
 

 

 
Abstract—A robust method for detecting the communication 

signals impinging on an antenna with interference and non-Gaussian 
impulsive noise is introduced in this paper. Degradation of the 
conventional cyclic detector which based on max-output-SNR 
criterion in impulsive noise is shown both theoretically and 
experimentally. By fusing second-order cyclostationarity and 
fractional lower-order statistics, a type of cyclic fractional lower-order 
statistics is developed which is defined for exploiting cyclostationarity 
property. Then, a new robust type of detection algorithm is developed 
using the theory of optimal filtering based on max-output-SNR 
criterion and alpha-stable distribution, including the fractional 
lower-order cyclic matched filter, which is formulated for detecting the 
communication signals in the presence of interference and 
non-Gaussian alpha-stable distribution impulsive noise. It is shown 
that the new method is robust to Gaussian and non-Gaussian impulsive 
noises, and is immune to the interfering signals which occupy the same 
spectral band as that of the received signal. Simulation results show 
the robustness and effectiveness of the proposed algorithm. 
 

Keywords—Alpha stable distribution, Cyclostationarity, 
Fractional lower-order statistics, Impulsive noise, Signal detection 

I. INTRODUCTION 
HE need to detect the signals impinging on an array of 
sensors arises naturally in the wireless communication 

networks, radar, and sonar systems [1]. In many approaches to 
the detection problem for communication signals, 
max-output-signal-to-noise is adopted as the detection criterion.  
In the light of the growing use of spread-spectrum techniques 
and the increasingly congested communication environments 
standard method of signal detection, which is based on the 
max-output-signal-to-noise criterion, is referred to as matched 
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filter. Matched filter is the optimum receiver for an additive 
white Gaussian noise channel. It essentially takes advantages of 
the fact that the signal frequency components are coherent in 
nature whilst the corresponding noise components are 
incoherent. It is possible, using appropriate processing, to add 
spectral components of the signal voltage-wise whilst the same 
processing adds noise components only power-wise. Matched 
filter is widely applied in communication signal detection, 
parameter estimation, and system identification [2]. In view of 
the tremendous diversity of theory, analytical technique, and 
method of implementation in the field of filtering, the objective 
of filtering seems almost trivial: viewed in the time-domain, the 
objective is to convolve a signal with impulse-response 
function, which means to add up weighted versions of delayed 
replicas of the signal. Viewed in the frequency domain, the 
objective is to multiply the spectral components of the signal by 
a transfer function, which means to scale their strengths and 
shift their phase. In general, since matched filtering method 
simply measures energy in specific bands of frequency, it is 
inherently susceptible to unknown or changing background 
noise level and interference. In order to design secure 
communication systems, it is necessary to assess the 
vulnerability of competing techniques to signal detection [3]. 

Communication signals have traditionally been modeled as 
stationary random processes. Although communication signals 
typically involve one or more periodicities underlying their 
random fluctuations, due to sine-wave carriers and repetitive 
pulsing or keying, a stationary model can be obtained by 
introducing random phase variables uniformly distributed over 
on period of each periodicity. Although in some cases these 
periodicities can be ignored by signal processors, such as 
receivers which must detect the presence of signals of interest, 
estimate their parameters, and extract their messages, in many 
cases they can be much to gain in terms of improvements in 
performance of these signal processors by recognizing and 
exploiting underlying periodicity. This typically requires that 
the random signal be modeled as cyclostationary, in which cases 
the statistical parameters vary in time with single or multiple 
periodicities [4], [5]. By exploiting the periodicity property or 
cyclostationarity of communication signals, the problem of 
optimally filtering the modulated signals was discussed in [6], 
[7], and the cyclic matched filter is proposed in [6]. It has been 
demonstrated that, in comparison with the optimum detector for 
the stationary model of the signal, superior detection 
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performance can be obtained by exploiting the single frequency 
of some harmonics of a cyclostationarity, such as a double 
carrier frequency, or a keying rate. It has also been 
demonstrated in [8] that, almost of cyclostationary signals in 
communication networks have more than on cycle frequency, in 
comparison with the single cycle cyclic matched filter, superior 
performance can be obtained by the cyclic matched filter bank 
which exploits more than one cycle frequency. 

