
 

 

 

Abstract— Markov-modulated linear regression model 

is a special case of the Markov-additive process (𝒀, 𝑱) =

{(𝒀(𝒕), 𝑱(𝒕)), 𝒕 ≥ 𝟎}, where component  J is called Markov, 

and component Y is additive and described by a linear 

regression. The component J is a continuous-time 

homogeneous irreducible Markov chain with the known 

transition intensities between the states.  Usually this 

Markov component is called the external environment or 

background process. Unknown regression coefficients 

depend on external environment state, but regressors 

remain constant.  This research considers the case, when 

the Markov property is not satisfied, namely, the sojourn 

time in each state is not exponentially distributed. 

Estimation procedure for unknown model parameters is 

described when it’s possible to represent transition 

intensities as a convolution of exponential densities. An 

efficiency of such an approach is evaluated by a 

simulation. 

 

Keywords—Stochastic processes, density convolution, 

hypoexponential distribution, Markov-modulated linear 
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I. INTRODUCTION 

arkov processes themselves and their derivatives 

Markov-modulated processes are the most popular and 

commonly used modelling tools for stochastic systems. 

They are widely applied in various areas of human life, both in 

science and in industry: physics, chemistry, information and 

communication technologies, economics and finance, social 

sciences, games, music and many others. The concept of a 

second hidden or visible layer, which can be described by the 

Markov chain (usually for a more realistic representation of 

the studied process) proved to be suitable and highly 

demanded.  
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A two-component Markov process (X, J) is called a 

Markov-modulated process where component J is a Markov 

process as well and the next behavior of component X depends 

on the past behavior of the process at the current state of 

component J [1]. The first references in the literature to 

Markov-modulated processes related to Markov-additive 

process (MAPs) [2, 3]. MAPs form a rather general class of 

two-component stochastic processes, which include many 

important models such as Markov-modulated Brownian 

motion, Markov random walk, Markov renewal processes and 

some other. They seem particularly well suited in connection 

with matrix-exponential methods [4]. But in general Markov-

modulated processes include such processes as MAPs, MAPs 

of arrivals and Markov-modulated birth-death processes. 

MAPs of arrivals are MAPs, the additive component X of 

which takes on values in non-negative (also multidimensional) 

integers, so that its increments can be interpreted as 

corresponding to arrivals, what is classically observed in the 

queuing systems as different classes of arrivals. MAPs of 

arrivals are important in terms of different issues and their 

significance lies in their application as parts of higher in 

complexity systems, such as queueing models and also data 

communication models.  

Markov-modulated Poisson processes (MMPPs) are the 

brightest representatives of MAPs of arrivals and are one of 

the most commonly used and popular models in information 

communication systems and signal processing. The most cited 

source on MMPP is cookbook of Wolfgang Fisher and 

Kathleen Meier-Hellstern [5], published in 1993. The authors 

provide dozens of examples of the application of this type of 

model in the superposition of packetized voice processes and 

packet data, for example [6, 7]. Naturally, since 1993, the 

number of applications of MMPP has increased. For instance, 

the paper [8] presents a study on the use of MMPPs for 

characterizing multimedia traffic with short‐ term and 

long‐ term correlation. In [9] the Coupled Markov Modulated 

Poisson Processes (CMMPP) framework is presented and it 

demonstrates the feasibility of source traffic modeling for 

Machine-type Communication, and many such examples can 

be found in reputable scientific publications. 

A detailed description and systematization of Markov-

modulated processes in general, and Markov-additive 
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processes in particular can be found in [10]. 

Markov-modulated linear regression (MMLR) model, 

which is a core of this research, was firstly proposed by 

Alexander Andronov in [11]. This model is a special case of 

the Markov-additive process (MAP). According to [1] the 

Markov-additive process (𝑌, 𝐽) = {(𝑌(𝑡), 𝐽(𝑡)), 𝑡 ≥ 0} is 

two-component Markov process defined on the state space 

𝑅 × 𝑁, so that for 𝑠, 𝑡 ≥ 0 conditional increment (𝑌(𝑠 + 𝑡) −
𝑌(𝑠), 𝐽(𝑠 + 𝑡)) under the condition (𝑌(𝑠), 𝐽(𝑠)) depends 

only on  𝐽(𝑠), 𝑅 = (−∞;  ∞), 𝑁 = {0,1, … ,𝑚}. Component 

 𝐽(𝑠) is called Markov, and component 𝑌 is additive. For 

MMLR the increment of the additive component Y is 

described by a linear regression, and the component 𝐽 is a 

continuous-time homogeneous irreducible Markov chain with 

the known transition rates 𝜆𝑖,𝑗 from state 𝑠𝑖 to state 𝑠𝑗, and 

𝛬𝑖 = ∑ 𝜆𝑖,𝑗𝑗≠𝑖 .  

