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Abstract—We describe the derivation of highly stable general
linear methods for the numerical solution of initial value problems for
systems of ordinary differential equations. In particular we describe
the construction of explicit Nordsiek methods and implicit two
step Runge Kutta methods with stability properties determined by
quadratic stability functions. We aim for methods which have wide
stability regions in the explicit case and which are A- and L-stable
in the implicit one case. We moreover describe the construction of
algebraically stable and G-stable two step Runge Kutta methods.
Examples of methods are then provided.

Keywords—algebraic stability, quadratic stability, G-stability, gen-
eral linear methods, two step Runge Kutta methods

I. INTRODUCTION

Consider the initial value problem for systems of ordinary
differential equations (ODEs){

y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0,
(1)

where the function f : Rd → Rd is sufficiently smooth.
Concerning the numerical solution of the problem (1), recent
work in the literature has been devoted to the derivation of
highly stable multivalue or general linear numerical methods
which posses also high stage order, with the aim of providing
accurate numerical solutions and avoiding order reduction
phenomenon. Consider a uniform grid tn = t0 + nh, n =
0, 1, . . . , N , h = (T −t0)/N . A general linear method (GLM)
with coefficient matrices A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s,
V ∈ Rr×r and abscissa vector c ∈ Rs, assumes the form[

Y [n]

z[n]

]
=

[
A⊗ I U⊗ I
B⊗ I V ⊗ I

] [
hf(Y [n])

z[n−1]

]
, (2)

n = 1, 2, . . . , N with

Y [n] =


Y

[n]
1
...

Y
[n]
s

 , hf(Y [n]) =


hf(Y

[n]
1 )

...
hf(Y

[n]
s )

 ,

z[n] =


z
[n]
1
...
z
[n]
r

 ,
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where s is the number of internal stages, r is the number of
input and output approximations, I denotes the identity matrix
of dimension d and ‘⊗’ stands for Knonecker product of
matrices. For the analog formulation of general linear methods
approximating second order differential problems, compare
[46], [47], [50], [60] and references therein.

GLMs (2) depend on a plenty of free parameters, thus
there are a lot of degrees of freedom to gain strong stability
properties together with high accuracy. In particular in the
papers [51]–[53], [56], [57], [63], [73], A- and L- stable
continuous collocation-based methods, belonging to the family
of two-step Runge-Kutta (TSRK) formulas introduced in [73],
[74], were constructed and analyzed. A very useful property
for the practical derivation of highly stable methods, e.g.
A- and L- stable in the implicit case and methods with
large stability regions in the explicit one, is the property of
inherent quadratic stability, which guarantees that the stability
properties of the method depend on a quadratic polynomial.
The approach of inherent quadratic stability has been used in
the papers [4], [35], [73] in the implicit case, and in papers
[5], [27], [28] in the explicit one case.

Similar methods were investigated in [50], [64] for second
order differential equations, in [34], [38], [41], [44], [45] for
Volterra integral equations, in [22], [24] for Volterra integro-
differential equations and in [23] for fractional differential
equations. Different approaches to the construction of continu-
ous TSRK methods outside collocation have been presented in
literature in the papers [2], [3], [75]. As regards the nonlinear
stability properties of GLMs, it has beel subject of several
papers, see for instance [8], [16], [36], [37], [68]–[71].

In this paper we consider some classes of GLMs and
describe several approaches for the derivation of highly stable
methods. In particular in Section II we describe the constuction
of highly stable GLMs within the classes of implicit two step
Runge Kutta (TSRK) methods and explicit Nordsiek methods,
with inherent quadratic stability. In Section III we describe the
construction of algebraically stable GLMs within the class of
TSRK methods. Finally in Section IV some conclusions are
drawn.

II. QUADRATIC STABILITY

In order to analyze the linear stability properties of the GLM
(2) we apply the method to the linear test equation

y′ = ξy, t ≥ 0, (3)

where ξ ∈ C, it follows that the stability properties of (38)
with respect to (3) are determined by the stability matrix M(z)
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defined by

M(z) = V + zB(Is − zA)−1U, (4)

where z = hξ ∈ C. We also define the stability function
p(ω, z) as the characteristic polynomial of M(z), i.e.,

p(ω, z) = det
(
ωIs+2 −M(z)

)
. (5)

This is a polynomial of degree r with respect to ω whose
coefficients are rational functions with respect to z. In the
following subsections we describe the practical derivation
of methods with inherent quadratic stability (IQS), which is
defined as follows:

Definition 2.1: The GLM method (2) has inherent quadratic
stability (IQS) if there exists a matrix X ∈ Rr×r such that

BA ≡ XB and BU ≡ XV −VX. (6)

Here, the relation P ≡ Q means that the matrices P and Q
are identical with the exception of the first two rows.

As we will see in Subsection II-A for Nordsieck methods
and in the Subsection 66 for TSRK methods, IQS condition
leads to a quadratic stability polynomial. The constructed
methods will be order p and stage order q = p for which
the stability properties are determined by quadratic stability
functions. Since p = q these methods do not suffer from the
order reduction phenomenon. We recall the definitions of order
and stage order for the GLM (2). Assume that

z
[n−1]
i =

p∑
k=0

qikh
ky(k)(tn−1) +O(hp+1), i = 1, . . . , r. (7)

The method (2) has stage order q and order p if

Y
[n]
i = y(tn−1 + cih) +O(hq+1), i = 1, . . . , s,

and

z
[n]
i =

p∑
k=0

qikh
ky(k)(tn) +O(hp+1), i = 1, . . . , r,

for the same parameters qik.

A. Explicit Nordsieck methods with quadratic stability

In this subsection we focus on explicit GLMs in Nordsieck
form, where the matrix A is strictly lower triangular and
matrix V have this form:

A =


0
a21 0

a31 a32
. . .

...
...

. . . . . .
as,1 as,2 · · · as,s−1 0

 , (8)

V =


1 v12 v13 · · · v1r
0 0 v23 · · · v2r
...

...
. . . . . .

...

