
 

 

  
Abstract—We study aliasing and antialiasing effects occurring in 

discrete-time differentiation of a smooth band-unlimited signal – so-
called the Cauchy pulse through evaluation of differentiation errors 
for low frequency portion (LFP) bellow the Nyquist frequency and 
high frequency portion (HFP) above the Nyquist frequency produced 
by type IV linear phase differentiators designed by different methods 
with varying differentiators’ lengths, sampling and band-limiting 
frequencies. We demonstrate that differentiation of HFP creates an 
aliasing error equal to the error of the computed HFP of the 
derivative, whereas removing HFP causes an algorithm-independent 
antialiasing error equal to HFP of the exact derivative with minus 
sign. Both errors are in a balance and determine the common error 
introduced by the band-unlimitedness. We disclose that regardless 
sampling frequency the antialiasing error in the differentiation is 
greater than the aliasing one. The differentiators designed by various 
methods approximately equally compute HFP with nearly equal 
aliasing errors having a weak dependence on differentiator length, at 
the same time, LFPs are differentiated with very wide variation in the 
accuracy. It is demonstrated that the differentiators with smooth 
magnitude responses at low frequencies compute considerably more 
accurate derivatives of LFPs than those having rippled responses. 
 

Keywords—Aliasing and antialiasing errors, Cauchy pulse, 
Discrete-time differentiation, Smooth band-unlimited signals.  

I. INTRODUCTION 
HERE are branches of science and technology, such as 
material science [1], [2], mechanics [3], dielectric 

spectroscopy [4], geophysics [5], [6], etc. facing with 
measuring and processing monotonic signals, which can be 
generalized as smooth band-unlimited signals (BUSs). As it is 
well known [7]–[9], sampling a signal that is not band-limited 
produces aliasing distortions appearing as high frequency 
portion (HFP) of the signal above the Nyquist frequency 
generated back to the Nyquist frequency band.  

In order to avoid the effect of aliasing, a common or even 
compulsory procedure is removing HFP by antialiasing 
filtering (AAF) prior to sampling [7]–[9] to make a BUS to be 
band-limited.  
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Despite that AAF more or less reduces the aliasing effect, 
i.e. prevents generating HFP back to the Nyquist frequency 
band, a new – antialiasing effect is produced by AAF due to 
loss of HFP with the appropriate antialiasing error, referred 
also to as frequency-truncation error [8] and cutoff error [10]. 
Both the effects influence the accuracy of discretely processed 
time domain waveforms of BUSs and a typical example is 
discretely computed derivatives [11].  

At present, interaction between aliasing and antialiasing 
effects has not received much attention in the literature. The 
significance of the aliasing effect is often emphasized, but the 
antialiasing effect is typically ignored in processing of 
bandlimited signals assuming that it smaller than aliasing one 
[8]. Most of the work in discrete-time processing of BUSs is 
focused on sampling and reconstruction [12]–[15].  

The goal of this study is to develop a more complete 
understanding of the interaction between the aliasing and 
antialiasing effects in discrete-time processing of time domain 
waveforms for BUSs and to give further insight into discrete-
time differentiation to compute derivatives as accurately as 
possible. To achieve this goal, we evaluate errors of separate 
time-domain portions bellow and above the Nyquist frequency 
in differentiation of a smooth band-unlimited function (signal) 

 
2( ) 1/ (1 )x t t= + ,  (1) 

 
 which sometimes is referred to as a Cauchy pulse [16]. 

The rest of this work is organized in three sections. In 
Section II, the background and evaluation methodology are 
described. The evaluation results are represented and analyzed 
in Section III. Section IV contains conclusions. 

