
 

 

  
Abstract—A system of two linear oscillators coupled to a 

damped nonlinear oscillator that has multiple stability and hidden 
chaotic attractors, is studied in this work. The unperturbed 
Hamiltonian part contains, apart from the quadratic harmonic 
oscillations, a nonlinear fourth order term with extra linear part with 
respect to the first two oscillators. As a consequence the proposed 
system has only one equilibrium point that is non-hyperbolic. Also, 
the chaotic attractors of the full system are hidden i.e. their basin of 
attraction does not have any unstable equilibrium point. Furthermore, 
the electronic realization of the system is presented and its dynamical 
behavior is studied in order to confirm the feasibility of the 
theoretical model. 
 

Keywords—Bifurcation diagram, chaos, Extreme multistability, 
hidden attractors, Lyapunov exponent, Phase Portrait, Poincaré map.  

I. INTRODUCTION 
N recent years chaotic behavior were discovered on systems 
with no equilibrium points. The chaotic attractors of such 
systems are named “Hidden Chaotic Attractors”.  
There is a great interest in studying hidden attractors in 

applied systems. In the 1950-1960s hidden attractors were 
discovered and observed in various nonlinear control systems 
[1]. Since then a lot of work has been done by various 
scientists in many fields of science and engineering [2]. 

In 1997 Lauvdal et al. [3] presented numerical difficulties 
in simulation of aircraft control systems (anti-windup scheme) 
that were connected to hidden oscillations. 

Studies on hidden oscillations have been done for electrical 
machines as drilling systems [4]-[6]. These studies try to solve 
problems and failures of drill string systems that cause huge 
cost loses for the drilling companies.  

A great work has been done by various scientists in the 
field of nonlinear electronic circuits. In 2010 Leonov and 
Kuznetsov discovered chaotic hidden attractor in Chua’s 
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circuit [7]-[9]. Since then a lot of work has been done and 
many systems with hidden attractors were emulated by 
nonlinear electronic circuits [10]-[12]. Furthermore, 
techniques and methods that are used in hidden attractors may 
be useful to construct adequate nonlinear models for phase-
locked loop (PLL) systems that are used in radio, 
telecommunications, computers and other electronic 
applications [13]. 

In our paper we present a system of two linear oscillators 
coupled to a damped third order nonlinear oscillator with a 
mass much smaller than the linear oscillators.  

A similar system to the one presented here, has been 
exhaustively studied in [14]-[16]. Because the mass of the 
nonlinear attachment is much smaller, in comparison to the 
linear oscillators, the system is singular, and its dynamics are 
governed by different time scales.  

In our previous works we studied the system with the use of 
methods, such as singularity analysis or multiple scale analysis 
[17]-[18] and showed that the slow flow of the system and the 
Slow Invariant Manifolds obtained in the singular limit play a 
very important role in the dynamics. Furthermore, we 
confirmed that the Slow Invariant Manifold, its bifurcations, 
and the dynamics of the slow flow play an essential role in the 
energy transfer, from the linear to the nonlinear oscillator, and 
dissipation of the system. 

In this work we study a slightly altered system. The 
unperturbed Hamiltonian part contains, apart from the 
quadratic harmonic oscillations, the nonlinear fourth order 
term an extra linear part with respect to the first two 
oscillators. This results to having only one equilibrium point 
that is non-hyperbolic. Thus, the chaotic attractors of the full 
system are hidden i.e. their basin of attraction does not have 
any unstable equilibrium point. The detailed study of the 
system showed that it possesses a very interesting multistable 
dynamical behavior. 

