
 

 

 
Abstract— Images corrupted during transmission and acquisi-

tion required de-noising for proper interpretation and reliable 
recognition. Though related traditional methods are known to be 
reliable in de-noising and identification, learning aided approaches 
have become popular recently. Subsequent, deep learning has been 
accepted to be an efficient mechanism and is found to be increasingly 
becoming integral element for a range of image processing and 
computer vision applications. This work deals with the formulation of 
a system based on Auto-encoder (AE) and Stacked Auto-encoder 
(SAE) configured for de-noising of certain military aircrafts as part of 
an automatic target recognition (ASR) system. The ASR is based on a 
class of classifiers that include the soft-max layer, conventional 
Artificial Neural Network (ANN) and Deep Neural Network (DNN) 
of the type convolutional neural network (CNN). The sample set 
includes five image types corrupted with Gaussian, Poisson, Speckle, 
Salt and Pepper noise for de-noising by AE and SAE topologies and 
identification by the CNN. Further, the image sets are subjected to 
signal to noise ratio (SNR) variation between -3 to 20 dB which 
increases the data volume for training which is necessary to make the 
system robust. Despite higher computational latency, the efficiency 
of the proposed approach is justified by the experimental results. 
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I. INTRODUCTION 

De-noising is an important image processing operation 
which determines the outcome of subsequent image 
interpretation techniques. A host to techniques performing 
image denoising have been reported and have proven their 
worth in different fields of application. Yet the requirement to 
automate the process and improve efficiency have laid stress 
on the design of learning based approaches. The advantages of 
such approaches is the fact these are learning based which 
means that these learn from the surrounding, retain it and use 
it subsequently. Further, immediately after the training phase 
is over, such techniques can be used repeatedly without much 
variations in the parameters and models. Throughout the last 
few decades neuro-computing based techniques have been 
extensively used for image restoration and de-noising 
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 applications. Of late, the shift has been towards the use of 
deep learning (DL). Deep Neural Networks (DNN) have been 
the preferred options for many real world situations [1] - [4] 
including image processing and computer vision applications. 
Several works related to the application of DL in high-level 
computer vision tasks have been reported. Works [5] [6], 
image classification [7], object detection [8], and semantic 
segmentation [9] are some of the examples. Deep learning has 
also been investigated for low level computer vision tasks 
such as image de-noising [10], [11], [12]. 

Automatic target recognition (ATR) systems with 
special regards to military aircrafts have adopted synthetic 
aperture radar (SAR) and Inverse SAR (ISAR) as reliable 
techniques. With SAR and ISAR methods of ATR, DNN 
approaches like Convolutional Neural Networks (CNN) have 
been used [13]. Improvement in performance of the DNN 
assisted ATR in case of military aircrafts is related to the 
reliable de-noising of the test samples. Among DNN 
techniques, auto-encoder (AE) and the stacked AE (SAE) [14] 
have been found to be fast and efficient among de-noising 
tools. Often, like all signals, images are corrupted during 
transmission or acquisition or editing. De-noising is a part of 
image restoration. Image restoration intends to recover back 
a signable portion of the signal with quality as close to the 
original. Image de-noising is an important preprocessing step 
in a host of applications and becomes essential when an image 
is corrupted by additive white Gaussian noise (AWGN) which 
commonly occurs in the communication channel or may creep 
into while recording the image due to erroneous sensors or 
calibration. 

Efficiency of the ATR performance is linked to its ability 
to performance proper interpretation in presence of severe 
input degradation. This aspect is strengthened by dedicated 
de-noising blocks working in tandem with ATR units. The 
application of learning aided tools holds the key in deriving 
efficient performance as observed in a host of computer vision 
designs. This paper focuses on the design of AE and SAE 
based approaches for de-noising of certain military aircrafts 
as part of an automatic target recognition (ASR) system. The 
ATR is based on a class of classifiers that include the soft-max 
layer, conventional Artificial Neural Network (ANN), Support 
Vector Machine (SVM) and Deep Neural Network (DNN) of 
the type convolutional neural network (CNN). 
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The rest of the description includes certain basic 
considerations (Section II), details of the proposed work 
(Section III), experimental results (Section IV) and the 
conclusions derived. 

II. BASIC CONSIDERATIONS 
In this section, we include certain relevant notions which 
are linked with the design of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Generic auto encoder 

A. De-noising 
The primary objective of the de-noising operation is to 

recover the image content from the surrounding noise. In 
the process noise gets subtracted and contributes towards the 
improvement of the quality of the image. A host of techniques 
are available through which de-noising can be performed but 
in the present work the focus in on the use of AE and SAE 
in case of a few military aircrafts.  