Regime switching regression models share the same idea of 

varying the regression parameters randomly in accordance 

with external environment, but these models consider Markov 

chain as unobservable and estimation procedure involves 

estimation of transition matrix, whiles MMLR describes the 

external environment as a continuous-time homogeneous 

irreducible Markov chain with known parameters. 

MMLR is a very young and "inexperienced" model and has 

not been widely used in various areas of life (currently only in 

transportation), but since this model refers to stochastic 

processes, it undoubtedly has a powerful potential and the 

prospect of widespread use. 

Broad application of Markov processes is caused by 

exponential distribution properties or Markov property. The 

Markov property is a “forgetting property” suggesting 

memorylessness in the distribution of time a continuous-time 

Markov chain spends in any state. In other words, if 𝑇𝑗 denotes 

the sojourn (holding) time in state j, for 𝑗 ≠ 𝑖, then 𝑇𝑗  is 

exponentially distributed with transition rate 𝜆𝑗 and 𝑇𝑗 is 

independent of 𝑇𝑖 . Often there are situations in practice when 

data samples, describing the external environment, do not 

correspond to the exponential distribution. In the process of 

estimating the unknown parameters of the additive component 

Y(t) a random environment creates a big randomness by itself, 

additionally, if memorylessness property is not satisfied, then 

the estimates and the results of modelling become absolutely 

unreliable. This research considers the case when it’s possible 

to represent transition intensities of component J(t) as a 

convolution of the exponential densities.  

The paper is structured as follows. Section 2 describes the 

related work and outlines the novelty. Section 3 provides the 

theoretical background of the Markov-modulated linear 

regression model. Section 4 sheds light on the idea of 

convolution of the exponential densities and provides the 

necessary methodology. Section 5 describes all necessary 

formulas for an estimation of regression parameters taking 

into account convolution of the exponential densities. Section 

6 covers the efficiency evaluation of such an approach by a 

simulation study. Finally, the paper discusses the findings and 

gives recommendations for future research and possible 

applications. The model and experiments are implemented in 

Mathcad 14. 

II. RELATED WORK AND NOVELTY 

The first mention of the MMLR in the literature contains 

only simulation-based validation of the model [11], which 

demonstrates that the small sample size leads to completely 

unsatisfactory results and the estimates are far from the true 

values of the unknown parameters. Nonetheless an increased 

sample size clearly improves the estimates. The subsequent 

representations of MMLR are related to the practical 

application of this model. Two cases studies are considered. In 

the first case, analysis of coaches’ delay time at the Riga 

Coach Terminal for the period from 2012 to 2017 is 

mentioned [12]. The weather conditions in the city, from 

which coaches start, is chosen as the external environment 

with two states: “No precipitation” and “Precipitation”. The 

data about weather conditions are obtained from the Latvian 

Environment, Geology and Meteorology Centre (LEGMC) 

database. When hypothesis about the sojourn time distribution 

(which supposed to be exponential) in each state is tested, it 

turns out that the distribution in some months does not live up 

to expectations (for, example see Fig.1). For that study, using 

approximation and aggregation, the decision is made to 

neglect the absence of exponentiality, but in general this 

problem requires a separate solution.  

 

 
Fig.1. Histograms for distribution time in different months 

 

The next approbation of the model is carried out on the data 

of trip validations provided by Rigas Satiksme, a provider of 

transport services in Riga [13, 14]. Initial data set covers time 

period of 4.5 months in 2017 and contains 1,048,001 

observations. Weather conditions are also chosen as the 

external environment. Here the same situation arises when the 

sojourn time spent in each state does not obey the exponential 

distribution for some months. 

What to do in the current situation of the absence of Markov 

property? There are several possible scenarios. Ignore this 

problem (and as a result potentially get unreliable model 

results), modify data (aggregate, re-group, etc.) if possible, or 

try to get an exponential distribution differently. 

In connection with the results of the mentioned two cases, 

since the first scenario has already been completed, but data 

modification may be time- and resource-consuming, the idea 

arises to try to apply the procedure of approximation the 

inappropriate distribution by a convolution of the exponential 

densities, namely by hypoexponential distribution (or it is also 

called the generalized Erlang distribution),  thereby preserving 

the memorylessness property. Then unknown MMLR model 

parameters are estimated using this kind of a convolution and 
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the proposed formulas, which is postulated as scientific 

novelty. In this study, the emphasis is made precisely on 

MMLR parameters estimation, assuming that the parameters 

of convolution were received earlier. The process of obtaining 

convolution parameters is omitted. This kind of research is 

completely original, firstly, because the model itself is new (a 

new analytical approach), and the estimation of its parameters 

using convolution, even more so. 

