
 

 

 

Abstract—The Close Enough Travelling Salesman Problem with 

Time Window (CETSP-TW) is a new variant of the well-known 

Traveling Salesman Problem with Time Window (TSPTW), where 

the salesman does not need to visit the exact location of each 

customer. The goal of the CETSP-TW problem is to find the 

minimum distance Hamiltonian cycle through a set of nodes, where 

the requirement is only to come close enough to the node 

neighborhood set in a predefined time window. In this paper, we 

propose a mathematical formulation for the CETSP-TW and we 

design a fast heuristic to solve the new variant. The proposed 

heuristic is incorporated with the TSPTW effective optimization 

algorithms to find a near optimal tour in a short computation time. 

Computational results are taken on TSPTW Library instances. 

Performance evaluation of the proposed heuristic is discussed in 

detail, and the best solutions obtained from a selected set of instances 

are reported. 
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I. INTRODUCTION 

HE Travelling Salesman Problem with Time Window 
(TSPTW) [1] is a combinatorial optimization problem that 

has received substantial attention during the last decades, as it 

is core to many important real life routing and scheduling 

applications, it consist in finding a minimum cost tour starting 

and ending on a given location called depot and visiting a set 

of customers exactly once. Each customer has a time window 

or a service time defining its ready time and due date. If a tour 

visit a customer after its due date, the tour is considered 

infeasible and also if the salesman or the vehicle service 

arrives before the customer ready time, it must wait. The cost 

of a tour is translated by the total distance traveled.       

   On the other hand, The Close Enough Travelling Salesman 

Problem with Time Window abbreviated as CETSP-TW is a 

new variant of the TSPTW, where the salesman does not need 

to visit the exact location of each customer (node). Instead, a 

region of the plane containing each node is specified as its 

neighborhood set, and the goal is to find a shortest tour that 

starts from a specified depot location and intersects all of these 

neighborhood sets in order to be visited in a predefined Time 
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Window for an extra travelling freedom. Intuitively speaking, 

in the CETSP-TW, each of the salesman's customers is willing 

to travel to any point inside its particular neighborhood to 

meet with the salesman in a predefined time. This feature 

allows savings from the standard TSPTW solution, but also 

adds great complexity to the problem as this creates an infinite 

number of routes between each customer. For that as the 

TSPTW, the CETSP-TW is among the class of NP-Hard 

problems that are computationally intensive to solve [2].  

   

    Note that without the time window feature the CETSP-TW 

variant became the Close Enough Traveling Salesman 

Problem known as CETSP problem [3] a recent variant of the 

classical Traveling Salesman Problem (TSP) [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

   The Fig. 1 shows an instance of four customers for the 

TSPTW and the CETSP-TW respectively.  In general the 

graph represents the planning of the problem, each node 

representing a customer. Each customer has a time window 

[  ,   ] in which it can be served. The red segment in the time 

window present the services time of customer i. It also shows 

the order in which each salesman serves its customers.  The 

CETSP-TW tour in Fig. 1.(b) needs only to get within a 

distance r (called radius) of each customer i in order to be 

visited in his predefined time, in contrary of the TSPTW tour 

in Fig. 1.(a) that must visit customer i in his own location 

during his time window. Obviously, the CETSP-TW optimal 

tour has a shorter total length than the one required by the 

TSPTW. 
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 (a) Optimal TSPTW tour.                     (b) Optimal CETSP-TW tour.  
 

 

  
 

      

 
        

Fig. 1   The optimal TSPTW tour compared to the optimal 

CETSP-TW tour. 
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   The contribution of this paper is to present a Mixed Integer 

Nonlinear mathematical formulation for the CETSP-TW 

problem and to develop a three phased heuristic based on 

Nearest Neighborhood Search (NNS) [5] procedure and 

TSPTW effective algorithms to solve it. Since this is the first 

study of the CETSP-TW, our purpose is to define general 

properties of the CETSP-TW problem and to present its 

resolution possible strategies. Nevertheless, the computational 

results indicate that the proposed Perimeter Neighborhood 

Search Time Window (PNSTW) heuristic is very promising to 

solve the CETSP-TW efficiently regarding solution quality 

and running time. 