0 0
. . . vr−1,r

0 0 0 · · · 0

 , (9)

so that the considered GLM is also zero-stable, i.e. the matrix
V is power bounded.

A GLM in Nordsieck form is given by (2), where z[n]i is an
approximation of order p to the component hi−1y(i−1)(tn) of
the Nordsieck methods, i.e. if

z
[n−1]
i = hi−1y(i−1)(tn−1) +O

(
hp+1

)
,

then
z
[n]
i = hi−1y(i−1)(tn) +O

(
hp+1

)
,

i=1,. . . ,r.
Put

qk := [q1k, . . . , qrk]
T .

Since for the subclass of GLM (2) we are considering here,
z
[n−1]
i represents an approximation of order p to the Nordsieck

vector z(tn−1, h), the vectors {q0, . . . ,qr−1} represent the
canonical basis of Rr, usually indicated as {e1, . . . , er}.
Let us introduce also

w(z) =

p∑
k=0

qkz
k,

and
ecz = [ec1zec1z . . . ecsz]T .

The following theorems gives the order conditions (70) for
GLM in Nordsieck form. For a deeper investigation and
complete proof compare [5], [6], [15], [18], [27], [28], [73],
[80], while for further references on order conditions of GLMs
compare [7], [32].

Theorem 2.1: The GLM (2) in Nordsieck form has order p
and stage order q = p, with p = q = r − 1 = s − 1 if and
only if

ecz = zAecz +UZ +O(zp+1), (10)

ezZ = zBecz +VZ +O(zp+1), (11)

where ecz = [ ec1z ec2z · · · ecsz ]T and
Z = [ 1 z · · · zr−1 ]T .

Theorem 2.2: Assume that z[n−1] satisfies (70). Then the
GLM (2) in Nordsieck form has order p and stage order q =
p− 1 if and only if

ecz = zAecz +Uw(z)

+

(
cp

p!
− Acp−1

(p− 1!)
−Uqp

)
zp +O(zp+1),

(12)

ezw(z) = zBecz +Vw(z) +O(zp+1). (13)

By suitable series expansion of order conditions (10)-(38)
and (12)-(13), algebraic conditions on the coefficient matrices
can been derived, see for example [5], [18], [27]. In particular,
let us consider the case p = q = s and r = s+1. Let partition
B, V, and Ep+1 as follows:

B =

[
bT

B̃

]
,V =

[
1 v

0 Ṽ

]
,Ep+1 =

[
1 ET

p

0 Ep

]
where bT stands for the first row of B and 0 stands for
vector or matrix of appropriate dimension. We can obtain the
following result.
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Theorem 2.3: [4] Assume that ci ̸= cj , for any i ̸= j and
that the GLM (2) with r = s + 1 has order and stage order
p = q = s. Then we have this representation of the matrices
U and B:

U = Cp+1 −ACp+1Kp+1, (14)

bT = (ET
p − v)C−1

p , (15)

and
B̃ = (Ep − Ṽ)C−1

p . (16)

In the case p = r = s = q + 1 a similar result can be proved,
compare [5].

In order to simplify the search for methods with good
stability properties, we require that the method possesses the
quadratic stability property, i.e. the stability function defined
by (5) assumes this expression:

p(w, z) = wr−2
(
w2 − pr−1(z)w + pr−2(z)

)
, (17)

where

pr−1(z) = 1 + pr−1,1z + pr−1,2z
2 + · · ·+ pr−1,sz

s,

pr−2(z) = pr−2,1z + pr−2,2z
2 + · · ·+ pr−2,sz

s.
(18)

A sufficient condition for the quadratic stability is IQS con-
dition of Definition 2.1. In [4], [27] the following theorem
was proved, asserting that IQS condition leads to quadratic
stability.

Theorem 2.4: Assume that the GLM (2) with matrices A
and V as in (8)-(9) has IQS. Then the stability function of
the method assumes the form (17) with pr−1(z) and pr−2(z)
given by (39).
The structure of matrix X appearing in (6) is analyzed in the
following theorems [5], [27].

Theorem 2.5: For a GLM (2) with p = r = s and q = s−1,
the most general matrix X satisfying conditions (6) is of the
form:

X =



x1,1 x1,2 x1,3 . . . x1,s−1 x1,s
x2,1 x2,2 x2,3 . . . x1,s−1 x2,s
0 1 0 · · · 0 q3s
0 0 1 · · · 0 q4s
...

...
...

. . .
...

0 0 0 · · · 1 qss


,

Theorem 2.6: For a GLM of type (2) with p = q = s and
r = s+1, the most general matrix X satisfying conditions (6)
is of the form:

X =



x1,1 x1,2 x1,3 · · · x1,r−1 x1,r
x2,1 x2,2 x2,3 · · · x2,r−1 x2,r
0 1 0 · · · 0 x3,r
0 0 1 · · · 0 x4,r
...

...
...

. . .
...

...
0 0 0 · · · 1 xr,r


,

In a symbolic computational environment, as Mathemati-
car, we may find a family of GLMs of given order and IQS,
depending on a set of free parameters. Then we may perform a
numerical search for the method with maximal stability region.
This is what it has been done in [5], [27], by suitably applying

−6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

Re(z)

Im
(z

)

RKIQS

Fig. 1. Stability regions of RK method of order p = 4 and GLMs with
p = q = s = 4, r = 5 with IQS

MATLAB functions like fminsearch. To obtain methods with
larger stability regions, the IQS requirement can be relaxed, by
asking for quadratic stability (QS), i.e. the stability polynomial
has the form (17) [27], [28]. When the number of free
parameters is large, as it happens for high order methods, the
numerical search requires advanced optimization techniques,
like those applied in [28].
Now we provide an example of method with IQS and maximal
stability region. We set p = q = s = 4, r = 5. We fix vector
c in advance. GLM method with the largest stability area has
area equal to 18.3603, and error constant equal to -0.011. The
stability polynomial is

p(w, z) = w3(w2 − p4(z)w + p3(z)),

with

p4(z) = 1 + 293
338z +

787
1404z

2 + 1801
9828z

3 + 265981
12560184z

4

p3(z) = − 45
338z −

1325
18252z

2 + 1349
127764z

3 + 681937
163282392z

4.