The matched filtering and cyclic matched filtering theories 
are proposed under the assumption that the environment noise is 
assumed to be Gaussian distributed with finite second-order 
statistics. As a result of the Gaussian assumption, both of the 
two methods are based on the second-order statistics of signals. 
Generally, it is reasonable to assume that the noise is Gaussian 
distribution, because it may lead to closed-form solutions. 
However, in some applications such as communication 
networks, radio astronomy, radar system, etc., the noise has 
impulsive effects in short time [9-11]. In these scenarios, it is 
appropriate to model the noise as non-Gaussian distribution. We 
are interested in developing signal detection methods for a large 
of class of random processes which include the Gaussian 
process as a special element. Studies and experiments results 
show that the class of alpha-stable distributions is better for 
modeling impulsive noise than Gaussian distribution in real life 
applications [12-16]. By the generalized central limit theorem, 
they are the only class of distributions that can be the limit 
distributions for sums of i.i.d. random variables [16]. Another 
important property of the stable laws is the stability property. 
Gaussian is the limiting case with 2  , and Cauchy 
distribution has 1   . The alpha-stable distributions can 
model some types of noise such as atmospheric noise, 
underwater noise very well. Therefore, developing robust signal 
detecting techniques using the alpha-stable model is important 
both in theory and in practice. As stable distribution does not 
have finite second-order moment (except for 2  ), or even 
first-order moment ( 2  ) [21], both conventional matched 
filter and cyclic matched filter will be considerably weakened in 
stable distribution impulsive noise environments. The robust 
filtering methods of signals which outperform effects of 
impulsive noise are introduced in [18-20]. These detectors 
based on fractional lower-order statistics are robust to both 
Gaussian and impulsive noise. However, the receivers in 
communications networks are subject to a variety of types of 
electromagnetic interference. These interfering signals may 
occur at the same time and occupy the same frequency band as 
that of the signal of interest, can severely degrade the 
performance of conventional signal detectors. 

The purpose of this paper is to present a new signal detection 
method that exploits an inherent signal property, called 
fractional lower-order cyclostationarity that is characteristic of 
manmade signals used in communication systems to obtain 
substantial tolerance to some types of interference, Gaussian 
and impulsive noises. We consider modulated signals, which 
are used for spread-spectrum communications, and we 
determine receiver operating characteristics for operation in a 

relatively strong alpha-stable impulsive noise background. We 
combine second-order cyclostationarity with fractional 
lower-order statistics to form a new type of fractional-lower 
order cyclostationary statistics, which can exploit the spectral 
correlation property of cyclostationary signals in the presence of 
impulsive noise. A new robust cyclic matched filtering method 
for cyclostationary signals is proposed in this paper. The new 
cyclic matched filter employs fractional-lower order 
cyclostationarity to robust against the interfering signals, 
Gaussian noise, and impulsive noise. Like most conventional 
optimal detectors, the new robust method is based on 
max-output-SNR criterion. However, unlike conventional 
methods, the new detector exploits cyclostationarity property 
using fractional lower-order cyclic statistics. It has the 
advantages of both FLOS based filtering methods and cyclic 
matched filter. Simulation results demonstrate that the proposed 
matched filtering method can acquire higher accuracy of signal 
detection than that of the conventional cyclic matched filter in 
the presence of interference and impulsive noise. 

The rest of this paper is organized as follows: The 
fundamental of alpha-stable distribution is briefly described in 
Section 2. In Section 3, the cyclic correlation matched filter is 
described. A new robust optimal filtering method based on 
fractional lower-order cyclic statistics is proposed in section 4. 
In section 5, the performance of the new algorithm via Monte 
Carlo simulations is presented. Finally, conclusions are given in 
Section 6. 