The paper is organized as follows. In the next section the 
proposed system and its basic properties are presented. The 
simulation results of system’s dynamics are discussed in the 
third section. In the fourth section a circuit emulation of the 
system is presented and its dynamical behavior is discussed. 
Finally, we conclude in the fifth section. 
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II. CONFIGURATION OF THE SYSTEM 
The system consists of a damped nonlinear oscillator 

coupled to two linear oscillators and is described by 

        𝜀𝜀𝑦̈𝑦 + 𝜀𝜀𝜀𝜀(𝑦̇𝑦 − 𝑥̇𝑥0) + 𝐶𝐶(𝑦𝑦 − 𝑥𝑥0)3 + 𝜀𝜀2 = O, 
        𝑥̈𝑥0 + 𝑑𝑑(𝑥𝑥o − 𝑥𝑥1) = 𝜀𝜀𝜀𝜀(𝑦̇𝑦 − 𝑥̇𝑥0) + 𝑐𝑐(𝑦𝑦 − 𝑥𝑥o)3 + 𝜀𝜀2,     (1)  
       𝑥̈𝑥1 + 𝛼𝛼 𝑥𝑥1 + 𝑑𝑑(𝑥𝑥1 − x0) = 0,          

where a, d, C and ε << 1 are the parameters of the system and 
λ is the damping parameter. 

After applying the linear singular transformation                     
𝑣𝑣 = 𝜖𝜖−1/2𝑥𝑥0 + 𝜖𝜖1/2 𝑦𝑦,  𝑢𝑢 = 𝜖𝜖−1/2𝑥𝑥0 − 𝜖𝜖−1/2𝑦𝑦 and                        
𝑥𝑥 → 𝜖𝜖1/2𝑥𝑥1, the system assumes the form: 

 

𝑢̈𝑢 = −𝜆𝜆(1 + 𝜖𝜖)𝑢̇𝑢 − 𝐶𝐶(1 + 𝜖𝜖)𝑢𝑢3 − 𝑑𝑑
𝑣𝑣 + 𝜖𝜖𝜖𝜖
1 + 𝜖𝜖

+ 𝑑𝑑𝑑𝑑 + 𝜖𝜖
1
2 + 𝜖𝜖

3
2 

𝑣̈𝑣 = −𝑑𝑑
𝑣𝑣 + 𝜖𝜖𝜖𝜖
1 + 𝜖𝜖

+ 𝑑𝑑x,                                                                 (2) 

𝑥̈𝑥 = −(𝑎𝑎 + 𝑑𝑑)x + 𝑑𝑑
𝑣𝑣 + 𝜖𝜖𝜖𝜖
1 + 𝜖𝜖

. 

The system has only one equilibrium point  

v = −
ϵ

7
6

𝐶𝐶
1
3

,  u =
ϵ

1
6

𝐶𝐶
1
3

,  x = px = pv = pu = 0, 

where 𝑝𝑝𝑥𝑥 = 𝑥̇𝑥, 𝑝𝑝𝑢𝑢 = 𝑢̇𝑢, 𝑝𝑝𝑣𝑣 = 𝑣̇𝑣.  
Furthermore,𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓̅ = −𝜆𝜆(1 + 𝜖𝜖), where 𝑓𝑓 ̅ is the vector 

field, and the system is dissipative. 

III. NUMERICAL INVESTIGATION 
The dynamics of the system were exhaustively investigated 

with the help of numerical tools such as bifurcations diagrams, 
maximal Lyapunov exponent, phase portraits and Poincaré 
sections. 

The numerical investigation of this system is not a simple 
task due to the big number of its equations (six equations for 
the numerical solution of the system and twelve for the 
maximal Lyapunov exponent). 

The dynamical behavior of the oscillators, as it is expected, 
depends on the parameters and the initial conditions. The 
system may oscillate regularly (with periodic and 
quasiperiodic orbits) or has chaotic motion. 

For the parameters 𝑎𝑎 = 0.4, 𝑑𝑑 = 0.1, 𝐶𝐶 = 5.5, 𝜖𝜖 = 0.01 
and initial conditions 𝑢𝑢0 = 0.1, 𝑣𝑣0 = 𝑝𝑝𝑣𝑣0 = 𝑝𝑝𝑢𝑢0 = 𝑝𝑝𝑥𝑥10 = 0 
and  𝑥𝑥0 = 30,  the  bifurcation  diagram (Fig. 1) shows that the 
 

 
Fig. 1 Bifurcation diagram of u versus λ 

 
system has chaotic behavior for  𝜆𝜆 ≤ 0.2 and quasiperiodic for 
𝜆𝜆 > 0.2. The chaotic behavior is proven with the help of 
maximal Lyapunov exponent and the chaotic motion can be 
seen in the phase portrait of the system. Indeed, for 𝜆𝜆 = 0.1 
(Fig. 2) shows that the system has a positive maximal 
Lyapunov exponent and Fig. 3 shows the phase portrait of the 
system.  