The method coefficients are

c = [0,
1

3
,
2

3
, 1]T , (19)

A =


0 0 0 0
1
3 0 0 0
1
3

1
3 0 0

1
3

1
3

1
3 0

 , (20)

V =


1 107

169
20
117 − 1

63 − 2
71

0 0 1
2

4
27 − 7

162

0 0 0 1
3

5
108

0 0 0 0 1
6

0 0 0 0 0

 . (21)

The other coefficient matrices can be derived from (14)-(16).
In Fig. 1 we have plotted the stability region of this method
and, for comparison, the stability region of explicit Runge–
Kutta methods of order 4.

An efficient and accurate variable-step algorithm for solving
non-stiff ODEs, based on explicit GLMs of Nordsieck type
with QS or IQS must take into account fundamental issues,
such as rescale strategy, local error estimation, step-changing
strategy and starting procedure. Here we illustrate the tech-
nique that can be adopted. More details may be found in [6].
First we set

z[n] =

[
yn
z[n]

]
,
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where yn ≈ y(tn) and z[n] ≈ z(tn, hn), hn = tn− tn−1, with

z(t, h) :=


hy′(t)
h2y′′(t)

...
hpy(p)(t)

 . (22)

Then GLM (2), on the nonuniform grid t0 < t1 < · · · <
tN , tN ≥ T , can be formulated as (compare [73])

Y [n] = (e⊗ I)yn−1 + hn(A⊗ I)F (Y [n])

+ (U ⊗ I)z[n−1],

yn = yn−1 + hn(b
T ⊗ I)F (Y [n]) + (vT ⊗ I)z[n−1],

z[n] = hn(B ⊗ I)F (Y [n]) + (V ⊗ I)z[n−1],
(23)

where [
A U
B V

]
=


A e U

bT 1 vT

B 0 V

 , (24)

e = [1, . . . , 1]T ∈ Rs, b ∈ Rs, v ∈ Rr−1, A ∈ Rs×s, U ∈
Rs×(r−1), B ∈ R(r−1)×s, V ∈ R(r−1)×(r−1).

The local error is analyzed by the following theorem [6]
(compare also [15], [20], [73])

Theorem 2.7: Assume that the input quantities to the cur-
rent step from tn−1 to tn = tn−1 + hn satisfy

yn−1 = y(tn−1)

z[n−1] = z(tn−1, hn)− (β ⊗ I)hp+1
n y(p+1)(tn−1)

+O(hp+2
n )

(25)

where y(t) is the solution to the differential system (1) and
require that

yn = y(tn)− Ehp+1
n y(p+1)(tn) +O(hp+2

n )

z[n] = z(tn, hn)− (β ⊗ I)hp+1
n y(p+1)(tn)

+O(hp+2
n )

(26)

with the same vector β. Here, z(tn, hn) is the Nordsieck vector
corresponding to the solution y(t) of the initial value problem{

y′(t) = f(y(t)), t ∈ [tn, tn+1],

y(tn) = yn.
(27)

Then it follows that (26) holds if

E = 1
(p+1)! −

bT cp

p! + vTβ,

β = (I − V )−1
(
tp −B cp

p!

)
,

tp =
[

1
p!

1
(p−1)! . . . 1

]T
.

(28)

According to the previous theorem, the local error is

le(tn) = Ehp+1
n y(p+1)(tn) +O(hp+2

n ). (29)

The following result gives an estimate of the principal part of
the local error, in the form

hp+1
n y(p+1)(tn) = (φT ⊗ I)hnF (Y

[n])

+ (ψT ⊗ I)z[n−1] +O(hp+2
n ), (30)

where I stands for the identity matrix of dimension d.
Theorem 2.8: Consider the GLM (23) of order p and stage

order q = p and assume that f is sufficiently smooth. The
vectors φ ∈ Rs and ψ ∈ Rr−1 in (60) satisfy the linear system

φT cj−1

(j − 1)!
+ ψj = 0, j = 1, 2, . . . , r − 1,

φT cp

p!
− ψTβ = 1.

(31)

Now we apply the previous theorem to the case p = q = s =
r − 1 = 4, which covers the example of method (19)-(21). In
such case, linear system (31) gives

β =
[

1
24

1
9

29
108

1
2

]T
, E =

26105531

1632823920
(32)

φ =
[
−429 486 −243 54

]T
, (33)

ψ =
[
132 −54 0 0

]T
. (34)

In a variable-step algorithm, a rescale strategy is also
necessary when we have computed z[n] ≈ z(tn, hn) and
should perform next step, since we need as a new input vector
z[n] ≈ z(tn, hn+1), with hn+1 = tn+1 − tn. A quite simple
strategy to compute z[n] consists of rescaling the vector z[n],
i.e.:

z[n] = D(δ)z[n]

with D(δ) = diag(δ, δ2, . . . , δs), and δ = hn+1/hn.
To complete the algorithm other ingredients are necessary, like
an accurate starting procedure, a suitable choice of the initial
step-size and step control strategy. Many different techniques
can be applied, as illustrated in [6], [66], [67], [73].

For numerical comparison with other existing methods, we
consider the linear test problem

y′ = −λy, t ∈ [0, 10], (35)

for λ = 50 and the Prothero-Robinson type problem [78]{
y′ = −16y + 15e−t, t ∈ [0, 100]
y(0) = 2

(36)

with exact solution y(t) = e−t + e−16t.
In Table I we list the error of Nordsieck method with IQS
of order p = 4 (19)-(21) and of method with IRKS of the
same order, corresponding to η = 3/5 with error constant
E = 1/300, whose coefficients are given in [19]. We observe
that the IQS method converges for a larger value of stepsize
with respect to IRKS methods.

