
 

 

 
Abstract—Change point reflects a qualitative change in things. It 

has gained some applications in the field of reliability. In order to 
estimate the position parameters of the change point, a Bayesian 
change point model based on masked data and Gibbs sampling was 
proposed. By filling in missing lifetime data and introducing latent 
variables, the simple likelihood function is obtained for exponential 
distribution parallel system under censored data. This paper describes 
the probability distributions and random generation methods of the 
missing lifetime variables and latent variables, and obtains the full 
conditional distributions of the change point position parameters and 
other unknown parameters. By Gibbs sampling and estimation of 
unknown parameters, the estimates of the mean, median, and quantile 
of the parameter posterior distribution are obtained. The specific steps 
of Gibbs sampling are introduced in detail. The convergence of Gibbs 
sampling is also diagnosed. Random simulation results show that the 
estimations are fairly accurate. 
 
Keywords—parallel system, masked data, change point, Gibbs 

sample, censored data.  

I. INTRODUCTION 

xponential distribution is a very important lifetime 
distribution. In many cases, it is assumed that the product 

lifetime follows an exponential distribution, such as the lifetime 
of an electronic component, the length of talk time on a 
telephone and the service time of a random service system. 
Exponential distribution has a wide range of applications in 
reliability. The change point model is a very important 
probabilistic statistical model. It is widely used in industrial 
quality control, economics and other fields.  
 

When the reliability of the system is statistically analyzed, 
the set of components causing the system failure is 
deterministic, but the specific component cannot be identified. 
That is to say, the failure reasons are masked. Such lifetime data 
are called masked data. Usher and Hodgson first gave the 
definition of masking, and divided the observations of the 
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system failure mechanism into three categories: precise, partial 
and missing. The corresponding data types were competitive 
failure data, partially masked data and completely masked data. 
Similarly, Reiser and Guttman obtained the analytical form of 
Bayesian estimation using Bayesian analysis method [1]. 
Berger and Sun proposed a new Bayesian method, which 
introduces the auxiliary variable to describe the failure 
mechanism of the masking, and finally obtained the Bayesian 
estimation of the parameters by Gibbs sampling. In recent 
years, some achievements have been made in the study of 
masked data and Bayesian estimates. [2-4] conducted statistical 
analysis of masked data in accelerated life tests. [5-6] studied 
Bayesian analysis of masked series system series system. [7-9] 
conducted parameter inference in a hybrid system with masked 
data.  

However, the lifetime distribution problems in above studies 
have not involved change point. The lifetime distribution study 
of change point under masked data has not been seen yet. Gibbs 
sampling as a general method for Bayesian calculation can 
simplify a change point model. For example, the full 
conditional distributions of unknown parameters can be 
transformed into a posterior distribution without change points. 
This paper mainly discusses Bayesian parameter estimation of 
change point model based on censored data and masked data in 
an exponential distribution parallel system. By adding the 
missing lifetime data and latent variables, a relatively simple 
likelihood function is obtained. The parameter estimation is 
obtained based on Gibbs samples which are obtained via Gibbs 
sampling methods under the full conditional distributions. 
Random simulation results show that the estimations are fairly 
accurate.  

 
The rest of the paper is organized as follows: Section Ⅱ and 

section Ⅲ introduce parallel system and the masked data, 
Section Ⅳ describes two-component parallel system with 
exponential distribution under masked data, Section Ⅴ 
discusses Bayesian estimation of change point model, Section 
Ⅵ gives an example of random simulation, and finally, Section 
Ⅶ concludes the study and points out the application value of 
this method.   
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II. PARALLEL SYSTEM 

Assuming that the parallel system is composed of J  
independent components, the lifetime of the j th component 
be jX , and the density function and distribution function are 

respectively ( )j jf t  and ( )j jF t  . The lifetime of the parallel 

system is 1max( , , )JT X X  . Let K denote the coding of the 

component that causes the system to fail. If K j , it denotes 

that the j_th component causes the system to fail. 
 Let 1( , , )J    . Based on the observational data 

( , )T t K j  , the likelihood function of the parallel system is 

( , ) ( ) ( )j j k k
k j

L T t K j f t F t  


    . 