In general, the usage of a convolution is a well-known 

approach in applied research. The simplest example is an 

Erlang distribution with the same parameter λ, followed by a 

hyperexponential and hypoexponential distributions [15, 16] 

with different parameters λi, and more general approach 

consists in application so called phase-type (PH) distribution 

[17]. Unfortunately, parameter’s estimation of phase-type 

distribution is a difficult statistical problem. Therefore, the 

choice was reduced to a statistically simpler approach, namely 

the usage of the hypoexponential distribution, which is a 

special case of the phase-type distribution. 

III. MARKOV-MODULATED LINEAR REGRESSION: 

THEORETICAL BACKGROUND 

For a simpler presentation of the model description an 

example is considered with two states of the external 

environment (m = 2). Let Λ𝑖 = ∑ 𝜆𝑖,𝑗𝑗≠𝑖 . For the observed 

case of Markov additive process, it is additionally supposed 

that, if on the interval (s, s + t) Markov component state is j, 

then increment of additive component Y is described by linear 

regression:    

 𝑌(𝑠 + 𝑡) − 𝑌(𝑠) = 𝑥𝑡𝛽(𝑗) + 𝑍√𝑡, 𝑖 = 1,… , 𝑛,           (1) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘) is  1 × 𝑘  vector of regressors, 𝛽(𝑗) 
is  𝑘 × 1 vector of unknown regression coefficients, which are 

different and depend on the state: 𝛽(1) =
(𝛽1,1, 𝛽2,1, … , 𝛽𝑘,1 )

𝑇and 𝛽(2) = (𝛽1,2, 𝛽2,2, … , 𝛽𝑘,2 )
𝑇 in case of 

alternating regression (m = 2), Z is disturbance scale with 

usual assumptions: Z doesn’t depend on Y(s) and j, has normal 

distribution with mean zero and constant variance σ2.  

 Further time interval (0, 𝜏) is considered with initial values 

of Markov additive process 𝑌(0) = 0, 𝐽(0) = 𝑖. Let denote 

by 𝑇𝑗 total sojourn time of Markov component in state j during 

the interval (0, 𝜏), 𝑇⃗ = (𝑇1, 𝑇2). Obviously 𝑇1 + 𝑇2 = 𝜏. Let 

𝑍1, 𝑍2 are disturbance terms which take place for the time 

moments 𝑇1, 𝑇2, accordingly. Then additive component Y can 

be rewritten:  

𝑌(𝑇⃗ ) = 𝑥(𝛽(1)𝑇1 + 𝛽
(2)𝑇2) + (𝑍1√𝑇1 + 𝑍2√𝑇2).    (2) 

Since 𝑍1, 𝑍2 and 𝑇⃗  are independent and taking into account 

normal distribution properties: 

𝐸(𝑍1√𝑇1 + 𝑍2√𝑇2) = 0, 𝐷(𝑍1√𝑇1 + 𝑍2√𝑇2|𝑇⃗ = 𝑐𝑜𝑛𝑠𝑡) =

(𝑇1𝐷(𝑍1) + 𝑇2𝐷(𝑍2)) = 𝜎
2𝜏, 

formula (2) can be rewritten: 

𝑌(𝑇⃗ ) = 𝑥(𝛽(1)𝑇1 + 𝛽
(2)𝑇2) + √𝜏𝑍.        (3) 

 Using Kronecker product ⊗ and vec operator it is possible 

to represent the model in standard form of linear regression: 

𝑌(𝑇⃗ ) = (𝑇⃗ ⊗ 𝑥)𝑣𝑒𝑐𝛽 + √𝜏𝑍,          (4) 

where 𝛽 = (𝛽(1) 𝛽(2)) is a matrix composed of columns{𝛽(𝑗)}.  

 It is necessary to estimate regression coefficients 𝛽 =

(𝛽(1) 𝛽(2)) and variance of disturbance term 𝜎2. Whiles all 

parameters of Markov chain describing Markov component 

are known: number of states and transition intensities {𝜆𝑖,𝑗}. 

Estimation is based on n independent observations of the 

process (4). The whole trajectory of the environment J is 

unknown, therefore sojourn times in each state are unknown 

for typical r-th observation 𝑇⃗ 𝑟 = (𝑇𝑟,1, 𝑇𝑟,2). However instead 

of actual sojourn times the estimated conditional average 

sojourn times 𝑡𝑟⃗⃗  ⃗ = 𝐸(𝑇𝑟⃗⃗  ⃗) = (𝐸(𝑇𝑟,1), 𝐸(𝑇𝑟,2)) = (𝑡𝑟,1, 𝑡𝑟,2) 

will be used in the state j. 