B. Implicit TSRK methods methods with quadratic stability

TSRK methods have the form

Y
[n]
i = uiyn−2 + (1− ui)yn−1

+ h
s∑

j=1

(
aijf(Y

[n−1]
j ) + bijf(Y

[n]
j )

)
,

yn = θyn−2 + (1− θ)yn−1

+ h

s∑
j=1

(
vjf(Y

[n−1]
j ) + wjf(Y

[n]
j )

)
,

(37)
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TABLE I
ERRORS OF NORDSIECK METHOD AND IRKS METHOD OF ORDER p = 4

FOR PROBLEM (35), AND PROBLEM (36), WITH CONSTANT STEPSIZE.

problem (35), λ = 50

N h IQS p = 4 IRKS p = 4
71 0.14 8.33 · 10+74 1.75 · 10+97

81 0.13 5.59 · 10+54 4.42 · 10+82

91 0.11 3.70 · 10+26 1.28 · 10+60

101 0.10 2.92 · 10−04 3.48 · 10+30

111 0.09 2.83 · 10−18 2.97 · 10−09

problem (36)

N h IQS p = 4 IRKS p = 4
311 0.32 1.02 · 10+11 1.06 · 10+128

321 0.31 3.68 · 10−16 2.85 · 10+95

331 0.30 1.02 · 10−35 8.50 · 10+59

341 0.29 1.08 · 10−45 1.08 · 10+21

351 0.28 4.14 · 10−46 1.47 · 10−22

i = 1, 2, . . . , s, n = 2, 3, . . . , N , Nh = T − t0. Here, yn is
an approximation of order p to y(tn), tn = t0 +nh, and Y [n]

i

are approximations of stage order q to y(tn−1 + cih), i =
1, 2, . . . , s, where y(t) is the solution to (1), c = [c1, . . . , cs]

T

is the abscissa vector and −1 < θ ≤ 1 for zero-stability.
Methods (37) can be reformulated as GLMs of the form
Y [n]

yn

yn−1

hf(Y [n])

 =


B e− u u A

wT 1− θ θ vT

0 1 0 0

Is 0 0 0




hf(Y [n])

yn−1

yn−2

hf(Y [n−1])

 .
(38)

This representation corresponds to the problem (1) with d = 1
which is relevant in linear stability analysis. The matrices of
the GLM (2) are then

[
A U

B V

]
=


B e− u u A

wT 1− θ θ vT

0 1 0 0
Is 0 0 0

 ∈ R(2s+2)×(2s+2),

(39)
In [35] the following theorem was proved, asserting that

IQS condition leads to quadratic stability.
Theorem 2.9: Assume that the TSRK method (37) has IQS

and that the matrices Is− zA and Is+2− zX are nonsingular.
Then its stability function p(ω, z) defined by (5) assumes the
form

p(ω, z) = ωs
(
ω2 − p1(z)ω + p0(z)

)
, (40)

where p1(z) and p0(z) are rational functions with respect to
z.

In this section we will consider implicit methods where the
matrix A = B has a one point spectrum, i.e.

σ(B) = {λ}, λ > 0. (41)

The feature of being one point spectrum would allow for effi-
cient implementation of such methods similarly as in the case
of singly implicit Runge-Kutta (SIRK) methods considered by
Burrage [9], Butcher [12], and Burrage, Butcher and Chipman
[10], see also [13], [15]. For methods for which the coefficient

matrix B has a one point spectrum (41) it is more convenient
to work with the function p̃(ω, z) defined by

p̃(ω, z) = (1− λz)sp(ω, z), (42)

in which the coefficients of ωi, i = 0, 1, . . . , s + 2, are
polynomials of degree s with respect to z. Then the if the
IQS condition is verified the polynomial assumes the simple
form

p̃(ω, z) = ωs
(
(1− λz)sω2 − p̃1(z)ω + p̃0(z)

)
, (43)

with a root ω = 0 of multiplicity s, where p̃1(z) and p̃0(z)
are polynomials of degree s with respect to z.

To express the IQS conditions (6) in terms of the coefficients
θ, u, v, w, A, and B of TSRK method (37) we partition the
matrix X as follows

X =

[
X11 X12

X21 X22

]
, (44)

where X11 ∈ R2×2, X12 ∈ R2×s, X21 ∈ Rs×2, X22 ∈ Rs×s.
We also partition accordingly the matrices B, U, and V (see
(39))

B =

[
B11

Is

]
, U =

[
U11 A

]
, V =

[
V11 V12
0 0

]
,

where B11 ∈ R2×s, U11 ∈ Rs×2, V11 ∈ R2×2, V12 ∈ R2×s

are given by

B11 =

[
wT

0

]
, U11 =

[
e− u u

]
,

V11 =

[
1− θ θ
1 0

]
, V12 =

[
vT

0

]
,

and 0 in V stands for zero matrices of dimension s × 2 and
s× s, respectively.

Theorem 2.10: A TSRK method (37) has IQS if there exist
vectors α, β ∈ Rs and a matrix X ∈ Rs×s such that the
following conditions are statisfied

B = αwT +X, e = α+ β, u = θα, A = αvT . (45)

With the aim of constructing TSRK methods with IQS
having order p and stage order q = p, we recall (see [35])
that, introducing the notation

C =

[
c

c2

2!
· · · cs

s!

]
, C̃ =

[
e

c

1!
· · · cs−1

(s− 1)!

]
,

d =

[
−1

1

2!
· · · (−1)s

s!

]T
, g =

[
1

1

2!
· · · 1

s!

]T
,

E =

[
e

c− e

1!
· · · (c− e)s−1

(s− 1)!

]
,

then the order p and stage order q conditions, with q = p, for
TSRK method (37) take the form

AE = C − udT −BC̃, vTE = gT − θdT − wT C̃. (46)

Moreover the polynomials p̃1(z) and p̃2(z) appearing in
(43) take the form

p̃1(z) = 1− θ + p11z + · · ·+ p1sz
s,
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p̃0(z) = −θ + p01z + · · ·+ p0sz
s.

