tactile images 

per type. An instrumental tactile examination of the samples 

from the first lot and the second lot was performed with 

different tactile mechanoreceptors and by different operators, 

thus pressing parameters for the training and for the validation 

sets of tactile images were  different. 

C. Most informative frame and other features 

In order to reduce dimension and simultaneously reduce 

dependence on tactile examination parameters (e.g., pressing 

speed), in a tactile image we found a frame with maximum 

intra-frame standard deviation. We called it the most 

informative frame of the tactile image and used it to form a set 

of input features for classifiers. More specifically, we replaced 

each value in the most informative frame by a mean over a 

series of adjacent frames (thus utilizing a standard smoothing 

procedure for noise filtration), scaled these values to [0, 1] 

segment applying formula 

minmax

minj

j
xx

xx
y

−

−
=  

 (here xj is a smoothed unscaled value associated with the j-th 

sensor, xmin and xmax are minimum and maximum values of x 

over all sensors, yj is a scaled value), and included resulting 

scaled values yj (j = 1, 2, …, 19) into the feature set. 

Experiments proved that computation of a square root at the 

final step of scaling leads to a slight increase of classification 

reliability in comparison with scaling where this step is 

omitted. 

Additionally, for each sensor we computed standard 

deviation dj associated with its measurements in the tactile 

image, performed scaling 

sc

minj

j
D

dd
v

−
=  

 (scaling coefficient Dsc was set to 125) and included M largest 

scaled deviations vj into the set of input features as well. 

Value of M and other parameters used for feature selection 

(e.g., a size of series of adjacent tactile frames used for 

smoothing) were selected on the base of cross-validation (see 

below). 

 
Fig. 3. Tactile frames registered by MTEC mechanoreceptor during presses on a small firm embedment in a soft sample. Registered pressure 

values are shown in hexagonal cells associated with sensors both by numbers and color-code (in a green-blue-red color scale [6]). Presses 

slightly differed in a shift and a rotation of a mechanoreceptor operating head. 
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Along with an approach to the selection of the most 

informative frame based on intra-frame standard deviation we 

tested several other approached, including the selection based 

on maximum-minimum difference, interquartile range, mean 

absolute deviations. But these alternatives resulted in lower 

quality of the resulting classification. 

D. Classifier tuning 

Two classification methods were tested: random forests [10] 

and k-nearest neighbors [11], [12]. 

Random forests are an ensemble classification method based 

on the idea of building a large number of decision trees. In this 

approach the target class is usually estimated by the voting 

scheme applied to the outputs of constructed trees. The goal of 

decision tree classifier is to infer a set of decision rules from 

the training set and to put these rules into the tree structure. 

The advantages of random forests classifier include high 

accuracy, computational performance, resistance to overfitting 

and ability to give information about importance of features 

used in the classification process. 

K-nearest neighbors classification is based on the following 

procedure. Each element of a training set is considered as a 

point in an n-dimensional metric (or generalized metric) space, 

where n denotes the number of features in the set. The class for 

unknown data element (which is also associated with a point in 

the same space) is predicted as the most frequent class in the 

list of k nearest points of the training set (relative to the space 

metric). The advantages of the k-nearest neighbors 

classification method include robustness to noisy training data 

and natural handling multi-class cases. 

Classifiers tuning was performed using Scikit-Learn Python 

library [15], in an unweighted version for k-means, and with 

Gini impurity criterion for random forests. 

First, we optimized parameters using multiple 5-fold cross 

validation based on the training set of tactile images, and then 

applied the resulting classifier to the validation set of tactile 

images. Parameter optimization utilized a block-wise greedy 

scheme. 

E. In silico cloning of tactile images 

To make classification more reliable, we used the following 

trick. For each tactile image in the training set we performed 

in-silico cloning by adding 

− results of its rotation by angles multiple to 60° and  

− results of symmetric reflections to this set 

(the utilized transformations move the sensor-associated grid 

to itself). Overall, cloning each tactile image generated a set of 

12 images, including the one being cloned. Our experiments 

showed that this trick really provided an increase of 

classification reliability. 

For random forests a similar cloning was applied for an 

image being classified, and the final class was determined 

based on 12 classification results using a voting scheme. 

 
Fig. 4. Tactile frames registered by MTEC mechanoreceptor during presses on a long (vessel-like) embedment in a soft sample. Registered 

pressure values are shown in hexagonal cells associated with sensors both by numbers and color-code (in a green-blue-red color scale [6]). 