II. THEORETICAL BACKGROUND AND EVALUATION 
METHODOLOGY 

A. Idea behind Research 
The idea behind the research is to split the Cauchy pulse (1) 

into low frequency portion (LFP) bellow the Nyquist 
frequency and HFP above the Nyquist frequency, and evaluate 
differentiation errors of the derivatives for the full-band signal 
(1) and its portions produced by different discrete-time 
differentiators with varying the processing conditions. Block 
diagram in Fig. 1 illustrates the idea behind the research. 
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Fig 1 Block diagram of research of interaction between aliasing and 
antialiasing effects in differentiating BUS 

 

B. Input and Output Signals 
The band-unlimited input signal (1) – the Cauchy pulse 

increases monotonically in interval 0<t  and decreases 
monotonically in interval 0t ≥  (Fig. 2(a)). The choice of the 
Cauchy pulse was motivated by the fact that function (1) 
appears in several diverse applications, including material 
science [1] and [2], where the Cauchy pulse over the positive 
interval [0, ∞) is widely used for modelling the real part of the 
complex permittivity and complex compliance. 

According to the research idea (see Fig. 1), the Cauchy 
pulse (1) is split into LFP and HFP 

 
)()()( txtxtx highlow +=  (2) 

 
at the Nyquist frequency / 2Ny SΩ = Ω  as a splitting frequency, 

where ΩS is angular sampling frequency. 
The signal portions (2) are computed by taking the inverse 

Fourier transform of spectrum of the Cauchy pulse 
 
( ) exp( | |)X πΩ = − Ω  
 

over the frequency bands of interest. Such acquirement may be 
interpreted as determination of the portions by ideal filtering. 
Thus, LFP or band-limited version of (1) is determined as 

 

( ) 1/ (2 ) ( ) exp( )Ny

Ny
lowx t X j t dπ

Ω

−Ω
= Ω Ω Ω∫ , 

 
giving an expression 
 

( ) ( )[1 exp( )( sin cos )]low Ny Ny Nyx t x t t t t= + −Ω Ω − Ω . (3) 
 

Computation of HFP may be simplified by calculation of a 
difference (see Fig. 2(b)) 

( ) ( ) ( )high lowx t x t x t= − . (4) 
 

Examples for waveforms of (3) and (4) are shown in Fig. 
2(a) and Fig. 2(b) for the Nyquist frequency ΩNy = 2.5.  
 

 
Fig. 2 The Cauchy pulse and its LFP (a) and HFP (b) split at the 

Nyquist frequency ΩNy = 2.5 
 

The Cauchy pulse and its LFP and HFP have the following 
derivatives (Fig. 3): 
 

)(2)()( 2 ttxtxty −=′= , (5) 
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 (6) 

 
( ) ( ) ( ) ( )high high lowy t x t y t y t′= = − . (7) 

 
From Figs. 2(a) and 3(a) is seen that due to the antialiasing 

errors, exact band-limited waveform xlow(t) and its derivative 
ylow(t), both having alias free discrete-time spectra identical 
with the continuous-time counterparts over the Nyquist 
frequency band, are distorted and deviate from the band-
unlimited waveforms (1) and (5).  

To acquire discrete-time versions, signals (1) and (3)-(7) are 
computed at the chosen Nyquist frequency ΩNy and sampled at 
the sampling frequency twice the Nyquist frequency 
ΩS = 2ΩNy. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019 

ISSN: 1998-4464 86



 

 

 
Fig. 3 Derivatives of the Cauchy pulse and its LFP (a) and HFP 

(b) split at the Nyquist frequency ΩNy = 2.5 
 

C. Evaluation of differentiation accuracy 
Following the suggestion in [17], we define the accuracy of a 

derivative likewise to the measurement accuracy in the 
metrology [18] as closeness of agreement between a computed 
derivative and an exact derivative, where discrete-time 
versions of analytically derived derivatives (5)–(7) are used as 
exact ones. The accuracy of a computed derivative is estimated 
through a time-domain error determined as a difference 
between the computed signal ˆ( )y t  and the exact one y(t) 

 
ˆ( ) ( ) ( )e t y t y t= − , (8) 

 
which, in its turn, is evaluated by mean squared error (MSE), 
expressing the energy of error signal (8) 
 

2

1
(1/ ) ( )

M

m
m

MSE M e t
=

= ∑  (9) 

 
In this study, MSE is calculated for fixed number of points 

(M = 100) over the predetermined time interval [0, 10] of an 
output signal. MSE (9) is an accuracy criterion for both time 
domain waveforms, i.e. derivatives, and discrete-time 
algorithms, i.e. differentiators. The smaller MSE is, the more 
accurate the computed derivative and the differentiator are. 