II. FUNDAMENTALS OF ALPHA-STABLE DISTRIBUTION 
Stable processes satisfy the stability property which 

demonstrates that linear combinations of jointly stable variables 
are stable. They arise as limiting processes of sums of 
independent, identically distributed random variables via the 
generalized central limit theorem. An alpha-stable process can 
be described conveniently by its characteristic function [9], 
[10]: 

( ) exp( [1 sign( ) ( , )])t jat t j t t


                                (1) 

where ( , ) tan( / 2)t    if 1  and ( / 2) log t if 1  ; 
in addition a   , 0   ,  0 2  , 1 1   . A 
stable distribution is completely determined by four parameters, 
here  is the characteristic exponent, which controls the 
thickness of the tail in the distribution. The Gaussian process is 
a special case of stable process with 2  . The dispersion 
parameter   is similar to the variance of Gaussian process, and 
  is the symmetric parameter. When 0  , the distribution is 
symmetric and the observation is referred to as the S S  
(symmetric  -stable) distribution. When 2  and 0  , the 
stable distribution becomes the Gaussian distribution and 

2 / 2  . 
The main difficulty in developing signal processing methods 

based on stable processes is that the variable space is not a 
Hilbert space as in the case of Gaussian process, but a Banach 
space (1 2  ) or a Metric space ( 0 1  ) both of which 
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are more unyielding in their structure. Stable distributions do 
not have finite second-or higher order moments and even 
first-order moment [21]. The fractional lower-order statistics 
become the new tools for signal processing. Covariation and 
fractional lower-order covariance (FLOC) play the roles 
analogous to the covariance. For two jointly random 
S S variables X and Y , covariation is defined 
as 1[ , ] ( )

S
X Y xy ds



 


  , where S  is the unit circle, and 

( )  is the spectral measure of the S S random vector ( ,X Y ), 

and convention 1 /pp
Z Z Z


 for any real or complex 

number Z . Covariation can be computed using the fractional 
lower-order moment (FLOM)   

1( )COV[ , ]
( )

p

yp

E XY
X Y

E Y




                                                    (2) 

Fractional lower-order covariance is defined as 
1 1( )FLOC[ , ]

( )

p p

yp

E X Y
X Y

E Y


 

                                             (3) 

The basic properties of the covariation are summarized in 
[10], for any 1  and 2 , we have 1 2 ,

p
a b     

1 2, ,
p p

a b    . If 1  and 2  are independent, then 

1 2, 0
p

     , while the converse is not true.  The FLOS of a 

random process have been found useful in designing algorithms 
that exhibit resistance to outliers and allow for robust 
processing of impulsive, as well as Gaussian data. This property 
of FLOS-based algorithms will be introduced for the 
communication signals detection problem addressed in this 
paper. 

III. CYCLIC CORRELATION MATCHED FILTERING METHOD 
The theory of matched filtering was first proposed by D. D. 

North in 1943. A signal impinging on an antenna element of 
receiver, together with interfering signals and received noise, 
can be modeled as 

( ) ( ) ( )x t s t n t                                                            (4) 
where ( )s t  is the signal of interest (SOI), ( )n t  and ( )m t  are 
the signals not of interest (SNOI), including interference and 
noise. For the received signal ( )x t  , the transfer function of 
maximum output SNR matched filter is given by 

02( )( )
( )

j fT

opt

n

S f
H f e

P f





                                                          (5) 

where 2( ) ( ) j ftS f s t e dt  is the spectrum of SOI, ( )nP f is the 

power spectrum of SNOI, 
2

2( ) ( ) j ft

nP f n t e dt                                                           (6) 

and 0T is received time delay. 
In communication networks, the received signal is always 

corrupted by interfering signals which occur at the same time as 
the signal of interest and occupy the same spectral band as that 

of the SOI. Since ( )S f  contains the frequency components of 
interference and noise, the performance of matched filter will be 
degraded. In order to serve potential users of cyclostationarity, 
the general theoretical development of optimum filtering for 
cyclostationary signals was presented in [7], [8] which was 
called cyclic matched filter. It follows that the cyclic correlation 
of received signal is given by 