 The model in matrix notation can be represented as 

follows: 

𝑌 = (𝑌1, … , 𝑌𝑛)
𝑇 =

(

 

𝑡 1⊗ 𝑥1
𝑡 2⊗ 𝑥2
…

𝑡 𝑛⊗ 𝑥𝑛)

 𝑣𝑒𝑐 𝛽 + 

+𝑑𝑖𝑎𝑔(√𝜏1, √𝜏2, … , √𝜏𝑛)𝑍      (5) 

where n-vectors: 𝑌 = (𝑌1, … , 𝑌𝑛)
𝑇 with scale responses, Z=

(𝑍1, … , 𝑍𝑛)
𝑇 with disturbance terms, √𝜏 = (√𝜏1, … , √𝜏𝑛) with 

observation times;  m-vector 𝑡𝑟⃗⃗  ⃗ = (𝑡𝑟,1, 𝑡𝑟,2) with estimated 

conditional average sojourn times;  𝑛 × 𝑘 matrix with 

regressors 𝑋 = (𝑥𝑟,𝑘) = (𝑥𝑟: 𝑟 = 1,… , 𝑛) , the n-dimensional 

diagonal matrix diag(α) with the vector 𝛼 on the main 

diagonal.  

 Further it is supposed that matrix 𝑋 = ((𝑡1⃗⃗⃗  ⊗ 𝑥1)
𝑇
(𝑡2⃗⃗  ⃗ ⊗

𝑥2)
𝑇
… (𝑡𝑛⃗⃗  ⃗ ⊗ 𝑥𝑛)

𝑇)𝑇 of size 𝑛 × 𝑘𝑚 has rank 𝑟(𝑋) = 𝑘𝑚, so 

(𝑋𝑇𝑋)−1 exists. In this case generalized least squares method 

(GLSM) gives the following estimates of regression 

coefficients [18, 19, 20]: 

𝑣𝑒𝑐𝛽 = (𝑋𝑇𝑊−1𝑋)−1𝑋𝑇𝑊−1𝑌,        (6) 

where 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1 , 𝑤2, … , 𝑤𝑛) is non-degenerate diagonal 

weight matrix. In case of Ordinary Least Squares (OLS) 

weight matrix is an identity matrix (𝑊 = 𝐼). 

IV. CONVOLUTION OF THE EXPONENTIAL DENSITIES  

It is supposed that data sample, describing the external 

environment J, does not correspond to the exponential 

distribution. If distribution type of the given sample is known, 

the following steps can be done: firstly, it is necessary to 

estimate the unknown parameters of the distribution; the 

second phase involves the approximation of corresponding 

density by a convolution of exponents.  

Let Z1 ,…, Zp be independent random variables having 

exponential distributions with parameters λ = (λ1 ,…, λp), 

where all components {𝜆𝑖} are different.  A distribution of 

their sum S = Z1 +…+ Zp has the following density and 

cumulative distribution function for z ≥ 0, see [21]: 
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𝑓(𝑧;  𝜆) = (∏𝜆𝑖

𝑝

𝑖=1

)∑𝑒𝑥𝑝(−𝜆𝑖𝑧)  ∙

𝑝

𝑖=1

 

∙ (∏ (𝜆𝑗 − 𝜆𝑖)
𝑝
𝑗=1,𝑗≠𝑖 )

−1
              (7) 

𝐹(𝑧; 𝜆) = (∏𝜆𝑖

𝑝

𝑖=1

)∑(1 − 𝑒𝑥𝑝(−𝜆𝑖𝑧))

𝑝

𝑖=1

∙ 

∙ (𝜆𝑖∏ (𝜆𝑗 − 𝜆𝑖)
𝑝
𝑗=1,𝑗≠𝑖 )

−1
          (8) 

Moment of order r is calculated by formula 

𝜇𝑟(𝜆) = (∏ 𝜆𝑖
𝑝
𝑖=1 )∑ 𝑟! (𝜆𝑖

𝑟+1∏ (𝜆𝑗 − 𝜆𝑖)
𝑝
𝑗=1,𝑗≠𝑖 )

−1𝑝
𝑖=1 . (9) 

This distribution is known as hypoexponential.  

Expectation of the random variable S is calculated by the 

following formula: 

𝐸(𝑆) = ∑
1

𝜆𝑖

𝑝
𝑖=1                                 (10)  

If some (given) sample corresponds to some differentiable 

density g(z) of a non-negative continuous random variable, 

then it is possible to approximate the density g(z) by the 

density (7).  