Then the construction of highly stable TSRK methods (37)
with IQS properties and coefficient matrix B with one point
spectrum σ(B) = {λ} can be summarized in the following
algorithm.

1) Choose the abscissa vector c with distinct components,
such that the matrices C̃ and E defined at the beginning
of this section are nonsingular.

2) As for methods of order p = s the stability polynomial
p̃(ω, z) satisfies the condition

p̃(ez, z) = O(zs+1), z → 0, (47)

we solve this system by fixing s coefficients of the
polynomials p̃0(z) and p̃1(z) and deriving the remaining
s as functions of θ and λ. Choose the parameters θ and
λ > 0 so that the stability polynomial p̃(ω, z) is A-stable
and also L-stable, by using the Schur criterion.

3) Compute the coefficient matrix B from the formula

B = (C − αgT )C̃−1 + αwT ,

which is a consequence of (46) and the last condition in
(45). This matrix depends on the vectors α and w.

4) Compute the vectors β and u from the second and third
condition of (45), i.e., β = e− α and u = θα.

5) Compute the coefficient matrix A and the vector v from
(46) as

A = (C − udT −BC̃)E−1, (48)

and
vT = (gT − θdT − wT C̃)E−1. (49)

They depend on α and w.
6) In order to impose that σ(B) = {λ}, solve the system

bk(θ, α, c, w) =
( s
k

)
(−1)kλk, k = 1, 2, . . . , s.

(50)
with respect to w, where b0 = 1, and bk = bk(θ, α, c, w),
k = 1, 2, . . . , s are the coefficients of

det(ωIs −B) =
s∑

k=0

bkω
s−k.

This leads to a family of methods with IQS for which
the matrix B has a one point spectrum σ(B) = {λ}.

7) Compute the matrix M̃11(z) from the relation

M̃11(z) =M11(z) + zM12(z)(I2 − zX)−1[ α β ],
(51)

where we X = X22 in (44) and we have partitioned

M(z) =

[
M11(z) M12(z)
M21(z) M22(z)

]
, (52)

where M11(z) ∈ R2×2, M12(z) ∈ R2×s, M21(z) ∈
Rs×2, M22(z) ∈ Rs×s, and the stability polynomial
p̃(ω, z) = (1 − λz)sωs det(ωI2 − M̃11(z)), whose
coefficients p1j and p0j depend only on α.

8) Having computed the coefficients of the method in
points 3, 4 and 5 such that the order conditions are

satisfied up to order and stage order p = q = s,
(47) is automatically satisfied by the polynomial p(ω, z)
obtained in point 7. Then, in order to equate such
stability polynomial with the one derived in point 2,
it is sufficient to determine the parameter vector α by
equalizing the s coefficients which have been fixed in
point 2.

Now we provide an example of A- and L- stable TSRK
method with p = q = s = 4. For s = 4 the stability
polynomial (43) takes the form

p̃(ω, z) = ω4
(
(1− λz)4ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1− θ+p11z+p12z2+p13z3 and p0(z) = −θ+
p01z+ p02z

2+ p03z
3. The system of equations corresponding

to (47) with s = 4 takes the form

p11−p01 = 1−4λ+θ, 2p11+2p12−2p02 = 3−16λ+12λ2+θ,

3p11 + 6p12 + 6p13 − 6p03 = 7− 48λ+ 72λ2 − 24λ3 + θ,

4p11+12p12+24p13 = 15−128λ+288λ2−192λ3+24λ4+θ,

and assuming that p13 = 0 and p03 = 0 the unique solution
to this system is given by

p11 =
1− 32λ+ 144λ2 − 144λ3 + 24λ4 − θ

2
,

p12 =
17− 192λ+ 576λ2 − 480λ3 + 72λ4 − θ

12
,

p01 =
3− 40λ+ 144λ2 − 144λ3 + 24λ4 + θ

2
,

p02 =
7− 96λ+ 360λ2 − 384λ3 + 72λ4 + θ

12
.

The range of parameters (θ, λ) for which the p(ω, z) is A-
stable and also L-stable is plotted in Fig. 2 by the shaded
region. The regions were obtained by computer searches in the
parameter space (θ, λ) using the Schur criterion [79], [76].

−1 −0.5 0 0.5 1
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1

θ

λ

A− and L−stability

A− and L−stability

Fig. 2. Regions of A-stability and L-stability in the (θ, λ)-plane for p(ω, z)
with p = s = 4.
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The coefficients of the method corresponding to λ = 1
3 and

the abscissa vector c = [0, 13 ,
2
3 , 1]

T are given by

A =


− 73571

418565
316790
450193 −383309

370547 −1102057
1459404

−324116
495273

3108022
1186313 − 2008351

521461 −1905671
677809

−813738
787901

4021146
972541 − 6409321

1054477 −6349415
1430988

−426460
370257

4154204
900915 −12185608

1797671 −6621076
1338039

 ,

B =


1082275
789096 − 47158

1102905 − 20658
230377

16548
733283

2053468
392523

173881
1660851 −337517

836884
86197
880374

13765224
1684843

119918
620675 −387828

932779
214966
1621163

8694859
954168

68987
727614 −198815

935168
90358
331129

 ,

v =
[
−426460

370257
4154204
900915 −12185608

1797671 −6621076
1338039

]T
,

w =
[

8694859
954168

68987
727614 − 198815

935168
90358
331129

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω4
((

1− 1

3
z
)4
ω2 − p1(z)ω + p0(z)

)
with

p1(z) = 1− 744347

1148421
z +

2965

320219
z2,

p0(z) = −241021

765596
z − 198226

1427227
z2.

