












for a function f : R → R.
Note that the error term in (14) is dominated by
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Putting K = xα, d = xβ , and requiring that
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we find that α = 1
4(D−1) , β = 4D−5

4D−4 , i.e., that K = x
1
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d = x
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Thus, the error term O
(
x

3
4

)
in (13) follows as required.

In [13] and [5], the authors applied the method developed
in [14] and [15] for compact Riemann surfaces.

The method described in this paper is very well applied in
[12], [1], [9], and [7] in the case of real hyperbolic manifolds
with cusps, compact, odd-dimensional, real hyperbolic spaces,
and compact, even-dimensional locally symmetric Riemannian
manifolds of strictly negative curvature, respectively.

In order to derive their results, the authors usually apply
approximate formulas for the logarithmic derivative of the
corresponding zeta function, such as the Riemann or the
Selberg, or the Ruelle zeta function (see, [16], [11], [8], [2]).
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