There are several possible solutions to this issue. One of 

them is to use the moments of the density g(z) for 

approximation. Both the classical method of moments and its 

modification can be used, for example:  

                       𝑅𝑀(𝜆) = ∑ |𝜇𝑟(𝜆) − 𝜇𝑟
∗|1/𝑟 ,𝑘

𝑟=1           (11) 

where 𝜇𝑟
∗ are an empirical moment of the r-th order of density 

g(z), k ≥ p, 𝜇 ∗= (𝜇1
∗, . . , 𝜇𝑘

∗) and 𝜇𝑟(𝜆) are moments of 

hypoexponential distribution, calculated by (9) (number of 

used moments must be equal to k). A value of λ, which 

minimizes this criterion, gives necessary estimate. This 

optimization problem can be solved using an enumeration 

approach. 

 Other way for the approximation is use as criterion of the 

estimation a square between curves g(z) and f (z; λ): 

        𝑅𝑆(𝜆) = ∫ 𝜐(𝑧)|𝑓(𝒛; 𝜆) − 𝑔(𝒛)|𝑑𝑧,
∞

0
                   (12) 

where 𝜐(𝑧) ≥ 0 is a known “weight” function. Here the 

multiplier 𝜐(𝑧) allows the deviations to get various 

weights |𝑓(𝑧; 𝜆) − 𝑔(𝑧)| for various z. A minimization of 

integral (12/6) can be done through gradient method. 

Important to underline that it is possible to use a mixture of 

various estimates of vector parameter λ. It is easier to apply 

equal weights of mixture's components. But at the same time, 

it is possible to select weights based on some assumptions or 

speculations. This procedure can be controlled by calculating 

the criteria (11) and (12). 

The whole procedure of a parametrical estimation for a 

convolution of exponential densities is described in [22].  

Next, returning back to the MMLR model, the situation is 

considered when the vector λ = (λ1 ,…, λp) for the sample is 

already matched, i.e. the components of this vector are already 

known. 

Each random variable which corresponds to the state of the 

external environment is represented by a convolution of 

exponential densities with parameters λ = (λ1 ,…, λp), therefore 

the total number of states will be equal to mp. Moreover, the 

process is assumed to be cyclical with the possibility of 

transition to the next state in a row, and then the transition 

from the last state to the first state follows. The matrix with 

the intensities of such a process will have the following form:  

 

𝜆 =

(

 
 

0 𝜆1 0 0

0
0

0
0

…
0

0
𝜆𝑝

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑚𝑝)

 
 

 

 

In order to calculate the average sojourn time spent in each 

state of the external environment, it is necessary to use (10). 

V. MODULATING MARKOV CHAIN 

Taking into account convolution of exponential densities 

let’s consider transition probabilities, average sojourn time 

and covariance matrix calculation. For transition 

probabilities 𝑝𝑖,𝑗(𝑡) = 𝑃{𝐽(𝑡) = 𝑗|𝐽(0) = 𝑖} of described 

Markov chain a usual system of differential equations take 

place. Let 𝑃(𝑡) = (𝑝𝑖,𝑗(𝑡)) and 𝜆 = (𝜆𝑖,𝑗) be the 𝑚 ×𝑚 

matrices (in case of m = 2, so 2 × 2),  𝛬 be m-dimensional 

diagonal matrix with vector(𝛬1, . . . , 𝛬𝑚) on the main 

diagonal. Then, if p random variables make a convolution, 

then  𝑃(∗)(𝑡) = (𝑝𝑖,𝑗(𝑡)) and 𝜆(∗) = (𝜆𝑖,𝑗) be the 𝑚𝑝 ×𝑚𝑝 

matrices (in case of m = 2, so 2𝑝 × 2𝑝,  𝛬 be mp-

dimensional diagonal matrix with vector(𝛬1, . . . , 𝛬𝑚𝑝) on 

the main diagonal. The matrix P(*)(t) can be represented by 

matrix exponent [Pacheso]: 

𝑃(∗)(𝑡) = 𝑒𝑥𝑝 (𝑡(𝜆(∗) − 𝛬(∗))) , 𝑡 ≥ 0,             (8) 

 where P(*)(0) = I. 

If all eigenvalues of matrix 𝐴 = 𝜆(∗) − 𝛬(∗) are different 

then solution (8) can be represented simpler.  Let  𝑣𝜂 and 

𝑍𝜂, η = 1, …, mp, be the eigenvalue and the corresponding 

eigenvector of A, 𝑍 = (𝑍1, . . . , 𝑍𝑚𝑝) the matrix of the 

eigenvectors and by 𝑍̄ = 𝑍−1 = (𝑍̄1
𝑇 , . . . , 𝑍̄𝑚𝑝

𝑇 )
𝑇
 the 

corresponding inverse matrix (here 𝑍̄𝜂 is the η–th row of 𝑍̄). 