In order to demonstrate that the TSRK methods of order p and
stage order q = p do not suffer from order reduction which is
the case for classical Runge-Kutta formulas, we have applied
the Runge-Kutta-Gauss method of order p = 4 and stage order
q = 2 and TSRK method of order p = 4 and stage order q = 4
givenabove to the van der Pol oscillator (see VDPOL problem
in [67]){

y′1 = y2, y1(0) = 2,

y′2 =
(
(1− y21)y2 − y1

)
/ϵ, y2(0) = −2/3,

(53)

t ∈ [0, T ], with a stiffness parameter ϵ.
The results of numerical experiments for fixed stepsize

implementations of Runge-Kutta-Gauss method of order p = 4
and stage order q = 2 and TSRK method of order p = 4 and
stage order q = 4 are presented in Table II-B. These results
correspond to T = 2/3, h = T/N , and N = 32, 64, 128,
256 and 512. In these tables we have listed norms of errors
∥eRKG

h (T )∥ and ∥eTSRK
h (T )∥ at the endpoint of integration

T and the observed order of convergence p computed from
the formula

p =
log
(
∥eh(T )∥/∥eh/2(T )∥

)
log(2)

,

where eh(T ) and eh/2(T ) are errors corresponding to stepsizes
h and h/2 for Runge-Kutta-Gauss and TSRK methods.

We can observe that for small values of ϵ (ϵ = 10−6) for
which the van der Pol oscillator (53) is stiff the Runge-Kutta
Gauss method exhibits order reduction phenomenon and its
order of convergence drops to about p = 2 which corresponds

ϵ = 10−6 ϵ = 10−6

N ∥eTSRK
h (T )∥ p ∥eTSRK

h (T )∥ p

32 5.83 · 10−3 2.44 · 10−4

64 1.49 · 10−3 1.97 2.65 · 10−5 3.21

128 3.71 · 10−4 2.01 2.20 · 10−6 3.59

256 8.84 · 10−5 2.07 1.59 · 10−7 3.79

512 1.87 · 10−5 2.24 1.08 · 10−8 3.89

TABLE II
COMPARISON BETWEEN RKG METHOD OF ORDER p = 4 AND STAGE

ORDER q = 2 AND TSRK METHOD OF ORDER p = 4 AND STAGE ORDER
q = 4

to the stage order q = 2. This is not the case for TSRK method
which preserves order of convergence p = q = 4, which leads
to higher accuracy.

III. ALGEBRAIC STABILITY

Consider the nonlinear test problem nonlinear test problem{
y′(t) = g

(
t, y(t)

)
, t ≥ 0,

y(0) = y0,
(54)

g : R×Rd → Rd. Here, the function g satisfies the one-sided
Lipschitz condition of the form(

g(t, y1)− g(t, y2)
)T

(y1 − y2) ≤ 0, (55)

for all t ≥ 0 and y1, y2 ∈ Rd. Denote by y(t) and ỹ(t) two
solutions to (54) with initial conditions y0 and ỹ0, respectively.
Then the condition (55) implies that (54) is dissipative, i.e.,∥∥y(t2)− ỹ(t2)

∥∥ ≤
∥∥y(t1)− ỹ(t1)

∥∥, (56)

for 0 ≤ t1 ≤ t2, compare [16], [73].
Definition 3.1: Let {z[n]}Nn=0 be the solution to (2) with

initial value z[0], and by {z̃[n]}Nn=0 be the solution obtained
by using a different initial value z̃[0] or by perturbing the right
hand side of (54). A GLM (2) is said to be G-stable if there
exists a real, symmetric and positive definite matrix G ∈ Rr×r

such that ∥∥z[n+1] − z̃[n+1]
∥∥
G
≤
∥∥z[n] − z̃[n]

∥∥
G
, (57)

for all step sizes h > 0 and for all differential systems (54)
with the function g satisfying (55), where

∥z∥2G =

r∑
i=1

r∑
j=1

gijz
T
i zj , zi ∈ Rd, i = 1, 2, . . . , r. (58)

Observe that the notion of G-stability is not only useful in
order to give a nice characterization of methods able to pre-
serve the contractivity of solutions of dissipative problems, but
also to give a complete characterization of numerical methods
retaining the same invariants of conservative problems, such as
Hamiltonian problems: this issue has given rise to the notion
of G-symplecticity (see [15], [17], [48], [49], [54], [55] and
references therein).

We now aim to give a characterization of G-stability which
only requires the fulfillment of simple algebraic constraints in
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place of (57), which is certainly hard to prove in general. To
do this, we provide the following definition.

Definition 3.2: The GLM (2) is said to be algebraically
stable, if there exist a real, symmetric and positive definite
matrix G ∈ Rr×r and a real, diagonal and positive definite
matrix D ∈ Rm×m such that the matrix M ∈ R(m+r)×(m+r)

defined by

M =

[
DA+ATD−BTGB DU−BTGV

UTD−VTGB G−VTGV

]
(59)

is nonnegative definite.
The significance of this definition follows from the result
proved by Butcher [14], that for preconsistent and non-
confluent GLMs (2), i.e. methods with distinct abscissas ci,
i = 1, 2, . . . ,m, algebraic stability is equivalent to G-stability.

It was observed by Hewitt and Hill [68], [69] that the
verification if the matrix M is nonnegative definite can be
simplified by the use of the following result proved by Albert
[1].

Theorem 3.1: (Albert Theorem) The matrix M given by

M =

[
M11 M12

MT
12 M22

]
satisfies M ≥ 0 if and only if

M11 ≥ 0, M22 −MT
12M

+
11M12 ≥ 0,

M11M
+
11M12 = M12,

(60)

or, equivalently,

M22 ≥ 0, M11 −M12M
+
22M

T
12 ≥ 0,

M22M
+
22M

T
12 = MT

12.
(61)

Here, A+ stands for the Moore-Penrose pseudo-inverse of the
matrix A.

Although the criteria based on Albert theorem can be used
to verify if specific examples of GLMs are algebraically stable,
these criteria are not very practical to search for algebraically
stable GLMs which depend on some unknown parameters,
unless some suitable simplifications are introduced. In fact, in
[37], [69] the authors propose a simplified version of condi-
tions (61), considering G = I and with some simplifications
in order to find algebraically stable TSRK methods whose
coefficients are expressed in rational form.