B. Auto-encoder (AE) 
AEs are feed-forward (FF) Artificial Neural Networks 

(ANN) with three layers (input, hidden and output) that copy 
their inputs to the outputs. AEs can reduce dimensions and 
preserve as much content as possible. AEs can also be trained 
to derive fresh representation and generate new attributes. 
There are three primary segments of an auto-encoder. These 
are encoder, latent representation and decoder. The encoding 
section can be represented as ( )h f x=  while the decoding 

function has an expression ( )r g h= such that input x  is as 
close as output r . AEs learn better when there is noise in the 
input. This way the AE is found to be useful for de-noising 
applications. AEs can recover true signal content from noise 
mixed input. This is true with images as well. Auto-encoders 
are unsupervised networks that can make both linear and non-
linear transformations. Figure 1 shows a generic AE. 

  

C. Stacked AE (SAE) 
The SAE is formed by combining multiple AEs together 

resulting in multiple layer network. It performs de-noising 
encoding by using unsupervised pre-training layers. Each 

layer is pre-trained to perform feature selection from the input 
using the preceding layer. The second stage is used for 
supervised fine-tuning where apriori knowledge maybe made 
available. Figure 2 shows a SAE. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Generic stacked auto encoder 

For an input ( )[ ]Tx , the output generated by the 
stacked auto-encoder is,  
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where 1, 2,...k T= , T  is the size of the input layer. 
For the hidden layer, 
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where 1, 2, ...i M= , M  is the size of the hidden  layer. 
For the output of the first auto-encoder, 
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where 1,2,...j N= , N  is the size of the output 
layer of  the first auto-encoder. 
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· · · 

Equation 3 is also the input to the second auto-
encoder and the hidden layer of the second auto-
encoder is represented by, 
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where  1, 2, ...l P= , P  is the size of the hidden layer of 
the second auto-encoder. 

For the output of the second auto-encoder, 
1
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where 1, 2, ...r Q= , Q  is the size of the output layer of 
the second auto-encoder. 

D. Convolutional Neural Network (CNN) 
A CNN is a type of DNN which use the convolution 

operation to transform one volume of activations to another 
through certin types of layers namely convolutional layer, 
pooling layer, and fully-connected layer. The CNN 
transforms the original input volume using layer by layer 
processing to certain class scores. There can be several 
combinations of the basic architectural layers which 
generates considerable amount of processing but enhances 
efficiency and reliability. CNNs use a type of gradient 
descent algorithm to learn the input patterns and associate 
them with certain class labels without requiring human 
crafted features [5]. 

III. PROPOSED WORK 
The work has two components. First, there is a de-noising 

section and next, another segment performs recognition. For 
the de-noising part, AE and SAE blocks are trained and use. 
The ATR is designed two CNN based structures attached to 
soft-max layer, conventional ANN specially a Multi Layer 
Perceptron (MLP) and SVM used to trained to recognize the 
targets and work along with the de-noising layer. The 
learning based ATR is first trained extensively and 
subsequently subjected to a set of testing. Figure 3 
summarizes the work-flow. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Work flow of the proposed approach 

A. Dataset 
There are two stages of the work. First, de-noising is done 
using the SAE block. Next, the ATR is configured using two 
configurations of the CNN. The data sets used for both the 
work vary in size. Five image types are taken for the work 
which are mixed with Gaussian, Poisson, Speckle, Salt and 
Pepper noise. For each of these image sets signal to noise ratio 
(SNR) variation between -3 to 10 dB are taken. This gives a 
total of 280 images for performing the task. With variation in 
the illumination (one higher and one lower than the original), 
another set of 560 images are taken to test the trained 
networks to carry out the de-noising operation. Figure 4 shows 
a set of samples considered for training. 
 For the ATR, the image set is formed separately but 
includes all the samples used for the de-noising block. Five  
image types of military aircrafts corrupted with Gaussian, 
Poisson, Speckle, Salt and Pepper noise for de-noising by AE 
and SAE topologies and identification by the CNN. Further, 
the image sets are subjected to signal to noise ratio (SNR) 
variation between -10 to 20 dB which increases the data sets 
for training necessary to make the system robust. A set of 
4320 images are taken for training. Another set of 4320 
images with resolution variation are taken for testing. 
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Fig. 4. A few training samples 
 
 

 
 

Fig. 5. Process logic 
 
 

B. Methodology 
The approach is based on collection of the data samples which 
in this case is formed by several sets of training and testing 
samples for the complete system covering both the de- noising 
blocks and the identification section. The configuration of the 
networks is another important task. During training, four 
different noise types and several cases of SNR variations are 
considered to make the systems robust. At the end of the 
training and testing, the performance is measured in terms     
of PSNR values of the input and output images. Further, the 
training latencies of the networks are also recorded. Extensive 
tests are performed to check the robustness of the ATR system 
under low and high SNR variation conditions. The ATR 
section is designed using two different configurations of the 
CNN. 