Then  

             𝑃(∗)(𝑡) = 𝑒𝑥𝑝(𝑡𝐴) = 

𝑑𝑖𝑎𝑔(𝑒𝑥𝑝(𝑣1𝑡) , . . . , 𝑒𝑥𝑝(𝑣𝑚𝑝𝑡))𝑍
−1 = 

∑ 𝑍𝜂 𝑒𝑥𝑝( 𝛾𝜂𝑡)𝑍̄𝜂
𝑚𝑝
𝜂=1                        (9) 

For the conditional average sojourn time 𝑡𝑟,𝜈(𝜏) =

𝐸(𝑇𝑟,𝜈|𝑡𝑟 = 𝜏, 𝐽𝑟,0 = 𝑖, 𝐽𝑟,𝜏 = 𝑗) in the state 𝜈 ∈ 𝑆 on the 

interval (0, 𝜏) we have  

 

𝑡𝑟,𝜈(𝜏) =
1

𝑝𝑖,𝑗(𝜏)
∫ 𝑝𝑖,𝜈(𝑢)
𝜏

0
𝑝𝜈,𝑗(𝜏 − 𝑢)𝑑𝑢.         (10) 
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This formula can be applied using computer numerical 

integration programs, which gives good results. An explicit 

expression for probabilities is given in [11].  

In order to calculate the conditional average sojourn time 

for the two initial states of the external environment (united 

average sojourn time), it is necessary to sum up the values 

from 1 to p for the 1st state, and from p + 1 to mp for the 2nd 

state. 

Covariance of the sojourn time is calculated in the 

standard way: 

𝐶𝑜𝑣(𝑇𝑣 , 𝑇𝜇|𝜏, 𝐽(0) = 𝑖, 𝐽(𝜏) = 𝑗) = 𝑡𝑖,𝑣,𝜇(𝜏) − 

−𝑡𝑖,𝑣(𝜏)𝑡𝑖,𝜇(𝜏)                         (11) 

where {𝑡𝑖,𝑣,𝜇(𝑡)} are conditional second moments. 

The covariance matrix obtained on this basis will be 

denoted as 

 𝐶𝑜𝑣(𝑇⃗ |𝜏, 𝐽(0) = 𝑖, 𝐽(𝜏) = 𝑗) = 

(𝐶𝑜𝑣(𝑇𝑣 , 𝑇𝜇|𝜏, 𝐽(0) = 𝑖, 𝐽(𝜏) = 𝑗))
𝑚𝑝×𝑚𝑝

      (12) 

In order to calculate the covariance matrix for the two initial 

states of the external environment (united covariance matrix), 

it is necessary to divide covariance matrix into submatrices 

𝑝 × 𝑝 and calculate one covariance value for each submatrix 

by summation. 

VI. EXPECTATION AND VARIANCE OF RESPONSE VARIABLE 

Expectation of response variable vector: 

𝐸 (𝑌(𝑇⃗ )) = (𝐸(𝑇⃗ ) ⊗ 𝑥)𝑣𝑒𝑐𝛽 = (𝑡 ⊗ 𝑥)𝑣𝑒𝑐𝛽.     (13)) 

Expression for the variance of response variable is the 

following: 

𝐷 (𝑌(𝑇⃗ )) = 𝑣𝑒𝑐𝛽𝑇(𝐶𝑜𝑣(𝑇⃗ ) ⊗ 𝑥𝑇𝑥)𝑣𝑒𝑐𝛽 + 𝜎2𝜏   (14)) 

VII. SIMULATION STUDY 

The main goal of this simulation study is to verify the 

proposed approach by obtaining estimates of the regression 

parameters, which, in turn, are known in advance. It is 

necessary to research the conditions of convergence and try to 

estimate the required sample size to obtain acceptable results. 

The following example supposes two states of the 

environment (m = 2), the transition rates are unknown (the 

external environment is described by density g(z)). As 

previously noted, the process of obtaining convolution 

parameters is omitted. Just supposed that unknown density 

g(z) is approximated by the density (7) with three different 

parameters λ: 

 
so, the convolution parameters are:  

- for the first state parameter vector λ is 𝜆 =
(0.55 0.39 0.42)𝑇, Fig.2); 

- for the second state parameter vector λ is 𝜆 =
(0.5 0.6 0.7)𝑇. 

Therefore, the transition rates {𝜆𝑖,𝑗} from state 𝑠𝑖 to state 𝑠𝑗 

are set by matrix, which is reflected on Fig.3. 

Totally there are 6 new artificial states (mp = 6).  