 

   The remainder of the paper is described as follows: Section 

2 gives a brief review of the literature related to the CETSP-

TW problem and its application field. Section 3, is devoted to 

the problem definition and mathematical formulation.  

Description of the proposed resolution approach and the 

Computational results are presented and discussed in section 

4. Finally, Section 5 summarizes our conclusions and future 

directions. 

II. PROBLEM BACKGROUND 

Since the problem studied in this paper is related to the 

Close Enough Traveling Salesman Problem (CETSP), we 

briefly cite the related literature and contrast our variant with 

the variants in the literature of this area.  

    The CETSP was first introduced by [3]. The authors 

proposed six heuristics developed by a team of graduate 

students as part of a class project to solve the CETSP. All the 

six heuristics followed three common steps: First, a set of 

supernodes was selected (a supernode is a point in the plane 

that represents a customer neighborhood) such that if each 

supernode is visited, the tour will have come within the 

appropriate distance of each node (customer). Second, a TSP 

tour through the selected supernodes and the depot was 

generated. Third, the obtained tour was improved while 

maintaining feasibility. Based on [3] conclusions, the authors 

in [6] and in [7] proposed a generic three phased approach 

called Steiner Zone heuristic (SZH). First, the goal of the SZH 

is to identify intersection between disks called Steiner Zone in 

which the tour comes close enough to multiple nodes. Second, 

each identified Steiner zone or intersection area is presented 

by a point (supernode known as well as representative or 

hitting point), and then a TSP tour is constructed over these 

points. Third, the TSP sequence found earlier is improved 

using a TPP (Touring a sequence of Polygon Problem). The 

authors also ameliorated the heuristic presented in [8] and 

modified the CETSP to be solved as a Generalized Traveling 

Salesman Problem (GTSP) based on [9] works. With constant 

radius and disks-shaped-neighborhoods, the heuristics were 

tested on 48 instances and on 14 instances with different 

radius but in both cases the SZH produced good results 

regarding solution quality and running time. 

   From the perspective of this paper, many of the techniques 

and heuristics developed to solve the CETSP problem can be 

utilized in solving the CETSP-TW since both the CETSP and 

the CETSP-TW need to deal with a continuous problem (the 

optimization of the hitting points locations) in first place as we 

show in Section 3. 

   Recently, numerous studies of the CETSP problem used 

discretization methods to discretize a set of continuous 

covering neighborhoods into so called cluster and requiring 

the salesman to visit each cluster exactly once.  The authors in 

[10] used only 4 points to discretize each neighborhood and 

used Benders decomposition to find tight lower and upper 

bounds as well. The proposed method was very expensive in 

term of running time due to the high partitioning levels and no 

solution was proven to be optimal. All of the instances created 

by Behdani were solved to optimality by [11] later on using an 

exact Branch and Bound algorithm. The authors in [11] also 

solved instances with as many as 1000 customers from [6] 

with a large customer covering radius. In 2017, authors in [12] 

improved the discretization scheme already proposed in [10] 

using Perimetric Discretization  scheme and Internal Point 

discretization scheme which provided better and tighter upper 

and lower bounds. Also, they transformed the CETSP to a 

Generalized TSP (GTSP) by using an arc discretization 

scheme and then reduced the problem size by applying a graph 

reduction algorithm. But, the proposed discretization cannot 

guarantee a globally optimal or nearly optimal solution in a 

given time as it was discussed in [13] who encoded scheme for 

neighborhoods with different shapes joint or disjoint, regular 

or irregular. The authors were able to reduce the search space 

without degrading the quality of the generated solution. 