Presses differed in a shift and a rotation of a mechanoreceptor operating head. 
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III. RESULTS 

A. Random forest classier 

Cross-validation showed that for a random forest classifier 

an optimal series for noise filtration in the most informative 

frame contains 17 frames, including 10 preceding the most 

informative one and 6 following it. However, for optimal 

results only frames from this series which satisfy additional 

conditions should be utilized for smoothing. These additional 

conditions can be formulated in terms of sums of unscaled 

pressure measurement values (i.e., discretized 8-bit values 

interpreted as an integer from [0, 255] range). Let S be this 

sum for an arbitrary frame from the series, and Sinf be this sum 

associated with the most informative frame. A frame from the 

series should be utilized only if 

− S ≤ 3000 (which means that for all or at least almost all 

sensors saturation level has not been reached), and 

− 0.1Sinf ≤ S ≤ 2.0Sinf (i.e., series frames that are clearly 

different from the most informative one probably due to a 

very fast press are excluded). 

Thresholds (3000, 0.1, 2.0) were obtained using the same 

cross-validation. 

Then, cross-validation demonstrated that the optimal value 

of M was 1, and greater values gave visibly lower 

classification reliability. Thus, 20 features were associated 

with a tactile image: 

− 19 smoothed and scaled pressure values yj originated 

from the most informative frame; 

− the largest scaled deviation vj. 

A sufficient maximum depth of decision trees was 20 and 

this parameter was essential. At the same time, a number of 

decision trees was less essential and could be taken equal to 

150. Larger numbers of decision trees did not provide any 

increase of classification reliability. 

For these parameters the results of application of a random 

forest classifier are summarized in Table I. Note that as the 

number of classes is 6, random classification on average gives 

a rate of correct class prediction equal to 16.7%. 

Standard evaluation of feature importance revealed that the 

most important feature was the largest scaled deviation 

(relative importance 0.216). Relative importance for smoothed 

and scaled pressure values associated with the most 

informative frame is shown in Fig. 5. 

B. K-nearest neighbors classifier 

For k-nearest neighbors classifier cross-validation showed 

that an optimal series for noise filtration in the most 

informative frame contains 8 frames, including 3 preceding the 

most informative one and 4 following it, with an exclusion of 

frames which do not satisfy conditions  1500 ≤ S ≤ 2900; 

0.1Sinf ≤ S ≤ 2.0Sinf. Furthermore, cross-validation showed that 

the optimal metric is the Euclidian one, the optimal value of k 

is 1 (i.e., a simple model of one nearest neighbor), but that the 

optimal valued of M is 10. 
For these parameters the results of application of a k-nearest 

neighbors classifier are summarized in Table II. 

Changing the value of k from 1 to 2 had a negligible impact 

on the classification results. However, further increase of k 

progressively reduced the accuracy, doubling the average 

number of classification errors in multiple cross-validation for 

k=4 and tripling for k=10. 

 

Table I. Results for a random forest classifier. Rate of correct class 

prediction (%) is specified for the training set (mean value for testing 

part for multiple cross-validations)  and for the validation set. 

Sample 

class 

Testing set (mean 

for 5-fold cross-

validation) 

 Validation set 

E-type 99.0%  87.5% 

LF-type 98.2%  85.0% 

LC-type 99.8%  70.0% 

SF-type 93.0%  35.0% 

SC-type 96.1%  65.0% 

T-type 100%  70.0% 

Total 97.7%  68.8% 

 
Table II. Results for a k-nearest neighbors classifier. Rate of correct 

class prediction (%) is specified for the training set (mean value for 

testing part in multiple cross-validations)  and for the validation set. 

Sample 

class 

Testing set (mean 

for 5-fold cross-

validation) 

 Validation set 

E-type 99.3%  97.5% 

LF-type 100%  95.0% 

LC-type 100%  30.0% 

SF-type 97.9%  30.0% 

SC-type 97.6%  90.0% 

T-type 98.1%  95.0% 

Total 98.8%  72.9% 

 
Fig. 5. Relative importance for smoothed and scaled pressure values 

associated with the most informative frame for the random forest 

classifier. 
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IV. DISCUSSION 

A. Evaluation of classification results 

Presented results show that despite very limited resolution 

(both in terms of a number of tactile pixels and a number of 

discretization levels) tactile images registered by MTEC can 

be successfully classified even in case when classes are very 

similar and have only a slight difference either in embedment 

size or curvatures. It is worth noting that classification 

performed by volunteers based on conventional palpation by a 

finger had resulted in error rate comparable to the one 

observed for automated classification and the validation set. 

High classification reliability was achieved by applying 

widely used machine learning methods – random forest 

classifier and k-nearest neighbors classifier – to a set of 

features specific to tactile images and additionally by applying 

an image cloning trick that is also specific to the studied image 

type. 

The selected classification methods are essentially different. 

K-nearest neighbors approach in fact does not require training 

and it treats all features uniformly. On the contrary, random 

forest classifier requires non-trivial training and treats features 

ununiformly, as they are generally distributed ununiformly 

among decision trees and inside decision trees comprising a 

random forest. In spite of these differences the constructed 

random forest classifier and k-nearest neighbors classifier 

provided comparable classification accuracy, with a slightly 

higher result for k-nearest neighbors.  