The chaotic attractor of the system for 𝜆𝜆 = 0.1 is given in 
the Poincaré diagrams (Fig. 4) and since the system has only 
one non-hyperbolic equilibrium point then the chaotic attractor 
is hidden. 

Another example of chaotic behavior is given for the 
parameters: a = 0.35,   d = 0.1,   C = 3.5,   ϵ = 0.01, λ = 0.1 
and initial conditions 𝑢𝑢0 = 0.5, 𝑣𝑣0 = 𝑝𝑝𝑣𝑣0 = 𝑝𝑝𝑢𝑢0 = 𝑝𝑝𝑥𝑥10 = 10 
and 𝑥𝑥0 = 40. Fig. 5 shows the maximal Lyapunov Exponent 
of the system that is positive, and Fig. 6 shows the phase 
portrait of the system. 

The bifurcation diagram for different initial conditions 𝑥𝑥0 
(Fig.7) show that the system changes its dynamical behavior 
in relation to the initial condition. So, the system is extremely 
multistable, that is, the system has an infinite number of 
attractors. 

Indeed, for the parameters 𝑎𝑎 = 0.4, 𝑑𝑑 = 0.1, 𝐶𝐶 = 5.5, 
𝜖𝜖 = 0.01 and initial conditions 𝑢𝑢0 = 𝑣𝑣0 = 𝑝𝑝𝑣𝑣0 = 𝑝𝑝𝑢𝑢0 =
𝑝𝑝𝑥𝑥10 = 0 we have: i) for 𝑥𝑥0 = 12,  u0 = 0.5 the system 
oscillates quasi-periodically (Fig. 8), ii) for 𝑥𝑥0 = 2,  u0 = 0.5    
the system tends to its equilibrium point (Fig. 9) and iii) for 
𝑥𝑥0 = 40,  u0 = 0.5   the system oscillates chaotically (Fig. 10).  
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Fig. 2 Maximal Lyapunov Exponent 

 
Fig. 3  Phase por t r ai t  of  𝑝𝑝𝑢𝑢  ver sus 𝑢𝑢 

IV. CIRCUIT EMULATION 
The classical approach for the verification of the feasibility 

of theoretical chaotic models is the physical realization 
through electronic circuits [14]-[16]. Furthermore, the circuital 
realization of chaotic systems has been applied in numerous 
engineering applications, for example in secure 
communications [17], liquid mixing [18], robotics [19], image 
encryption process [20], audio encryption scheme [21], target 
detection [22] or random signal generation [23], [24]. For this 
reason, analog and digital approaches have been applied to 
realize chaotic oscillators by using different kinds of 
electronic devices such as common off-the-shelf electronic 
components [25], [26], integrated circuit technology [27], 
microcontroller [28] or field-programmable gate array (FPGA) 
[29]-[31]. Therefore, we will confirm the feasibility of the 
proposed system by discussing its circuital realization by 
using the general operational amplifier-based approach.  

Figure 11 shows the schematic of the circuit for realizing 
the proposed system. As shown in this figure, the circuit 
includes thirty-one (31) resistors, six (6) capacitors, twelve 
(12) operational amplifiers (TL081) and two (2) analog 
multipliers (AD633). By applying Kirchhoff’s circuit laws 
into the designed circuit, we get the following circuital 
equation: 

 

    
(a)  

 
(b)  

 
(c)  

Fig. 4 Poincaré maps in three different planes 
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Fig. 5  M axim al  Ly apunov Exponen t  

 

 

Fig. 6  Phase por t r ai t  of  𝑝𝑝𝑢𝑢  ver sus 𝑢𝑢 

 

 
Fig. 7  Bi fu r cat ion -l i ke d iagr am  of  u  ver sus t he in i t ial  

cond i t i on  of  x0 

 