D. Time Domain Errors 
According to (2), the common time domain differentiating 

error (8) is also composed from LFP and HFP components 
 

( ) ( ) ( )low highe t e t e t= + , (10) 
 
where 
 

ˆ( ) ( ) ( )low low lowe t y t y t= − , (11) 
 

ˆ( ) ( ) ( )high high highe t y t y t= − . (12) 
 

Error ehigh(t) establishes the error from  non-bandlimitedness 
and, depending on processing conditions, constitutes both the 
aliasing and antialiasing errors. In the full-band processing 
mode without AAF, which can be identified as an extreme 
processing mode [11] with CΩ = ∞ , it represents the maximum 
aliasing error with zero antialiasing error 
 

ˆ( ) ( ) ( )alias high highe t y t y t= − . (13) 
 

In the second extreme processing mode [11] with ideal AAF 
at C NyΩ = Ω , HFP of the input signal is completely removed, 

i.e. ( ) 0highx t = , resulting in ˆ ( ) 0highy t =  and ( ) ( )high highe t y t= − . 
In this case, ehigh(t) describes the maximum antialiasing error 
with zero aliasing error at the given sampling/Nyquist 
frequency 

 
( ) ( )antialias highe t y t= − . (14) 

 
According to (10), the common differentiation error is 

constituted from the LFP error and error introduced by the 
band-unlimitedness, and is equal to 

 
( ) ( ) ( )full low aliase t e t e t= + , (15) 

 
in the full-band processing mode, and 
 

( ) ( ) ( )AAF low antialiase t e t e t= +  (16) 
 
in the processing mode with ideal AAF with cutoff at the 
Nyquist frequency. 

Two important points follow from the above. First, it is 
revealed that the antialiasing error in the case of ideal AAF 
with cutoff at the Nyquist frequency is equal to HFP of exact 
derivative (7) with minus sign and, so, does not depend on the 
discrete-time algorithm used. 

Second, it is easy to see from (13), that in the case when 
computed signal ˆ ( )highy t  has the comparable amplitude and the 

same phase as those of exact signal ( )highy t , the signals 
ˆ ( )highy t and ( )highy t  will cancel each other, and the amplitude 

of aliasing error (13) will become smaller than the amplitude 
of antialiasing error (14). Therefore, depending on how input 
HFP generated back after sampling to the Nyquist frequency 
band is processed by the discrete-time algorithm used, both the 
aliasing and antialiasing error can predominate. 
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E. Discrete-Time Differentiators 
We choose type IV linear phase differentiators with even 

number of coefficients [7]–[9] as promising the higher 
differentiating accuracy for band-unlimited applications 
compared with the type III differentiators. The differentiators 
were designed by several commonly known finite impulse 
response (FIR) filter design methods: the impulse response 
truncation (IRT) method [9], the Parks-McClellan (PM) 
algorithm [19], deriving by using maximal linearity (ML) 
constraints [20, 21], and identification (ID) method [2], [17].  

IRT method was selected as the simplest and most 
straightforward FIR filter design method. It is usually 
mentioned in literature [9] as one generating filters with 
undesirable frequency-domain characteristics due to the 
oscillatory nature of the frequency response near cutoff 
frequencies, therefore, IRT filters may be conditionally 
classified as the “worst” ones for frequency selective filtering 
provided to modify the frequency content and phase of signals 
according to the definite specifications [7]–[9]. Contrary to 
IRT method, PM algorithm has been chosen as probably the 
most widely used FIR filter design method generating optimal 
filters in sense of minimax error with a minimum number of 
coefficients needed to achieve the given frequency domain 
specification [7]–[9]. Hence, PM filters may be conditionally 
categorized as the “best” ones frequency selective filters. 
Deriving by using ML constraints has been chosen as a 
favorable option [20, 21] preferable of filters for the 
applications, where the time domain properties are of primary 
importance.  