Interestingly, for random forests the rate of correct 

classification on the validation set was generally similar for 

almost all classes, with an exception of SF-type samples. At 

the same time, for k-nearest neighbors classification the major 

difficulty was associated with discrimination of LC-type and 

SF-type samples, whereas other classes were recognized nearly 

perfectly (error rate equal to 10% for SC-type samples and not 

exceeding 5% for the other types). These results are illustrated 

in Fig. 6. 

An essential role in achieving good classification reliability 

belonged to a proper selection of the feature set. The utilized 

feature set combined static data (pressure values in the most 

informative frame) with dynamic values (standard deviation of 

measurements for a sensor). Fig. 5 shows that among static 

features the most valuable information for the classification 

was provided by measurements performed by sensors located 

in the middle sensor ring. 

Though only one dynamic feature was used in case of 

random forests, it essentially contributed to the classification 

reliability. Exclusion of dynamic features resulted in a 

reduction of correct class prediction rate for the validation set 

to the values 60.4% and 66.7% for random forest and k-nearest 

neighbors classifier, respectively. 

The selected feature space did not only provide dimension 

reduction. It also provided robustness with respect to 

unavoidable differences in pressing parameters, e.g., pressing 

speed. 

B. Directions for the future research 

In our future research we plan to expand and deepen the 

results of the present study in several directions. 

The first direction is adaptation and evaluation of other 

machine learning approaches using the constructed library of 

 
Fig. 6. Per-class and total classification accuracy provided by random forest classifier and nearest-neighbor classifier for the validation set . 
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instrumentally registered tactile images. The next method we 

are going to consider is the Support Vector Machine [16]. 

The second direction is further adaptation of k-nearest 

neighbors and other metric-based classification methods to 

tactile images.  Our preliminary results show that the following 

ideas provide a substantial   increase of classification quality. 

Classification can be applied to all tactile frames in an image 

(not only to one most informative frame) and the final 

identification of a class can be done using a voting scheme. 

This approach enables real-time image analysis, which is 

highly demanded by medical applications. In addition, 

classification can use a specially developed metric (or a 

generalized metric) instead of Euclidian distance. This metric 

should partially compensate the following drawbacks of 

Euclidian distance: 

− tactile frames from the same image associated with 

different time moments are distant as larger pressing 

force increases all registered pressure values; 

− rotations and shifts of an operating head of a MTEC 

mechanoreceptor essentially changes registered tactile 

frames leading to distant frames in case of multiple 

examinations of the same sample. 

Currently we are testing the following generalized metric 

function which is based only on static data associated with two 

tactile frames 

[ ] . )(min),(
 , ptltl ffffd αρ
ρα

−=  

Here fl and ft are the compared frames (treated as points in a 

vector space which dimension coincides with the number of 

mechanoreceptor sensors), α is a non-negative number, ρ is a 

transformations of the vector space, || · ||p is the lp norm (p ≥ 1; 
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Minimum is taken over all nonnegative α and all 

transformations ρ from a predefined set. This set includes 

transforms associated not only with rotations of an operating 

head by angles multiple to 60° and with symmetric reflections, 

but also with shifts of an operating head (note that transforms 

associated with shifts use extrapolation). 

Besides testing a new generalized metric specifically 

developed for analysis of tactile images, we also test 

generalizations of conventional k-nearest neighbors approach 

which take into account distributions of intra-class and inter-

class distances. 

Another direction of our future research focuses on 

application of machine learning methods to identification of 

heterogeneity in tactile images. The problem here can be 

formulated as a binary classification discriminating 

homogeneous and heterogeneous tactile samples. This problem 

is central for clinical applications of MTEC, where it is used 

mainly for the detection of lesion boundaries. The problem 

seems to be simple, but deviations of a contact angle from 90° 

essentially complicate its solution [8], [9], [13]. A combination 

of relatively straightforward methods [9], [13] provides only a 

partial solution. Our preliminary results show that nearly 

perfect results can be achieved by using Support Vector 

Machine with the Radial basis function kernel. 

Finally, along with applications of supervised machine 

learning method we plan to study the applications of 

unsupervised methods. Recently we proposed a novel 

clustering method [14] based on interval pattern concepts 

[17], [18] and showed that it outperforms conventional k-

means clustering [19] in tactile images analysis. We expect to 

gain additional improvement by further optimization of the 

utilized feature space. We also plan to test other clustering 

techniques, including hierarchical clustering [20], spectral 

clustering [21] and density clustering [22], [23]. Our particular 

expectations are associated with the density clustering 

approach. 

V. CONCLUSION 

Automated analysis of instrumentally registered tactile 

images is a novel problem that is currently demanded by 

medical applications but definitely will soon be important for 

many other domains as well. Our results show that a 

combination of conventional machine learning methods with a 

specific feature set and specific tricks provides highly reliable 

results of automated analysis even in case of nontrivial tasks 

such as sample classification with very similar classes. These 

results are achieved in spite of very limited resolution of tactile 

images. 
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