   More recently in 2019, the authors in [14] developed a three 

phased heuristic called Steiner Zone Variable Neighborhood 

Search heuristic (SZVNS) to solve the CETSP problem. In 

phase I, the SZVNS trims the problem size to reduce running 

time. In phase II, the sweep line algorithm identifies the 

Steiner zones, then a minimum number of those Steiner zone 

are selected by solving a set covering problem to cover all the 

customers. Steiner points are chosen from these selected 

Steiner zones based on three rules giving rise to three feasible 

tours, the best of these tours was kept by SZVNS. In phase III, 

a Variable Neighborhood Search procedure (VNS) improves 

the retained feasible tour. The heuristic produced optimal 

solutions on state of art instances in shorter times but do not 

assume any information on customer radius. 

 

   On the other hand, the CETSP-TW variant underlies several 

interesting applications in real world problems. In the 

Automated Meter Reading (AMR) context for example, utility 

companies used to send their technicians to read the meters at 

every customer location. Nowadays, using Radio Frequency 

Identification (RFID) technology meters can be read from a 

specific distance instead of visiting every customer, 

technicians only need to get close enough to a customer 

residential location to read the meter according to his 

availability time. Another application of the CETSP-TW 

arises in the Unnamed Aerial Vehicle (UAV) operations 

context, when a pilot in an airplane or an unmanned drone 

survey several ground targets. The aircraft does not have to fly 

directly above the targets but only has to get close enough in a 

predefined time to survey them. The UAV mission planning 

problem in military operations context where each target 

location has its own visit priority can also be modeled as a 

CETSP-TW problem. In fact, other similar applications exist 
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in submarine reconnaissance of coastlines, delivering 

munitions to targets, ship tracking, aerial forest fire detection, 

robot monitoring of wireless sensor networks described in 

[13]. 

III. PROBLEM FORMULATION 

   We are given an undirected graph         where V = 

{  …    } is the set of nodes and E = {              } is 

the set of edges. Node    represents the depot.  Each node i 

 V other than the depot is surrounded by a disk     with 

radius r assumed to be the same for all disks. The requirement 

to visit node i is only to hit or to pass through disk     

exception made for the depot. Let (       be the Cartesian 

coordinates of node i in the plane and let         be the 

Cartesian coordinates of the hitting points on the tour that is 

close enough to node i known as node’s i representative point 

in [6] and referred to in this paper as    where set P is the set 

of the candidates hitting points while                   . 
The service at node i should begin within a time 

window        . A time window is associated to each node 

other than the depot. Early arrivals are allowed, in the sense 

that the salesman can arrive before the time window lower 

bound. However, in this case the salesman has to wait until the 

node i became ready for the beginning of the service or 

information change session in case of using RFID meter 

reading or wireless sensor network operations. In brief as 

shown in Fig. 2 each customer i is characterized by: 

 

 A disk shaped neighborhood referred to as    . 

 A service time    that indicate the needed time to 

service the customer i and the service start time denoted 

by    that indicates the beginning time of the service. 

 A ready time    or (a release time) indicate when is 

possible to start serving customer i.  

 A due time    or (a deadline) when the customer should 

been already served. 

 An arrival time    that indicates the arrival time of the 

salesman to service customer i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      We define a binary decision variables    (which equals 

one if node i is represented by a hitting point    on the tour i.e. 

node i have been visited on the tour, and zero otherwise) and 

    (which equals one if node j is visited (or represented) right 

after node i, this means that the path from node i to node j is 

selected in the tour and zero otherwise). The objective of 

optimization is to find the shortest travel tour, along which the 

salesman can meet all customers in their predifined time 

windows and come back to the starting position (depot). 

 

   Our Mixed Integer Nonlinear formulation of the CETSP-TW 

is given as follows: 

    

    ∑ ∑       
 
   

 
   √(     )  (     )        (3.1) 

 

   Subject to:        
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                                        { }                     (3.9) 

 

   = 1                                                                                         (3.10) 
 
        {   },                                (3.11) 

                                ,       
 
 
   The objective function (3.1) minimizes the total distance of 

the global travel tour. However, the distance coefficients are 

not constants. The coefficients are functions of the hitting 

points. Constraint (3.2) requires each hitting point    to be 

located on the boundaries of the disk that surround node i 

determined in the plan by its Cartesian coordinates i (  ,  ). 