To test the optimality of the differentiators designed by the 
methods mentioned above to compute the derivatives of BUSs 
as accurately as possible under the given processing conditions 
and to understand what might be the optimal algorithms for 
this purpose, the differentiators with the smallest attainable 
error were constructed also by ID method [2], [17] with 
minimizing MSE between the computed and exact derivatives 
in the full-band processing mode. 

III. EVALUATION RESULTS AND DISCUSSION 

A. Aliasing Error versus Antialiasing Error 
One of the basic result of this study was a finding that the 

differentiation is the case, in which regardless sampling 
frequency the antialiasing error (14) is greater than the aliasing 
one (13). 

In Fig. 4(a), as an example, HFP of derivative, computed by 
12-point IRT differentiator at sampling frequency ΩS = 5, and 
exact HFP (7) are shown. It can be noticed, that signals 
ˆ ( )highy t  and ˆ ( )highy t  have the comparable amplitudes with the 

same phases, and, so, they cancel each other making that the 
amplitude of aliasing error (13) smaller the amplitude of 
antialiasing error (14) (see Fig. 4(b)). 

Fig. 5 illustrates the behavior in the frequency domain, 
where the continuous-time magnitude spectrum  | ( ) |highY Ω  
(colored) of exact HFP (7) is compared with the appropriate 

discrete-time magnitude spectrum ,| ( ) |S highY Ω  of exact HFP (7) 

and spectrum ,
ˆ| ( ) |S highY Ω  of computed HFP at the same 

conditions as in Fig. 4.  
According to (14), spectrum ,| ( ) |S highY Ω  constitutes the 

magnitude spectrum | ( ) |antialiasE Ω  (Fig. 6) of antialiasing 
error, whereas the aliasing error, generated as difference (13), 
has magnitude spectrum | ( ) |aliasE Ω . These spectra again 
confirm prevalence of antialiasing error over aliasing one. 

 

 
Fig. 4 Computed and exact HFP of the derivatives (a) and the 
appropriate aliasing and anti-aliasing errors  (b) computed at 

sampling frequency ΩS = 5 by 12-point IRT differentiator 
 

 
Fig. 5 Continuous-time spectrum (colored area) and discrete-time 

spectra of HFP of the derivative at ΩNy = 2.5 
 

A similarity between the spectra of aliasing and antialiasing 
errors is qualitatively kept regardless sampling/Nyquist 
frequency. For example, in Fig. 7, the spectra are shown for 
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the Nyquist frequency ΩNy = 10.  The discrete-time spectra in 
Figs. 5–7 are calculated by the discrete-time Fourier transform 
from the computed and exact derivatives over time intervals 
[-40, 40]. 

 

 
Fig. 6 Discrete-time magnitude spectra of the aliasing and 

antialiasing errors at  ΩNy = 2.5 
 

 
Fig. 7 Discrete-time magnitude spectra of aliasing and antialiasing 

errors at ΩNy = 10 and continuous-time magnitude spectrum of the 
derivative of the Cauchy pulse (5) 

 

B. Variation of Differentiation MSEs with Sampling 
Frequency 
In Fig. 8(a), typical variation of differentiation MSEs with 

sampling frequency is shown for LFP, aliasing and antialiasing 
components, whereas MSEs of the derivatives in the full-band 
and AAF differentiation modes obtained for 12-point 
differentiators are presented in Fig. 8(b). 

It is seen that antialiasing MSE is higher than aliasing one. 
Logarithmic plot of algorithm-independent antialiasing MSE is 
nearly straight line with negative slope meaning that 
MSEantialias decays almost exponentially with sampling 
frequency (and cutoff frequency in the case of ideal AAF). 