Fig. 8  Phase por t r ai t  of  𝑝𝑝𝑢𝑢  ver sus 𝑢𝑢 (Quasi -per iod ic 
osci l l at ions)  

 

 

Fig. 9  Phase por t r ai t  of  𝑝𝑝𝑢𝑢  ver sus 𝑢𝑢 (The sy stem  tends 
t o i t s equ i l i br ium  poin t )  

 
 

 

Fig. 10 Phase por t r ai t  of  𝑝𝑝𝑢𝑢  ver sus 𝑢𝑢 (Chaot i c 
osci l l at ions)  
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In system (3), (V, U, X, PV, PU, PX) correspond to the 

voltages on the integrators  (𝑈𝑈1 − 𝑈𝑈6), respectively,  while  the 
 
 

 
 

 

 
 

power supply is ±15 Volt. The system has also six (6) 
inverting amplifiers (𝑈𝑈7 − 𝑈𝑈12) and two multipliers 
(𝑈𝑈13,𝑈𝑈14). System (3) is normalized by using 𝜏𝜏 = 𝑡𝑡

𝑅𝑅𝑅𝑅
. It can 

thus be suggested that system (3) is equivalent to the proposed 
system (3), with 𝑅𝑅

𝑅𝑅1
= 𝑑𝑑

1+𝜖𝜖
, 𝑅𝑅
𝑅𝑅2

= 𝜖𝜖𝜖𝜖
1+𝜖𝜖

, 𝑅𝑅
𝑅𝑅3

= 𝑑𝑑, 𝑅𝑅
𝑅𝑅4

= 𝜆𝜆(1 + 𝜖𝜖), 
𝑅𝑅
𝑅𝑅5

= 𝐶𝐶(1 + 𝜖𝜖), 𝑅𝑅
𝑅𝑅6

= √𝜖𝜖 + √𝜖𝜖3 and 𝑅𝑅
𝑅𝑅7

= 𝑎𝑎 + 𝑑𝑑. 
So, for the same set of parameter values, the values of 

circuit components are: 𝑅𝑅 =  10 kΩ, R1 = 101kΩ, 𝑅𝑅2 =
10.101 MΩ, 𝑅𝑅3 = 100 kΩ, 𝑅𝑅4 = 𝑅𝑅6 = 99.01 kΩ, 𝑅𝑅5 =
1.8 k𝛺𝛺, 𝑅𝑅7 = 24.39 kΩ, 𝑅𝑅8 = 10 kΩ, 𝑅𝑅9 = 90 kΩ and 𝑝𝑝_𝑢𝑢 
The designed circuit has been implemented in Multisim and 
PSpice results for selected values of the initial condition of 
variable X, while the rest initial conditions are equal to zero, 
are reported in Fig.12. It is easy to see the agreement between 
the circuit’s simulation results (Fig.12) and numerical results 
(Fig.13). 
 

 
 
 

 

 

Fig. 11 Schem at ic of  t he ci r cu i t  
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(a) 

 

 
(b) 

 
(c) 

Fig. 12 PSpice chaotic attractors of the designed circuit in U - PU 
plane, for (a) X(0) = 3 Volt, (b) X(0) = 10 Volt, (c) X(0) = 14 Volt, 

while the rest initial conditions are equal to zero 

       
   (a) 

 

   (b) 

 

  (c) 

Fig. 13 Numerical results for (a) X(0) = 3 Volt,(b) X(0) = 10 Volt,            
(c) X(0) = 14 Volt, while the rest initial conditions are equal to zero 

 

V. CONCLUSIONS 
We presented the dynamics of a system of two linear 

oscillators to a damped third order nonlinear oscillator with a 
mass much smaller than the linear oscillators that contain an 
extra linear part. The system has only one equilibrium point 
that is non-hyperbolic. Thus, the chaotic attractors of the full 
system are hidden. Furthermore, the system is extremely 
multistable and so has an infinite number of attractors. Finally, 
the system is experimentally emulated by an electronic circuit 
and its dynamical behavior confirms the feasibility of the 
theoretical model. 
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