( ) ( ) ( ) ( )x s ns nR R R R                                                        (7) 

where ( )sR   is defined as 
2( ) ( ) ( ) j t

sR s t s t e                                                        (8) 

is referred to as cyclic autocorrelation function and the 
frequency  is called cycle frequency. The cyclic 
autocorrelation function is a characteristic property of 
second-order periodicity, in that ( )s t is said to contain 
cyclostationarity if and only if the limit cyclic autocorrelation 
function is not identically zero for some nonzero cycle 
frequency . The cyclic spectrum is defined to be the Fourier 
transform of the cyclic autocorrelation. 

2( ) ( ) j f

s sS f R f e d    




                                                    (9) 

If the SOI exhibits a cycle frequency   not shared by the 
SNOI, then by using this value of  in (7), we obtain ( ) 0nR   . 
Equation (6) will reduce to 

( ) ( ) ( )x s nsR R R                                                                 (10) 
From (8) and (9) we get 
( ) ( ) ( )x s nsS f S f S f                                                            (11) 
This is the means by which we obtain signal selectivity in 

measurements. Equations (9) and (10) indicate that ideal 
second-order cyclostationarity measurements are immune to 
interfering signals and noise which do not share the same cycle 
frequency as that of the SOI. Therefore, the signal processing 
methods based on cyclostationarity is more tolerant to the 
interference than processing methods based on stationary signal 
model. 

In equation (9), we assume that ( ) ( )x xz R  , 

( ) ( )s sz R  , and ( ) ( )snm R  , then equation (9) will yield 
( ) ( ) ( )x sz z m                                                                 (12) 
It has been demonstrated that ( )m   is a stationary process 

which with zero mean [8]. The power spectrum of ( )m  is 

01( ) ( ) ( )m s nG f S f G f
T

                                                    (13) 

where 0 ( )sS f   is spectral correlation function of ( )s t as 
cycle frequency   equals to zero. Furthermore, from (8) we 
know that 

( ) ( )
sz sS f S f                                                                      (14) 

( ) ( ) ( )
x sz z mS f S f G f                                                        (15) 

Thus, the problem of optimally filtering of the signal model 
(11) is to obtain the transfer function of the matched filter that 
achieves the maximum SNR output when the SOI is ( )sz  . 
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Substitution of (12)-(14) into (4), we get the transfer function of 
cyclic matched filter 

020( ) [( ( )) / ( ( ) ( ))] j fT

s s nH f cT S f S f G f e
                     (16) 

where c is a constant. It has been demonstrated in [4], [5] that, if 
the cycle frequency  is not shared by interference and noise, 
the ideal limit spectral correlation function of ( )n t equals to 
zero. Therefore, compared with conventional matched filter, the 
cyclic matched filter is immune to interference and noise which 
do not share the same cyclostationarity as SOI. 

However, as stable processes do not have finite second-order 
moments, except for the limiting case 2  (Gaussian 
distribution). If X be a S S random variable, then 

[ ]p
E X   for all p  . If the received noise in ( )n t  
contains impulsive components, then second-order moment 

[ ( ) ( )]E x t x t   . From equation (7) we know that cyclic 
correlation is the Fourier coefficient of Fourier series expansion 
of second-order autocorrelation function. Therefore, cyclic 
autocorrelation function and cyclic spectrum will become 
infinite in impulsive noise 

/2 2

/2

1( ) lim ( ) ( )
T

j t

x
TT

R x t x t e dt
T

    


                           (17) 

2( ) ( ) j f

x xS f R f e d    





                                            (18) 

It indicates that second-order cyclic correlation and cyclic 
spectrum will not applicable to impulsive noise environment. 
Since second-order cyclic statistics is not applicable, 
performance of cyclic matched filter based on conventional 
spectral correlation function can also severely degrade. 