If the observational data t  is censored data, and K  is not 
visible, then the likelihood function is   

1

( ) ( ) 1 ( )

1 ( ) ( )
J

k k T
k

L t P T t P T t

F t R t



 


    

  
.
 

Let   be an indicator variable. 1   denotes that the 
observational data are failure data. 0   denotes that the 
observational data are censored data.  

If n parallel systems are independently tested for the 
lifetime, the likelihood function based on the observational data  
{( , , ) : 1, , }i i it K i n    is 

1

1
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III. THE MASKED DATA OF PARALLEL SYSTEM 

In many cases, the possible failure mechanism set M  of 
the parallel system may be observed, but the exact failure 
mechanism K  is not clear. That is to say, we only know that 
K belongs to the set {1, , }M J  , but do not know the exact 

value of K . So, the observational data ( , )T M  are called 

masked data. If M  is a single point set, the observational data  
are the usual data ( , )T K  described previously; If 

{1, , }M J  , the observational data ( , )T M  are called 

completely masked data. 
The likelihood function based on failure data of a single 

point  0( , )T t M M   is as follows 
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where 0( , )P M M T t K j    is called masking probability. 

The likelihood function based on masked data 
{( , , ) : 1, , }i i it M i n    of n independent parallel systems is 

1

1
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It is assumed that the masking probability has nothing to 
do with the failure time but something to do with the failure 
mechanism, i.e., 

0

0 0

( , )

( ) ( ).j

P M M T t K j

P M M K j p M

  

   
     (1) 

At this time, the following likelihood function can be 
obtained 

1

1

( ( , , ), 1, , )

{[ ( ) ( ) ( )] [ ( )] }.i i

i

i i i

n

j i j i j k i k T i
j Mi k j
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 

   

 


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 (2) 

IV. TWO-COMPONENT PARALLEL SYSTEM WITH 

EXPONENTIAL DISTRIBUTION UNDER MASKED DATA 

If the probability density function of X  is 
( ) xf x e    ( 0, 0x   ), X  follows exponential 

distribution. It is denoted as ~ ( )X Exp  . Now the distribution 

function of X  is ( ) 1 .xF x e     In two-component parallel 

system, if the j_th component lifetime 

jX follows ( ) ( 1,2)jExp j   , we can get 1 1 2 2,     . The 

following contents are the lifetime test of two-component 
parallel systems. 

The expressions of ( )j jF t   and ( )TR t  are 

polynomials. Next, adding the missing lifetime value of jX  

simplifies the formula (2): 
When 1i   and k j , we add the missing lifetime 

value k ki kiX Z z  , where kiZ  follows the truncated 

exponential distribution ( )kExp   on the interval (0, ]it . 

When 0i  , we add the missing lifetime value 

1 1 1i iX Y y   and 2 2 2i iX Y y  .  

Then the joint density functions of 1iY and 2iY is 

1 2 1 2

1 1 1 2 2 2
1 2

( , , , )

( ) ( )
max( , ) .

( )

i i i

i i
i i

T i

H y y t

f y f y
y y t

R t

 

 


  
 

1 2,i iy y  can be obtained by random method. The steps are 

as follows: 
(1) Generate randomly numbers 1x  of 1( )Exp   and 2x  of 

2( )Exp   respectively; 

(2) If 1 2max( , ) ix x t , let 1 1iy x , 2 2iy x ,and stop; 

(3) If 1 2max( , ) ix x t , return to step (1).  
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Therefore, the Likelihood function is 

1

1
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Assume that the masking probability follows the formula 

(1). Let 1( {1} , 1)P M T t K p     and 

2( {2} , 2)P M T t K p    , then the following two 

formulas hold: 

1 1

2 2

( {1, 2} , 1) 1 ,

( {1, 2} , 2) 1 .

P M T t K p q

P M T t K p q

    

    




 

To simplify the writing, we introduce the variables i  and 

i . The following three classifications are available: 

(1) If {1}iM  , then 1, 0i i   ; 

(2) If {2}iM  , then 0, 1i i   ; 

(3) If {1,2}iM  , then 0, 0i i   . 