The differentiators designed by different methods 
approximately equally process HFP producing nearly equal 
aliasing errors MSEalias, which fall into the narrow lane (see 
Fig. 8(a)). ML and ID differentiators have practically 
undistinguishable aliasing errors that are slightly higher than 
those of PM and IRT differentiators, which also are basically 
undistinguishable. Logarithmic plots of the aliasing MSEs are 
straight with a narrow angle between the antialiasing MSE 

witnessing that both MSEs are approximately proportional 
each other with a proportionality coefficient that slightly 
increases with growing sampling frequency. 

 

 
Fig. 8 Variation of differentiation MSEs with sampling frequency. 

LFP, aliasing and anti-aliasing MSEs (a). Complete MSEs in the full-
band and AAF processing modes (b) 

 
At the same time, LFP errors of differentiators designed by 

different methods behave very differently. For ML 
differentiator, MSElow decreases almost exponentially (linearly 
on log–MSE scale), which together with the exponentially 
decaying aliasing and antialiasing errors constitute the 
common MSEs, which also have exponential nature. 
Consequently, increase of sampling frequency for ML 
differentiators leads to significant enhancement in the 
differentiation accuracy. ID method generates the most 
accurate differentiators, however, mainly in the vicinity of the 
sampling frequencies at which a differentiator is constructed. 
In Fig. 8, errors are shown for an ID differentiator designed at 
ΩS = 14. 

In contrast to ML and ID differentiators, a little surprising 
result for us was slowly growing MSElow for IRT differentiator 
and approximately constant MSElow for PM differentiator (see 
Fig. 8(a)). Thus, improvement of the differentiation accuracy 
of these differentiators with increasing sampling frequency 
happen only at relatively low sampling frequencies thanks to 
decaying aliasing/antialiasing errors behaving in the 
approximately same way for all differentiators regardless 
design method  (see Fig. 8(b)). Due to essentially lower LFP 
errors, ML and ID differentiators demonstrate essentially 
higher differentiation accuracy in both the full-band and AAF 
processing modes at higher sampling frequencies. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019 

ISSN: 1998-4464 89



 

 

C. Variation of Differentiation MSEs with Differentiator 
Length 
Typical variation of differentiation MSEs with differentiator 

length is shown in Fig. 9 for sampling frequency ΩS = 14. The 
plots of Fig. 9 afforce actually the results presented in the 
previous Subsection. 

 

 
Fig. 9 Variation of differentiation MSEs with differentiator length. 

LFP, aliasing and anti-aliasing MSEs (a). Complete MSEs in the full-
band and AAF processing modes (a) 

 
It is seen again that the aliasing error is smaller than the 

antialiasing one. PM and IRT differentiators have practically 
equal aliasing error, whereas the aliasing error is slightly 
greater for ML and ID differentiators. The aliasing errors have 
a weak dependence on the differentiator length indicating on 
approximate proportionality with the antialiasing errors, 
particularly for the longer lengths. 

Contrary to the aliasing errors, there are significant variation 
in MSEs of LFPs for differentiators designed by different 
methods. Again, ML differentiators produce much more 
accurate LFP derivatives compared to IRT and PM 
differentiators, however, ML differentiators do not reach the 
maximum possible accuracy achievable by ID differentiators. 

As a result, ML and ID differentiators need a much smaller 
number of coefficients than PM and IRT differentiators to 
compute the derivatives of equal accuracy. For example, 
8-point ID differentiator (see arrows in Fig. 9(b)) in the full-
band processing mode has the same error (MSEfull ≈ 0.25⋅10-6) 
as a 20-point ML differentiator. Extrapolation (not shown in 
Fig. 9(b)) indicates that IRT differentiator requires 36 
coefficients, but PM differentiator – 48 coefficients to attain 

this accuracy. Similarly, 8-point ML differentiator has the 
same error (MSEfull ≈ 0.82⋅10-6) as 26-point IRT differentiator, 
and 32-point PM differentiator (coefficients are given in [19]). 