IV. ROBUST CYCLIC COMMUNICATION SIGNALS DETECTION 
ALGORITHM 

In this section, we indicate a new robust optimal filtering 
method for communication signals. Since second-order cyclic 
autocorrelation function and cyclic spectrum will not be 
applicable to non-Gaussian impulsive noise, it is necessary to 
define new tools which can be used to exploit cyclostationarity 
of communication signals in the presence of impulsive noise. 
The fractional lower-order statistics is more suitable than 
second-order statistics in practical signals processing 
applications under the additive alpha-stable noise [10], [11]. A 
primary form of fractional lower-order statistics is covariation 
defined in (2) which plays a role analogous to autocorrelation. It 
has been proved that covariation is highly robust to impulsive 
noise [12]. But in many applications a more convenient FLOS 
base on covariation are widely used called fractional 
lower-order correlation 

1( ) [ ( ) ( )],1 2C p

sR E s t s t p                                         (19) 

In equation (18), the convention kz  can be expressed 
by 1kkz z z

   . The fractional lower-order correlation is a 

robust type of moment, 1[ ( ) ( )]pE s t s t      in the presence 

of impulsive noise. Moreover, kz  restrains magnitude but 
maintains period of random variable z . The fractional 

lower-order correlation ( )C

sR   contains the same period as that 
of the conventional autocorrelation function. By taking Fourier 
transform of fractional lower-order correlation, we define a new 
type of cyclic statistics 

, 1 2( ) ( ) ( ) ,  1 2C p j t

sR s t s t e p                                (20) 

which called cyclic covariation. The cyclic covariation 
spectrum is defined to be the Fourier transform of cyclic 
covariation 

, , 2( ) ( )C C j f

s sS f R e d    




                                             (21) 

It follows from (19) and (20) that for 2p  , the fractional 

lower-order cyclic covariation , ( )C

sR   and covariation 

spectrum , ( )C

sS f  reduce to the second-order cyclic 

autocorrelation ( )sR  and cyclic spectrum ( )sS   . For cycle 

frequency 0  , , ( )C

sR  and , ( )C

sS f  become the conventional 

( )C

sR  and generalized covariation spectrum. Therefore, the 
cyclic covariation and cyclic covariation spectrum presented in 
this paper make use of the benefits of both fractional 
lower-order statistics and cyclic statistics. The 
proposed , ( )C

sR  and , ( )C

sS f  is applicable even in the 
presence of impulsive noise. They have the ability to exploit 
spectral correlation property of cyclostationary signals and 
robust against impulsive noise. The performance of 
conventional cyclic matched filter degrades due to the 
unboundness of cyclostationarity in S S impulsive noise. 

In order to enhance the performance of cyclic matched filter, 
we formulate a new cyclic matched filtering method by utilizing 
fractional lower-order cyclostationarity instead of second-order 
cyclic statistics. Substituting (1) into (19), , ( )C

xR  can be 
obtained 

, , ,( ) ( ) ( )     C C C

x s nsR R R                                                     (22) 

We assume that ,( ) ( ) C C

x xz R , ,( ) ( ) C C

s sz R , and 
,( ) ( ) C C

nsm R , then equation (21) yields 

( ) ( ) ( )C C C

x sz z m                                                              (23) 

where ( )C

sz  is the received signal, ( )Cm  is interference and 

noise. Given this model, ( )C

sz   can be detected from 

( )C

xz  using the linear matched filter which based on the 
max-output-SNR criterion, where the impulse response 

( )C

sh  of matched filter can be obtained when the max output 

SNR is achieved at 0t  . We assume ( )
s

C

zS f  is the spectrum of 

( )C

sz  , ( )CH f is the transfer function of the filter, the output 
signal to noise power ratio at 0t   is given by 

0

0

2
2

2

( ) ( )

( ) ( )