Stationary state distribution is the following: 

                                 𝜋 = (0.57 0.43)𝑇                             (15) 
 

 
Fig.2. CDF and PDF of hypoexponential distribution with parameter vector 

𝜆 = (0.55 0.39 0.42)𝑇 
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. 
Fig.3. Matrix with the transition rates {𝜆𝑖,𝑗} from state 𝑠𝑖 to state 𝑠𝑗 

 

The following initial data is randomly chosen for 

sampling-based estimation procedure and considered to be 

known: 

1) Matrix of independent variables XF: 
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The number of regressors equals three (k = 3). 

2) Vector IF that contains initial states 𝐽𝑖,0 of the 

Markov chain 𝐽(. ) (𝑖 = 1, 2,… 𝑛): 

IF 3 0 0 3 3 3 0 0 3 3 3 3 0 0 0 3 3 0 0 3 0 0 3 3 0 3 3 0 0 3( )
T



 
Since there are six artificial states (instead of two real), they 

alternate between the first states of each convolution vector, 

namely between the 1st and the 4th (0 and 3 because of 

indexation).  

3) Vector 𝜏F that contains total observation times 𝑡𝑖 =
𝑇𝑖,1+. . . +𝑇𝑖,𝑚 for each observation (𝑖 = 1, 2, … 𝑛): 

F .5 .8 1 .6 .4 1 2 .4 1 .4 1 .4 1 1 .6 .7 .7 .5 1 .6 .4 .9 1 2 .6 .5 .3 1.3 .8 1( )
T



 Note that the total observation time equals to 24.4. 
The following initial data is randomly generated for 

sampling-based estimation procedure and considered to be 

known (for the real application): 

4) values of the additive response variable 𝑌𝑟  calculated 

according to (1). 

It is necessary to estimate the unknown regression 

parameters using (6). 

A simulation is used for this purpose. The following 

parameters of the regression model are supposed: 𝜎 = 1 and 
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Since new number of states mp are equal to six the matrix with 

parameters of the regression model must be redefined: 

. 

The following simulation experiment is organized. The last 

includes q independent batches. Each batch has the above 

described structure: the same random environment (mp = 6), 

number of observations n = 30, regressors' number k = 3. The 

matrix of regressors, the initial state of random environment 

and the observations' times are chosen at random according to 

the following distributions: 

 the expectation of the matrix of regressors coincides with 

the above obtained matrix X, all elements of the 2nd and 3rd 

columns are independent and uniformly distributed on 

intervals (-1, 1) and (-0.5, 0.5) correspondingly; 

 the expectation of observations' times coincides with 

previous values t, all times are independent and time of i-th 

observation ti, has uniform distribution on (0, 2ti); 

 the initial states I for various observations are independent 

and are chosen with respect to stationary distribution of the 

states for the random environment J. 

Therefore, the total number of the observation for one 

experiment equals n = 30q. 

External environment is presented by the following matrices: 

Generator (AA) and eigenvalues () (Fig.4), also matrix of 

eigenvectors (M) (Fig.5.). 

 

 
 

Fig.4. Generator (AA) and eigenvalues () 

 

 

 

 

 

 
Fig.5. Matrix of eigenvectors 

 

Based on vector of eigenvalues and matrix of eigenvectors 

matrix with transition probabilities (t = 5) is calculated using 

(9), see Fig.6. 

 

Fig.6. Matrix with transition probabilities for the time period t = 5 

 

For longer time period (for example t = 100) stationary state 

distribution is obtained (compare to (15)), see Fig.7. 

 

 

Fig.7. Matrix with transition probabilities for the time period t = 100 

As a calculation example of expectation of a sojourn time for 

six states and united expectation of a sojourn time for two states 

(if the initial state is 0 and total duration equals to 10) according 

to (10): 

𝐸𝜏(0, 10)𝑇 = (2.288 2.747 2.093 1.395 0.897 0.58);               
𝐸𝜏(0, 10)𝑇 = (7.128 2.872). 

The covariance matrix obtained for six states and united 

covariance matrix for two states (if the initial state is 0 and 

duration equals to 10) according to (11): 

 

 
Regression coefficients are estimated by formula (6). 

Different weight matrices are used: identity matrix, matrix with 

the inverse time observations and the matrix with inverse 

variance of the response variable (according to (14)). Initial β 

values are assumed to be equal to one (identity vector I). 