Constraints (3.3) and (3.4) are the edges degree constraints 

known as the assignment constraints that require each node to 

be visited exactly once and guarantee the connectivity of the 

obtained tour. Constraint (3.5) requires the distance between 

any two hitting points to be strictly positive where £ is defined 

as the smallest length of any edge. Without (3.5), edges in the 

tour can have length 0. If k disks have the same hitting point, 

all (
 
 
) edges between the k disks have length 0 and could be 

selected without increasing the objective function value as 

exactly explained in [6]. Constraints (3.6) are the sub-tour 

elimination constraints ensure that no sub-tour is present in a 

solution.  Constraints (3.7) restricts the service time to the 

time window, while T is a given time limit which allows 

constraints (3.7) to be satisfied. Constraints (3.8) define the 

bounds of the arrival time to node i. Constraints (3.9) indicate 

 
 

 

 

 
 

Fig. 2 An illustration of a customer i characteristics. 
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that for each node i, the service start time    must begin within 

the time window        . Constraint (3.10) ensures that the 

depot is on the tour. Finally, constraint (3.11) defines the 

variables definition domain. 

IV. THE PROPOSED HEURISTIC AND THE COMPUTATIONAL 

RESULTS 

A. The proposed Heuristic 

   In the Close Enough TSP context (CETSP), the CETSP-TW 

new variant is drastically relevant as we discussed earlier. 

However, methods for the CETSP cannot be used directly for 

the CETSP with Time Window. Since, in these methods time 

windows constraints are not considered and therefore applying 

these algorithms can violate the time window constraints. 

Although, a combination of solution approaches designed for 

CETSP and TSP with time window (TSPTW) would be very 

interessant to be used in our case. See the survey [15] for 

details about TSPTW algorithms and state-of-art instances. 

    

 
Fig. 3   Flow chart of the proposed heuristic to solve the CETSP-TW. 

   To solve the CETSP-TW, we develop a heuristic called 

PNSTW (Perimeter Neighborhood Search Time Window) to 

solve the CETSP-TW in a three phased procedure. The most 

distinct character of the proposed heuristic is to keep the 

selection of node’s i hitting point only in the perimeter of 

disk    in order to deal with the time window constraints in a 

straight way without confusion by using the TSPTW features 

and techniques. We describe the details of the proposed PNS-

TW heuristic as follow: 

 

Phase I: We order the set of nodes V based on 

their time window service by comparing their 

ready time    and their due time    in an ascending 

order. 

Phase II: Using the node’s time window order, we 

start locating and selecting the node’s i hitting 

point from the perimeter of the disk i that surround 

node i only.   

Phase III: Construct a TSP time window 

(TSPTW) tour based on the best selected hitting 

points found in phase II and improve it using 

TSPTW state of art heuristics. 

 

Using a simple TSPTW solver, an initial visiting sequence is 

determined in phase I based on the time window ordering. In 

phase II, we locate the node i hitting point based on the 

visiting sequence previously found. A hitting point is seen as 

results of the intersection between the circular boundary of 

each disk neighborhood and the straight line connecting the 

previous selected hitting point      to the current hitting point 

   to be added by the tour as shown in Fig. 4 in order to not 

affect the time constraint. Then, we create a feasible tour over 

these selected hitting points. Finally the feasible tour is 

iteratively improved by using TSPTW optimization effective 

algorithms. The flow chart of the proposed heuristic is 

illustrated in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. The Computational results 

The proposed PNSTW heuristic was coded with Python in 

an Intel Core i5 with 4GB of RAM. We used the same 

instances proposed by Dumas et al. [1] available on line in 

[15] designed for the TSPTW problem and adapted to the 

 
 

Fig. 4   A possible hitting points connection lines. 
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CETSP-TW context by adding a disk    centered at node i 

with the same radius r to evaluate the performance of the 

proposed PNSTW heuristic. A view of the adapted instances is 

shown in Fig. 5. The value of r was set to 200. The 

computational time is set to 3600 s. We used OR-tools [16] 

algorithms when dealing with TSPTW initial visiting sequence 

and to improve the CETSP-TW final tour as well. The 

performance of the proposed heuristic is compared to the best 

values stated for Dumas et al. [15] instances to highlight the 

gain from using the Close Enough Time Window concept.  