Let 1 2( , )p p p , the likelihood function is 

1 1 1 2 2 2 2 2 2 1 1 1
1
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When 1, 0, 0i i i     , i.e., the  observational data 

are ( , {1,2})i it M  , the distribution rule of latent variable  i   

is  as follows: 
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, 

where 1i   means that the system failure is caused by the first 

component, and 0i   means that the system failure is caused 

by the second component. 
It can be found that i  follows the binomial distribution 

(1, )b g .  

After introducing the latent variable i , the likelihood 

function is 
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Note that is  is the sum of the lifetime of all i-th 

components in n parallel systems. For all the i-th components of 
n parallel systems which cause the system to fail, in  and ir  

respectively indicate the number of unmasked components and 
the number of masked components. 

V. BAYESIAN ESTIMATION OF CHANGE POINT MODEL 

Let 1 {1,2, , }D k   and 2 { 1, 2, , }D k k n    . 

For the i-th parallel system, when mi D , we have 

1 2 1 2 1 2 1 2( , , , ) ( , , , )m m m mp p p p    ( 1,2).m  If 

11 12 21 22 11 12, ,p p p p      and 21 22  , the model is called 

a change point model of two-component parallel system with 
exponential distribution under the masked data. k  is called the 
change point position parameter. 

If the change points exist in the above model, the Bayesian 
estimation of the unknown parameters is as follows. 

Let 11 21 11 21 12 22 12 22( , , , , , , , , )k p p p p     .  

The vectors 1 2 1 2, , , , , , , , ,   T M z z y y  are composed 

of 1 2 1 2, , , , , , , , ,i i i i i i i i i it M z z y y      respectively. The 

likelihood function of the change point model is 
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The prior distribution of parameters can be determined by 

the following methods: 
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(1) Let the prior distribution of k  be a discrete uniform 
distribution ( ) 1/ ( 1), 1 1.k n k n       

(2) Let the prior distribution of im  be a gamma 

distribution ( , )im imGa a b : 

1( ) , 0, 1, 2; 1, 2.im im ima b
im im ime i m         

(3) Let the prior distribution of im  be a beta distribution 

( , )im imBe c d : 1 1( ) (1 ) , 0 1.im imc d
im im im imp p p p       

Assuming that , imk   and imp are independent of each 

other, where 1, 2i  and 1, 2m  , the following formula holds: 
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If 1, 0, 0i i i     , i.e., the observational data are  

, {1,2}i iT t M  , we have  

1 2 1 2( , , , , , , , , , )

(1, ), , 1, 2
i i

im mb g i D m

 
  

T M z z y y    
,  

where 1 2 1 2 1 2{ : }, ( , , , , , , )i j im m m m m i i ij i g g p p z z t      . 

If 1, 1, 0i i i     , i.e., the observational data are 

, {1}i iT t M   or 1, 0, 0, 1i i i i       , i.e., the 

observational data are , {1,2}i iT t M   and the system failure 

is caused by the first component, we have 

2 1 2 1 2( , , , , , , , , , )i iz T M z z y y     , which follows the 

truncated exponential distribution 2( ), ( 1,2)m mExp i D m     

on the interval (0, ]it . 

If 1, 0, 1i i i     , i.e., the observational data are 

, {2}i iT t M   or 1, 0, 0, 0i i i i       ,  i.e., the 

observational data are , {1,2}i iT t M   and the system failure 

is caused by the second component, we have 

1 1 2 1 2( , , , , , , , , , )i iz T M z z y y     , which follows the 

truncated exponential distribution 1( ), , 1,2.m mExp i D m    

on the interval (0, ]it . 

If 0i  , i.e., the observational data is iT t , we have 

1 2 1 2 1 2

1 2 1 2

( , , , , , , , , , , )

( , , , ), , 1, 2.

i i i i

i i m m i m

y y

H y y t i D m



 
 

  

T M z z y y    
 

The full conditional distribution of 11  can be abbreviated 

as 11( )   . 