 
Table 1. Convergence of estimates using the identity weight matrix       

W = I, 𝜎2 = 1 

n 
Real  
value 

30 300 600 1500 3000 6000 9000 

𝛽1,1 0 0.13 -0.79 -1.02 -0.07 -0.27 -0.03 -0.02 

𝛽1,2 1 1.17 1.17 1.11 1.07 1.09 0.99 1.00 

𝛽1,3 2 1.77 2.17 2.32 2.04 2.05 2.07 2.02 

𝛽2,1 2.5 1.94 1.33 2.69 2.85 2.29 2.26 2.32 

𝛽2,2 3 2.94 3.23 2.79 2.80 3.18 3.02 3.01 

𝛽2,3 4 4.63 4.39 4.17 3.91 3.96 4.05 4.09 

 

In case of the identity weight matrix, non-uniformity of 

observations is not taken into account, variance 𝜎2 = 1 and its 

estimation is not required. Table 1 demonstrates that even 

after hundreds of iterations, estimates of some coefficients are 

distinguished by some deviations from the true parameters. 

 
Table 2. Convergence of estimates using the weight matrix                 

𝑊 = 𝑑𝑖𝑎𝑔((𝜏1)
−1,… , (𝜏𝑛)

−1), 𝜎2 = 1 

n 
Real  

value 

30 300 600 1500 3000 6000 9000 

𝛽1,1 0 1.06 -0.42 0.23 -0.07 -0.01 -0.12 -0.06 

𝛽1,2 1 0.80 1.01 0.89 1.01 1.06 1.02 1.01 

𝛽1,3 2 1.69 2.29 1.95 1.99 1.99 2.07 2.01 

𝛽2,1 2.5 3.18 2.28 2.33 2.25 2.35 2.25 2.27 

𝛽2,2 3 2.85 3.13 3.21 3.09 3.03 3.03 3.04 
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𝛽2,3 4 3.68 4.07 3.82 4.08 4.05 4.06 4.05 

 

Table 2. shows the results of MMLR parameters’ estimation 

using weight matrix with the inverse time observations. This 

type of weight matrix helps to get rid of the problem of data 

unevenness, for balancing variables. As can be seen from Table 

2 the results of estimation are comparable with the results from 

Table 1.  

 
 
 

Table 3. Convergence of estimates using the weight matrix  

𝑊 = 𝑑𝑖𝑎𝑔(𝐷(𝑌1)
−1, … , 𝐷(𝑌𝑛)

−1), 𝜎2 = 1 

n 
Real  

value 

30 300 600 1500 3000 6000 9000 

𝛽1,1 0 0.61 -0.18 -0.29 -0.02 -0.02 0.03 0.06 

𝛽1,2 1 0.85 1.11 1 1.02 1.01 0.97 0.99 

𝛽1,3 2 1.79 2.02 2.15 1.98 1.99 2.01 1.98 

𝛽2,1 2.5 1.24 2.25 2.49 2.57 2.42 2.37 2.64 

𝛽2,2 3 3.19 2.96 3.03 3.06 2.97 3.06 2.97 

𝛽2,3 4 4.36 4.08 4.01 3.96 4.03 4.01 3.99 

 

Table 3 shows the case of the diagonal weight matrix, in which 

the diagonal elements are the inverse values of the variances of 

the dependent variable. Such a weight matrix is applied to 

minimize the variance of the estimates and to improve the 

convergence. In practical settings the unknown parameters 𝛽 

and 𝜎2 are subject to estimation as well. However, this 

experiment assumes that their values are known, for example, 

obtained in a previous study. Table 3 also shows that in order to 

obtain satisfactory estimates the usage of such a weight matrix 

allows to reduce sample size, but the estimation time is 

significantly increasing at the same time.  

As can be seen from all three tables the speed of estimates 

convergence is quite high. Based on these results, conclusion 

may be done about the effectiveness of suggested procedure. 

VIII. CONCLUSION 

This research considers the case, when the Markov property 

is not satisfied, namely, the sojourn time in each state is not 

exponentially distributed. 

Case of a Markov-modulated linear regression (MMLR) 

with two states of external environment is described. Each 

random variable which corresponds to the state of the external 

environment is represented by a convolution of exponential 

densities with parameters λ = (λ1 ,…, λp). Moreover, the 

process is assumed to be cyclical with the possibility of 

transition only to the next state in a row. 

Estimation procedure for unknown model parameters is 

described, the whole trajectory of the environment J(.) is 

unknown and the estimated conditional average sojourn time 

is used instead of unknown sojourn times in the state 𝑠𝑗. 

Expressions for expectation and variance of response variable 

are represented. 

Simulation study is considered when it’s possible to 

represent transition intensities as a convolution of exponential 

densities. The proposed example considers a case with two 

states of the environment and three convolution parameters for 

each state. Regression coefficients are estimated. Different 

weight matrices are used: identity matrix, matrix with the 

inverse time observations and the matrix with inverse variance 

of the response variable. All experiments show good results.  

Experimental study proofs the effectiveness of suggested 

procedure. 
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