 

 
 

Fig. 5   The content of the file n20w20.001.txt from Dumas et al. [15] 

instances set adapted to the CETSP-TW context. 

 

Table I. summarize the results for our test on Dumas et al. [15] 

instances adapted to the   CETSPTW context as shown in 

Fig. 5. The columns of this table are as follow: Instance_ 

indicates the instance name;    _reports the best known 

optimal solutions obtained for the same instance; PNSTW_ 

   _ reports the length of the shortest tour obtained by the 

proposed heuristic; Time (s)_denotes the computational run 

time in second; Gap (  _indicates the gap between      and 

the      tour length calculated as follow: 

 

Gap =        –   ) /                                   (4.1) 

 

The best value of the tour length and Gap is shown in bold. 

 

 
Table I.   The outputs solution for the proposed PNSTW heuristic on 

Dumas et al. [15] instances set. 

 

Instance      PNSTW Gap (   
    Time (s) 

n20w20 370.4 210.68 118.03 68.13% 

n20w40 342.8 207.04 114.55 66.58% 

n20w60 362.0 220.77 121.03 66.57% 

n40w20 521.2 322.85 89.56 82,82% 

n40w40 512.2 314.30 100.39 80.40% 

n40w60 481.4 301.95 100.67 79.09% 

n40w80 486.6 305.07 98.73 79.71% 

n40w100 463.0 298.62 99.35 78.54% 

n60w20 626.8 420.83 133.89 78.64% 

n60w60 672.8 431.79 145.90 78.31% 

n60w80 628.2 422.45 143.67 77.13% 

n60w100 620.2 415.32 105.49 82,99% 

n80w20 748.2 498.43 155.87 79.17% 

Instance      PNSTW Gap (   
    Time (s) 

n80w60 712.6 720.10 547.87 23.12% 

n100w20 823.0 511.03 200.05 75.69% 

n100w40 821.0 507.39 198.21 75.86% 

n100w60 817.2 515.65 189.98 76.75% 

n150w20 978.4 588.90 300.74 69.26% 

n150w40 990.4 603.99 476.84 51.85% 

n150w60 981.4  624.38 501.68 48.88% 

n200w20 1137.8 1140.71 3600 -216.4% 

n200w40 1156.0 818.38 800.56 30.75% 

 

   In general from Table I, we can state that nearly all the 

instances were solved to optimality, about 20 instances out of 

21 in a very suitable running time away from the test time 

limits except for the instance n200w20 that was solved in more 

than an hour. The reported Gap was also very significant with 

a value of 82.99   for the n60w100 and the only negative 

value was recorded for the instance n200w20. We may doubt 

here that the run time increases with increasing the number of 

nodes, since only one instance was solved out of the test time 

limits with a quite high number of node.  However, based on 

these results, we can state that the proposed heuristic proved a 

good performance in terms of both solution quality and 

computational time on various sizes of Dumas et al. [15] 

instances which leads us to confirm that the gain from using 

the Close Enough Time Window features is very significant.  

V. CONCLUSION 

   This paper introduced a new variant of the Close Enough 

Traveling Salesman Problem that considers Time Window 

constraint abbreviated as CETSP-TW variant. We provided 

the description of the CETSP-TW and formulated it as a 

Mixed Integer Nonlinear Program (MINLP) considering the 

Time Window constraints. Then, we proposed a three phased 

heuristic combining with Traveling Salesman Problem with 

Time Window (TSPTW) state of art algorithms and effective 

solver. The heuristic was able to solve the CETSP-TW variant 

efficiently in very suitable running times when tested on 

Dumas et al. [15] instances. Although the initial results appear 

favorable further researches might consist in adapting fast 

algorithms basically proposed for the TSP or the TSPTW 

minimization problems to the CETSP-TW context and 

generating a baseline test instances for comparison. Also, in 

order to get much optimized solutions a tradeoff must be made 

between runtime and solutions quality especially when the 

number of nodes is high.  
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