The full conditional distributions of parameters can be 
determined as follows: 

1 ( )( ) ( , ),

1,2; 1,2;

m im im im iml a s b
im im m im im ime Ga l a s b

i m

          

 
 

1 1( ) (1 ) ( , );im im im imn c r d
im im im im im im imp p p Be n c r d           

1 1 2 2 1 1 2 2

11 12 11 21 22 21

11 21 11 21

2

1 2 1 1 2 2
1

[( ) ( ) ]1
11 21 12 22

1 1 1 1
11 12 21 22 11 12 21 22

( ) ( )( )( )( )

[ ( ) ]

( ) ( ) ( ) ( ) .

m m m m m m m m m ml s l s n r n r
m m m m m m

m

s sk

n n r r

k e e p q p q

e

p p p p q q q q

 

   

  

   

 



   

   

 




 

1 2,i iz z  can be obtained by using the inverse transform 

method to sample the truncated exponential distribution; 

1 2( , )i iy y  can be obtained by random method;  k  can be 

obtained by inverse transform method. The full conditional 
distributions of , ,i im imp   can be obtained by direct Gibbs 

sampling. 
The steps of the Gibbs sampling are as follows: 
Let the initial value 
 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

11 21 11 21 12 22 12 22( , , , , , , , , )k p p p p       

and the estimate value at the beginning of the t-th iteration be 
( 1)t  . Then the t-th iteration is split into seven steps: 

(1) If , 1, 0, 0m i i ii D       , i  is updated by ( )t
i  

which is obtained by the binomial distribution function 
(1, )imb g  sampling. 

(2) If mi D , 1, 1, 0i i i      or mi D , 

1, 0, 0, 1i i i i       ,  2iz  is updated by ( )
2
t
iz  which is 

obtained by the truncated exponential distribution function 

2( )mExp   on the interval (0, ]it  sampling. 

(3) If mi D , 1, 0, 1i i i      or mi D , 

1, 0, 0, 0i i i i       ,  1iz  is updated by ( )
1

t
iz  which is 

obtained by the truncated exponential distribution function 

1( )mExp   on the interval (0, ]it  sampling. 

(4) If mi D and 0i  ,  ( 1 2,i iy y ) is updated by 
( ) ( )
1 2( , )t t
i iy y  which is obtained by the joint density function 

1 2 1 2( , , , )i i m m iH y y t   sampling. 

(5) If mi D ,  im  is updated by ( )t
im  which is obtained 

by the gamma distribution function  ( , )m im im imGa l a s b   
sampling. 

(6) If mi D ,  imp  is updated by ( )t
imp  which is obtained 

by the beta distribution  function  ( , )im im im imBe n c r d   
sampling. 

(7) k  is updated by ( )tk  which is obtained by the full 

conditional distribution function ( )k   sampling. ( )t  is called 

Gibbs samples.  
It is assumed that M  times Gibbs samples are performed 

and the sampling converges after the B _th iteration. The 
parameters can be estimated according to the last M B  
iterative values. For example, the mean and the median of the 
last M B  iterative values can be used as the posterior 
expectation estimation and the posterior median estimation, 
respectively. 
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VI. RANDOM SIMULATION 

Let the number of the parallel system be n=300, and the 
initial value of 11 21 11 21 12 22 12 22( , , , , , , , , )k p p p p     be 

(130,3,5,0.35,0.8,4.5,2.5,0.7,0.5) . Let’s take the random 

censored lifetime test, and take the censored variable as 
(2.8)iY Exp . The simulation data can be generated as follows 

： 

(1) The k groups data 1 2, ,i i ix x w ( 1,2, , )i k   are 

independently generated from 11 21( ), ( ), (2.8)Exp Exp Exp  . If 

1 2max( , )i i ix x w , then iw  is truncated data. If 

1 2max( , )i i ix x w , then 1 2max( , )i ix x  is the failure data and is 

marked from component 1 or component 2. 
(2) For the data generated in step (1): if the data are 

marked as coming from component 1, the new data are 
randomly selected by 11100(1 )%p  to mask; if the data are 

marked from component 2, the new data are randomly selected 
by 21100(1 )%p  to mask. 