 

 
Fig. 10 Error responses for 8-point ID, and 20-point ML 

differentiators ensuring the same differentiation MSE in the full-band 
differentiating mode 

 

 
Fig. 11 Error responses for 8-point ML, 26-point IRT, and 32-point 
PM differentiators ensuring the same differentiation MSE in the full-

band differentiating mode 
 

Therefore, the conditionally “best” and “worst” 
differentiators according to the frequency selective filtering 
concept [7] – PM and IRT differentiators are not optimal in 
the sense of filter length criterion for computing accurate 
derivatives of LFPs. They are quite similar in differentiating 
accuracy for LFP that is much lower than that of ML 
differentiators and potentially maximally accurate ID 
differentiators. 

In Fig. 10 and 11, deviations of magnitude responses from 
the true ones (error responses) | ( ) |H jΩ −Ω  are compared for 
some differentiators ensuring the equal accuracy in the full-
band differentiating mode (indicated by arrows in Fig. 9(b)), 
designed by different methods with of various lengths. 

It is seen that differentiators with smooth magnitude 
responses at low frequencies, such as ML and ID 
differentiators, are more preferable for attaining the derivatives 
of high accuracy for BUSs than those with well-fitted, but 
rippled magnitude responses, such as PM and IRT 
differentiators. 
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D. Variation of Aliasing and Antialiasing MSEs with Cutoff 
Frequency 
In the previous Section, we demonstrate that error from the 

band-unlimitedness is limited by the maximum antialiasing 
error (14) corresponding to cutoff frequency C NyΩ = Ω  and the 
maximum aliasing error (13) corresponding to CΩ = ∞ . Within 
the frequency band Ny CΩ < Ω < ∞ , both the antialiasing and 
aliasing errors exist together (Fig.12). The antialiasing error 
(14) exponentially decreases (see Fig. 8(a)) from a value at 

C NyΩ = Ω  to zero at CΩ = ∞ , whereas the aliasing error in the 
same time increases from zero to maximum one (13). So the 
errors neutralize each other and the common impact from the 
band-unlimitedness on the total differentiating accuracy is 
determined by a balance between the both errors: the more is 
suppressed the aliasing error, the more is magnified the 
antialiasing error, and vice versa. Since antialias aliasMSE MSE>  in 
the differentiation, the balance error decreases with cutoff 
frequency. 

 

 
Fig. 12 Variation of aliasing, antialiasing and balance MSEs with 

cutoff frequency on logarithmic scale (a) and on linear scale (b). 
Colored areas – intervals of variation of balance MSE 

IV. CONCLUSIONS 
We demonstrate that the band-unlimitedness influences the 

accuracy of discretely computed derivatives through: (i) an 
aliasing effect due to differentiating high frequency portion 
(HFP) above the Nyquist frequency generated back to the 
Nyquist frequency band by causing an aliasing error equal to 
the error of HFP of the derivative, and (ii) an antialiasing 
effect due to removing HFP creating an algorithm-independent 
antialiasing error equal to HFP of the exact derivative with 
minus sign. It is disclosed that regardless sampling frequency 
the antialiasing error in the differentiation is greater than the 
aliasing one. We find that type IV linear phase differentiators 
designed by various design methods, such as the impulse 
response truncation method, the Parks-McClellan algorithm, 
deriving by using maximal linearity constraints, and the 
identification method, approximately equally differentiate HFP 
and produce nearly equal aliasing errors having a weak 
dependence on the differentiators’ lengths. At the same time, 
the mentioned differentiators very differently process low 

frequency portion (LFP) bellow the Nyquist frequency, which 
limits the common differentiation accuracy. It is shown that 
differentiators with smooth magnitude responses at low 
frequencies, e.g. the differentiators derived by using maximal 
linearity constraints and constructed by the identification 
method, compute considerably more accurate LFPs than 
differentiators having rippled magnitude responses, e.g. the 
differentiators designed by the Parks-McClellan algorithm and 
the impulse response truncation method. 
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