C. Training the De-noising networks 
The process logic of the de-noising part carried out using AE 
and SAE is summarized in Figure 5. It has two compo- nents. 
First, two types of networks namely the AE and SAE are 
trained. Next, the trained networks are tested with the images in 
the data base. Several images of military aircrafts are taken for 

the work which are mixed with Gaussian, Poisson, Speckle, 
Salt and Pepper noise implying a range of de-noising condition. 
For each of these image sets SNR variation between -3 to 10 
dB are taken. The work is assumed to be a part of an ATR 
system which requires a reliable de-noising stage to provide 
accurate assessment of the situation. Two de-nosing networks, 
the first one an AE and the other a SAE are used for the de-
noising procedure. The parameters of the networks are 
summarized in Table I. The AE network is first configured by 
following a sequence of trail and error runs. The network with 
hidden layer size 75 with a decoder layer with purely linear 
activation function is found to be most efficient in terms of 
mean square error (MSE) and computational time. Similarly, 
a SAE with three hidden layers with details as shown in Table I 
is found to be suitable. For both the cases the MSE attained and 
the time in seconds taken  at  the  end  of  2000  epochs are 
taken to be two criteria for selection. Five image classes with 
four different SNR variations constituting 280 images are taken 
for training both the images. Such a set of images are shown in 
Figure 4. 

 

D. Training the ATR Networks 
The ATR is formed using a DNN with multiple layers as 
shown in Figure 6. The network type adopted here is based   
on the CNN topology. The two different configurations of the 
CNN are used to ascertain the performance improvement that 
can be derived in terms of lower computational complexity 
and better accuracy. Two networks have different 
combinations of several layers. First comes the input layers. 
Next is the layer  of the convolution (CNV) layer followed by 
a max-pooling mechanism and the fully connected (FC) 
layers. At the end there is the classifier which is formed by a 
soft-max layer. The CNN based ATR is designed in two 
different configurations  as outlined in Table II. The first 
network (Config1) is formed with one input, four middle and 
one classifier layers while the second block has a set of input, 
middle and final layers with convolutional, FC and rectified 
linear units (ReLU) the details of which are given in Table II.  

In the first network, there are four convolutional layers of 
sizes 32 × 32, 16 × 16, 8 × 8 and 4 × 4. The input taken 
is of size 64 × 64. Subsequently, the learning takes place in 
all the convolutional layers which result in an optimal set 
of features which are used to train the soft-max layer. The 
CNN architecture ensures that the convolutional filter masks 
learn and produce the best activation so as to become spatially 
more relevant for use as local input to subsequent layers. It 
enables the learned filters to respond when known patterns 
(or features) occur in the training data within the active field. 
The larger filter masks (32 × 32) placed in the beginning 
takes in the pixels with spacing of one and two are used. 
In each subsequent stages, with the 16 × 16 sized filters, four 
numbers, with 8 × 8 eight and with 4 × 4 ones sixteen filter 
blocks are used to capture the feature details. This helps in 
extracting minor variations in the input despite the fact that 
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TABLE I 
PARAMETERS OF DE-NOISING AE AND SAE NETWORKS 

Sl. no. Item Parameters 

1 Hidden 
Layers 

AE one 
SAE three 

2 Max. 
Epochs 

AE = 3000 
SAE = 3000 

3 Hidden 
Layers Length 

AE one with 75 neurons 
SAE three first 

with 75, 
second with 48, 

third with 42 

4 Criteria 
for fixing 

hidden layer 

MSE convergence and 
Computational time 

5 Weight Regularization 0.005 

6 Sparsity Regularization 2 

7 Sparsity Proportion 0.05 

8 Decoder activation Purely linear 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. CNN architecture used for designing the ATR 
 
initially redundancy increases the computational complexity 
of the system. Out of the total of 4320 images, five batches 
are taken to train the ATR. Twelve hundred epochs are taken 
to train the ATR formed with this configuration. 
The next configuration is a bit complex but is more popular. 
It is formed by an input layer of size 64 × 64 × 3. Next the 
middle layers are formed. First, a convolutional block with 32 
numbers of 5 × 5, followed by one ReLU and a max-pooling 
layer of size 3 × 3 are placed. Next, another convolutional 
layer of 32 numbers of 5 × 5 mask followed by an ReLU and 
a max-pooling layer of 3 × 3 is placed. The third stage 
is constituted by another identical combination of 32 numbers 
of 5 × 5 convolutional masks followed by ReLU and 3 × 3 
max-pooling filter. The subsequent layer is a FC block with 
sixteen numbers of FC layers followed by ReLU another two 
FC and finally a soft-max layer. 