In [36], instead, an optimization-based numerical approach
has been used to derive the coefficients of algebraically
stable TSRK methods and two-step almost collocation (TSAC)
methods, respectively. Because of the purely numerical nature
of this approach, the coefficients of the corresponding methods
are not expressed in rational form, but they are provided with
a certain number of correct digits. As a consequence, the
derived methods satisfy a slightly weaker condition than that of
algebraic stability, i.e. they are ε-algebraically stable methods.
This concept has been introduced in [72], to which we refer
for more details. The above mentioned approach is based on
the Nyquist stability function, defined by

N(ξ) = A+U(ξI−V)−1B, ξ ∈ C \ σ(V), (62)

where σ(V) stands for the spectrum of the matrix V. A
detailed explanation on the derivation of the Nyquist function

in the general setting of GLMs, together with its connections
with control theory, can be found in [70], Section 5. Following
[70], we denote by w̃ a principal left eigenvector of V, i.e.
the vector such that

w̃TV = w̃T , w̃Tq0 = 1, (63)

where q0 is the preconsistency vector of GLMs. We next
define the diagonal matrix D̃ by

D̃ = diag(BT w̃), (64)

and by He(Q) the Hermitian part of a complex square matrix
Q, i.e.,

He(Q) =
1

2

(
Q+Q∗),

where Q∗ stands for the conjugate transpose of Q. We have
the following result.

Theorem 3.2: (compare [14], [70]). A consistent GLM (2)
is algebraically stable if the following conditions are satisfied:

1) the coefficient matrix V is power-bounded;
2) Ux ̸= 0 for all right eigenvectors of V and BTx ̸= 0

for all left eigenvectors of V;
3) D̃ > 0 and D̃A ≥ 0;
4) He

(
D̃N(ξ)

)
≥ 0 for all ξ such that |ξ| = 1 and ξ ∈

C \ σ(V).
We now describe the construction of algebraically stable

TSRK methods belonging to the subclass of TSAC methods
[51]. TSAC methods are continous methods of the form:
P (tn + sh) = φ0(s)yn−1 + φ1(s)yn

+ h
m∑
j=1

(
χj(s)f(P (tn−1 + cjh)) + ψj(s)f(P (tn + cjh))

)
,

yn+1 = P (tn+1),
(65)

where tn = t0 + nh, n = 0, 1, . . . , N , Nh = T − t0, is
a uniform grid. The continuous approximant P (tn + sh) is
an algebraic polynomial which can be expressed as linear
combination of the basis functions

{φ0(s), φ1(s), χj(s), ψj(s), j = 1, 2, . . . ,m},

which are unknown algebraic polynomials to be suitably
determined.

We observe that by evaluating the collocation polynomial
at s = 1 and s = ci, i = 1, 2, . . . ,m, and by setting Y

[n]
i =

P (tn + cih), i = 1, 2, . . . ,m, TSAC methods (37) can be
formulated as TSRK methods

yn+1 = θyn−1 + θ̃yn

+ h
m∑
i=1

(
vif(Y

[n]
i ) + wif(Y

[n−1]
i )

)
,

Y
[n]
i = uiyn−1 + ũiyn

+ h
m∑
j=1

(
aijf(Y

[n]
j ) + bijf(Y

[n−1]
j )

)
,

(66)

where

θ = φ0(1), θ̃ = φ1(1), vi = ψi(1), wi = χi(1),

ui = φ0(ci), ũi = φ1(ci), aij = ψj(ci), bij = χj(ci),
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i, j = 1, 2, . . . ,m. Observe that θ̃ = 1−θ and ũi = 1−ui, i =
1, 2, . . . ,m

It is generally required that the polynomial P (tn + sh) in
(65) satisfies the interpolation conditions

P (tn−1) = yn−1, P (tn) = yn, (67)

and the collocation conditions

P ′(tn−1 + cjh) = f(P (tn−1 + cjh)),

P ′(tn + cjh) = f(P (tn + cjh)),
(68)

j = 1, 2, . . . ,m. However, in order to obtain methods with
strong stability properties such as, for example, A- or L-
stability, we relax some of the interpolation and collocation
conditions. This leads to additional free parameters which are
then used to obtain methods with desirable stability properties.
Following the terminology introduced in [51] the resulting
methods are called TSAC methods.

Such methods are obtained by fixing ρ basis functions
among the set

{φ0(s), χj(s), j = 1, 2, . . . ,m}, (69)

as polynomials of degree p = 2m + 1 − ρ, and deriving the
remaining ones as solutions of the system of order conditions



φ0(s) + φ1(s) = 1,

(−1)k

k!
φ0(s)+

+

m∑
j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)
=
sk

k!
,

(70)
k = 1, 2, . . . , p. Then, it was proved in [51], that p = 2m +
1− ρ is the uniform order of the resulting method.

In the paper [36] an algorithm was developed for the
numerical search of TSAC methods written as GLMs (2).
This algorithm is based on minimizing the objective function
which computes the negative value of the minimum of the
eigenvalues of the matrix

He(D̃N(ξ)), for ξ such that |ξ| = 1 and ξ ∈ C \ σ(V).
(71)

Such matrix has been computed in [36] for TSAC methods
and assumes the form

He
(
D̃N(ξ)

)
=

1

2(1 + θ)

(
diag(v + w)

(
A+

1

ξ
B

)
+

(
AT +

1

ξ
BT

)
diag(v + w)

+

(
ξ

(ξ − 1)(ξ + θ)
+

ξ

(ξ − 1)(ξ + θ)

)
vvT

+

(
1

(ξ − 1)(ξ + θ)
+

ξ

(ξ − 1)(ξ + θ)

)
vwT

+

(
ξ

(ξ − 1)(ξ + θ)
+

1

(ξ − 1)(ξ + θ)

)
wvT

+

(
1

(ξ − 1)(ξ + θ)
+

1

(ξ − 1)(ξ + θ)

)
wwT

− 1

ξ + θ

(
(v + w) · u

)
vT − 1

ξ + θ
v
(
(v + w) · u)T

− 1

ξ(ξ + θ)

(
(v + w) · u

)
wT − 1

ξ(ξ + θ)
w
(
(v + w) · u)T

)
.