(3) Replace 11 21 11 21( , , , , )k p p    with 

12 22 12 22( , , , , )n k p p   in step (1), and then repeat step (1) and 

step (2). 
Let the prior distributions of 11 21 12 22, , ,     as 

(7.5,2), (0.6,0.15), (22,5), (2.8,1.3)Ga Ga Ga Ga  respectively. 

Let the prior distributions of 11 21 12 22, , ,p p p p  as 

(4,7), (17,5), (8.5,7), (12,11)Be Be Be Be  respectively. 

The change point position parameter k  is estimated and 
analyzed, when 10000, 20000B M  , the estimated values 
of each parameter are shown in Table 1. 

Next, the correlation of Gibbs sample is tested. If Gibbs 
sample are autocorrelated, Gibbs sampling will converge 
slowly and be less efficient. The autocorrelation plot of the 
Gibbs sample of parameter k  is shown in Figure 1. Whether or 
not traversal mean converges can be used to determine whether 
the Gibbs sample converges. To ensure that the variables that 
calculate the mean are approximately independent, one sample 
is usually extracted every other segment in the chain sampled 
by Gibbs. The traversal mean of the Gibbs sample of k  is 
shown in Figure 2. 

It can be seen from Table 1. When the mean value of the 
Gibbs sample is used as the parameter value for Bayesian 
estimation, the relative errors of the parameter k and other 
parameters are less than 4.5% and less than 10%, respectively, 
and the Monte Carlo error is also small. The estimation 
accuracy is higher. The 0.95 confidence interval for each 
parameter can be approximated as [2.5% percentile, 97.5% 
percentile]. The length of the approximate confidence interval 
is very short, so the effect of interval estimation is also good. It 
can be seen from Figure 1 and Figure 2: The autocorrelation 
coefficient of the Gibbs sample decays to 0 quickly, which 
indicates that the convergence of Gibbs sampling is fast; when 
the iteration reaches 10,000 times, the travel mean has become 
stable, i.e., the Gibbs sampling has converged. In summary, the 
random simulation works well. 

Table 1. Random Simulation Results 

Parameter    Value Mean Relative error Monte Carlo error
92.5% 

percentile 
Median 

97.5% 
percentile 

k  130 135.789700 0.044536 0.055636 123 137 147 

l11 3 3.11171 0.037237 0.003624 2.51844 3.106337 3.704439 

l21 5 5.201003 0.040201 0.006003 4.214427 5.201701 6.18801 

l12 4.5 4.387944 0.024901 0.005066 3.546424 4.398168 5.21506 

l22 2.5 2.643648 0.057459 0.003091 2.14041 2.646967 3.14993 

p11 0.35 0.323423 0.075934 0.000373 0.262435 0.322739 0.385228 

p 21 0.8 0.747434 0.065708 0.000859 0.605844 0.747836 0.889692 

p12 0.7 0.637267 0.089619 0.000736 0.515933 0.637879 0.75752 

p22 0.5 0.545179 0.090357 0.000633 0.441414 0.546213 0.649042 
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Figure 1. Autocorrelation of the Gibbs sample                       Figure 2. Traversal mean of the Gibbs sample  
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VII. CONCLUSION 

In this paper, we consider Bayesian change point estimation 
for exponential distribution parallel system under masked data. 
We fill in all the missing data of interest and introduce latent 
variables by sampling methods. We study the probability 
distributions and random generation methods of the missing 
lifetime data and latent variables. The full conditional 
distributions of all parameters are discussed. Bayesian 
estimations of parameters are studied by Gibbs sampling of 
MCMC methods. Our simulation results show that Bayesian 
parameter estimations are fairly accurate and the effect of 
simulation is good using MCMC methods. In this paper, we 
make statistical inference on the base of Gibbs sampling, so 
Bayesian approach is common and suitable for change point 
problem of other life distributions and has its value in 
popularization. 
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