 

TABLE II 

DNNS IN TWO DIFFERENT CONFIGURATIONS- FIRST ONE 
(CONFIG1) WITH ONE INPUT, FOUR MIDDLE AND ONE 

CLASSIFIER LAYERS WHILE THE SECOND BLOCK HAS A SET 
OF INPUT, MIDDLE AND FINAL LAYERS WITH 

CONVOLUTIONAL, FC AND RECTIFIED LINEAR UNITS (RELU) 

Sl No Structure Layer type            Size Remark 
 
 
1 

 
 
Config1 

Input 
L1 
L2 
L3 
L4 
Soft-max 

64 × 64 
32 × 32 
16 × 16 
8 × 8 
4 × 4 
5 × 1 

L1, L2 L3, L4 
are convolution 
layers 

 
 
 
 
2 

 
 
 
 
 
 
Config2 

Input 
 
Middle 
 
   
Middle 
 
 
Middle 
 
 
Last 

64 × 64 × 3 
Convolutional 
ReLU 
Max-pooling 

   Convolutional 
ReLU 
Max-pooling 
Convolutional 
ReLU 
Max-pooling 
FC 
ReLU 
FC 
Soft-max 

 
32 numbers,5 × 5 
 
3 × 3 
32 numbers,5 × 5 
 
3 × 3 
32 numbers,5 × 5 
 
3 × 3 
16 FC layers 
 
2 FC 
 

 
 
IV. RESULTS AND DISCUSSION 
 

The results are discussed in reference to the two distinct 
aspects covered in the work. The first part is linked to the de- 
noising part carried out using the AE and the SAE while the 
second section is related to the DNN based ATR with which 
the de-noising networks are connected. 

E. Results of the De-noising block: 
The networks formed by AE and the SAE are trained upto 
5000 epochs maximum. After the training is over, the 
networks are tested with noise corrupted images. Figure 7 
shows a set  of images used for testing. For varying epochs, 
the output of the AE and SAE varies. At the end of 1000 
epochs the output from the AE is as in Figure 8. There is 
improvement in the performance of the SAE at the same level. 
This is obvious from Figure 9. It is observed that after the 
training is sustained for more number of epochs the overall 
appearance and the peak signal to noise ratio (PSNR) value 
improves considerably. 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 7. Test samples 
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Fig. 8. Output of the trained AE after 1000 epochs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Output of the trained SAE after 1000 epochs 

 
Due to the use of the SAE, the PSNR shows an improvement 
between 8% to 27% compared to the AE network. Output 
PSNR from a AE and SAE trained upto 3000 epochs is 
shown in Figure 10. The output obtained from a AE trained 
upto 3000 epochs is shown in Figure 11. Similarly, the de-
noising output from a SAE trained upto 3000 epochs is 
shown in Figure 12. The improvement  provided by the SAE 
is clearly visible. A set of 280 images are taken for the 
training while a set of 560 images are used for testing. All 
the four different noise types are considered during testing 
along with clean samples. Two levels of illumination 
variation and the original intensity levels are taken for 
testing. The results depicted are the average performance of 
complete set of trails carried out. The training has been 
carried out using an Intel i-7 processor with 8 GB RAM. 

Though there is a significant increase in the PSNR values 
due to the de-noising carried out by the SAE, the 
computational time increases considerably. There is an 
increase between 52% to 87% in time complexity due to the 

use of the SAE. This is seen in Figure 13. The training 
latency makes the technique disadvantageous. Otherwise, 
with an unsupervised approach the AE and SAE based 
approaches are considerably reliable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Output PSNR from a AE and SAE trained upto 3000 epochs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Output obtained from a AE trained upto 3000 epochs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Output obtained from a SAE trained upto 3000 epochs 
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Fig. 13. Comparison of time in minutes between AE and SAE trained upto 
3000 epochs 
 