Once order conditions are imposed and the other desired
properties are achieved, the matrix (71) will depend on a
certain number P of free parameters a1, a2, . . . , aP . Such
parameters will be chosen in order to satisfy condition 4 of
Theorem 3.2, i.e.

He
(
D̃N(ξ)

)∣∣∣
ξ=eit

≥ 0, t ∈ [0, 2π], (72)

by means of the objective function

f(a1, a2, . . . , aP ) = −min
j,k

λjk(a1, a2, . . . , aP ),

which is a numerical realization of the mentioned necessary
condition, where {λjk(a1, a2, . . . , aP ) : k = 1, 2, . . . . ,m} is
the spectrum of the matrix He

(
D̃N(ei

2π
n j)
)
, j = 1, 2, . . . , n−

1, n ∈ N, being i the imaginary unit. We observe that we
did not consider the values j = 0 and j = n because
they lead to points belonging to the spectrum of the matrix
V. By increasing the number n of points on the unit circle
we search for methods satisfying (72), and the remaining
necessary conditions 1-3 in Theorem 3.2 for algebraic stability
are verified on the case by case basis.

Since A-stable TSAC methods with m = 1, 2, 3 and p >
m+1 have not been found in previous works (compare [51]),
the search of algebraically stable methods has been performed
among TSAC methods of order p = m or p = m+ 1.

We now provide and example of method with m = 2 and
p = 3. We carry out the search inside the class of A-stable
methods derived in [51]. Therefore, following [51], we impose
the interpolation conditions

φ0(0) = 0, χ1(0) = 0,

and we fix the ρ = 2 basis functions

φ0(s) = s
(
q2s

2 + q1s+ q0
)
, χ1(s) = s

(
r2s

2 + r1s+ r0
)
,
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where q2, q1, q0, r2, r1, and r0 are real parameters. We next
derive the values of these parameters realizing the collocation
conditions

φ′
0(c1) = φ′

0(c2) = 0 and χ′
1(c1) = χ′

1(c2) = 0.

This leads to

q1 = − (c1 + c2)q0
2c1c2

, q2 =
q0

3c1c2
,

r1 = − (c1 + c2)r0
2c1c2

, r2 =
r0

3c1c2
.

We next determine the remaining basis functions φ1(s), χ2(s),
ψ1(s), and ψ2(s) by imposing the system of order conditions
for p = 3. As in [51], we fix c1 = 5/2 and c2 = 9/2. This
leads to a two-parameter family of TSAC methods, depending
on q0 and r0. Within this family, we search for algebraically
stable methods, by minimizing the negative value of the
objective function computing the minimum of the eigenvalues
of the matrix (71). For instance, for

q0 = −0.4253608181543406, r0 = 1.6033382155047602,
(73)

we obtain a method satisfying

He(D̃N(ξ))
∣∣∣
ξ=eit

≥ 0, t ∈ [0, 2π].

This bound has been obtained by dividing the interval [0, 2π]
into n = 10000 subintervals.

IV. CONCLUSIONS

We described the construction of highly stable explicit
and implicit GLMs. Namely, by using the IQS approach, we
described the construction of explicit GLMs of Nordsiek type
having maximum area of the stability region, and A- and L-
stablle implicit TSRK methods. We moreover presebnted the
approaches for the systematic search for algebraically stable
GLMs for ODEs, based on the Albert theorem and the criteria
formulated by Hill, which are based on the Nyquist stability
function. In all cases we presented example of methods. Fur-
ther issues of this research will focus on analyzing nonlinear
stability issues of numerical methods approximating other
functional operators such as integral and fractional equations
[11], [21], [25], [33], [42], partial differential equations [26],
[29]–[31], [39], [58], [61], oscillatory problems [40], [43],
[59], [62], [65], [77].
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[6] M. Braś, A. Cardone, R. D’Ambrosio, Implementation of explicit Nord-
sieck methods with inherent quadratic stability, Math. Model. Anal. 18:2
(2013) 289–307.
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[79] Schur, J. (1916). Über Potenzreihen die im Innern des Einheitskreises
beschränkt sind. J. Reine Angew. Math. 147, 205–232.

[80] W.M. Wright, General linear methods with inherent Runge-Kutta stabil-
ity, Doctoral thesis, The University of Auckland, New Zealand, 2002.

Angelamaria Cardone is researcher in Numerical
Analysis of University of Salerno, Italy. She received
her PhD in Computational sciences and applied
mathematics in 2004, from University of Naples
Federico II, Italy. Her research interests regard the
numerical treatment of Volterra integral equations,
ordinary differential equations and more recently
fractional differential equations. Part of the research
deals with the development of mathematical soft-
ware, also in parallel environment.

Dajana Conte is Associate Professor in Numerical
Analysis at University of Salerno, Italy, since 2006.
Her research activity concerns the development and
analysis of efficient and stable numerical methods
for the solution of evolutionary problems, also with
memory, modeled by ordinary differential equa-
tions and Volterra integral and integro-differential
equations. She was involved also on problems re-
lated to the numerical solution of the many-body
Schrodinger equation in quantum molecular dynam-
ics.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 443



Raffaele D’Ambrosio is Associate Professor at the
Department of Engineering and Computer Science
and Mathematics of University of L’Aquila. He has
been Fulbright Research Scholar in the Academic
Year 2014-15 at Georgia Institute of Technology. His
research topics mainly interest numerical methods
for evolutionary problems of several kind (ordinary
and partial differential equations, integral equations,
Hamiltonian problems, stochastic differential equa-
tions, piecewise smooth dynamical systems), with
particular emphasis to structure-preserving numeri-

cal integration.

Beatrice Paternoster is Full Professor of Numeri-
cal Analysis at University of Salerno, Italy. In her
research she has been involved in the analysis and
derivation of new and efficient numerical methods
for functional equations, in particular differential and
integral Equations. She is also involved in parallel
computation, with concerns to the development of
mathematical software for evolutionary problems.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 444