F. Results of the ATR block integrated with the AE-SAE  de-
noising system: 
The summary results of the ATR block integrated with the 
AE-SAE de-noising system is shown in Table III. The results 
are derived using data base images applied to  the  trained 
ATR system working together with the AE-SAE system. The 
training and testing times are noted. It is found that after the 
training is over, the testing phase takes times which are nearly 
similar for all the methods adopted including the benchmark 
classifier techniques namely the soft-max, ANN and SVM 
classifiers. The training time associated with the CNN based 
classifiers is much more compared to the benchmark classifier 
techniques namely the soft-max, ANN and SVM classifiers 
which is due to the configuration, nature of processing and 
structure of the systems. However, the benefits are in terms of 
better accuracy (atleast 13% more) compared to the 
benchmark classifier techniques namely the soft-max, ANN 
and SVM classifiers. Also, the learning is extensive and 
resilient showing no change in accuracy despite variations in 
SNRs  in  the  input image. This is seen in the performance 
plot depicted in Figure 14. The CNN based classifiers show 
consistent accuracy (in the 90s range) despite variations in 
SNR which   is desirable for a learning aided ATR. The CNN 
block labeled as CNN-Config2-Softmax in  combination  with  
SAE acts as a much reliable ATR  despite extensive variations 
in  the SNR. 
In -15dB SNR, the AE-aided blocks show an accuracy of 
around 81% while the SAE driven CNN based ATRs show an 
improvement of atleast 2% (Figure 14). With images 
corrupted by -12dB SNR, the SAE-CNN-Config2-Softmax 
combination shows a performance improvement of around 4%. 
At -4dB SNR, this improvement is around 7%. This is 
significant as the degradation in image quality has no effect 
and the performance is found to be nearly consistent. The 
experiments also show that the de-noising blocks aid the 
learning of the CNN based ATR blocks. However, the absence 
of the AE/SAE de-noising blocks don’t degrade the 
performance significantly yet their performance is highly 
desirable as it improves the accuracy. This is obvious from the 
results depicted in Table IV. The presence of the AE/SAE de-

noising blocks improve the accuracy by atleast 7% but adds 
more computation cycles. With previously trained AE/SAE 
blocks, this training latency shall be an insignificant factor. 

 
TABLE III 

SUMMARY RESULTS OF THE ATR BLOCK LINKED WITH THE AE-
SAE DE-NOISING SYSTEM 

De-
noising 
block. 

Classifier 
Structure 

Training 
Time  

Testing 
time in 
secs 

Accuracy 
% 

 
 
AE 

Softmax 155 secs 1.2 63 

ANN 210 secs 1.1 71 

SVM 95 secs 1.1 73 

CNN-
Config1-
Softmax 

 
125 mins 
 

 
1.2 
 

 
86 
 

CNN-
Config2-
Softmax 

1055mins 
 

1.2 92 
 

 
 
SAE 

Softmax 187 secs 1.1 67 

ANN 315 secs 1.1 73 

SVM 94 secs 1.1 75 

CNN-
Config1-
Softmax 

 
133 mins 
 

 
1.2 
 

 
91 

CNN-
Config2-
Softmax 

1092 
mins 

1.2 98 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Accuracy v/s SNR for the AE and SAE de-noising aided 
ATR blocks using two different configurations of CNN 
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TABLE IV 

PERFORMANCE OF THE ATR WITH AND 
WITHOUT THE DE-NOISING BLOCKS 

Sl No. Item Average accuracy 
(%) 

1 ATR without 
de-noising 

89 

2 ATR with de-
noising 

             96 

IV. CONCLUSION 
In this paper, we have focused on the design of DNN based 
ATR integrated to AE and SAE based approaches for de- 
noising of certain military aircrafts. The system is  config- 
ured to make identification of the military aircrafts. Several 
images of military aircrafts are taken  for  the  work  which  
are mixed with Gaussian, Poisson, Speckle, Salt and Pepper 
noise implying a range of de-noising condition. For each of 
these image sets a range of SNR variations are considered 
both during training and testing. Experimental results have 
show that the SAE based approach is more reliable during de-
noising though it has a higher computational latency. Due to 
the use of the SAE, the PSNR shows an improvement between 
8% to 27% compared to the AE network. Though  the PSNR 
values show improvements, there is a significant increase in 
time complexity due to the use of the SAE which  is between 
52% to 87%. The results for the ATR are derived from the 
trained system working together with the AE-SAE blocks. 
The testing phase has response latency which are nearly 
similar for the approaches considered including classifiers like 
the soft-max, ANN and SVM. The training time associated 
with the CNN based classifiers is much more  compared  to 
the benchmark classifier techniques which is due to the con- 
figuration, nature of processing and structure of the systems. 
However, the benefits are in terms of better accuracy (atleast 
13% more) compared to the benchmark classifier techniques. 
The proposed approach can be effective used in actual 
situation to provide reliable identification and consistent 
accuracy even under severe SNR variations. 
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