 















s

j fC C

z

C C

n

H f S f e df

d
H f G f df

                                          (24) 

where 
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2
1 2( ) ( ( ))C p j ft

nG f n t e dt                                                    (25) 

From the Cauchy-Schwarz inequality, we can see that 

0

2
( )

( )




 

s

C

z

C

n

S f
d df

G f
                                                            (26) 

If and only if 02 ( )
( ) ( ) ( )

( )
s

C

zj fC C

n
C

n

S f
H f G f e c

G f

   , can the 

equality in (25) hold. Then, the transfer function is given by 

02( ( ))
( )

( )
s

C

z j fC

C

n

S f
H f c e

G f

 



                                                     (27) 

From equation (21) we find that 
,( ) ( )

s

C C

z sS f S f                                                                  (28) 

Substitution of (27) into (26) will yield 

0

,
2( ( ))

( )
( )

C
j fC s

C

n

S f
H f c e

G f


 



                                                  (29) 

The fractional lower-order cyclic matched filter has 
improved performance compare with the classical cyclic 
matched filter. It can deemphasize the effects of impulsive noise 
effectively, and exhibits signal-selectivity property. In real 
world application, the cyclic covariation spectrum , ( )C

sS f of 
the signal ( )s t  can not be computed directly, we can use cyclic 

covariation spectrum , ( )C

xS f  as the estimation of , ( )C

sS f . 
Furthermore, the fractional lower-order cyclic matched filter 
can reduce to the cyclic matched filter when 2p  . It reduces to 
the fractional lower-order matched filter, when cycle 
frequency 0  . When cycle frequency 0   and 2p  , the 
fractional lower-order cyclic matched filter reduces to the 
classical matched filter. Therefore, fractional lower-order cyclic 
matched filter can operate properly in detection of 
cyclostationary signals in the presence of interfering signals, 
Gaussian noise, and alpha-stable impulsive noise. 

As explained in [5], typical cycle frequency in these signals 
include the keying rate, and its harmonics in keyed digital 
systems, and doubled carrier frequency in continuous-wave 
analog systems, as well as sums and differences of these cycle 
frequencies in digital carrier-modulated systems. Since the 
cycle frequency for most communication signals are not unique, 
multiple single-cycle estimators can be fused together to form a 
multi-cycle matched filter bank in highly corruptive interference 
environment to outperform the drawbacks of single-cycle 
estimators. In addition, the proposed method is a class of 
detectors parameterized by p  , include the conventional cyclic 
matched filter ( 2p  ) and matched filter ( 2p  , 0  ) as 
special cases.  Note that the characteristic exponent of stable 
noise is usually unknown. It can be estimated from the data, and 
the parameter employed in (28) can be chosen as ˆ / 2p in 
practice. 

V. SIMULATION RESULTS 
In this section, we present the comparative results on 

performance of the new fractional lower-order cyclic matched 
filter versus cyclic matched filter. The signal of interest is a real 
simulated BPSK signal with uncorrelated S S  noise. The 
carrier frequency of the BPSK signal is 0.2 /c sf T , keying rate 
of 0.0625 /k sT   . The discrete time sampling increment is 

sT with the integration time 8192 sT T  . As the stable 
distribution makes the standard SNR meaningless, we use 
generalized signal-to-noise ratio (GSNR) as the ratio of the 
signal power over the impulsive noise dispersion  , 

2
10GSNR 10log ( [ ( ) ] / )E s t   [8]. 

A. Effects of impulsive noise on cyclostationarity 

The cyclic spectrum and cyclic covariation spectrum of 
BPSK signal which has carrier frequency 0.2 sf f and keying 
rate 0.0625 sf   in the presence of Gaussian noise ( 2  ) 
and alpha-stable impulsive noise ( 1.8  ) are shown in Fig. 1. 
The GSNR is 0 dB. It can be seen from Fig. 1(a) and (c) that, the 
conventional cyclic spectrum and the cyclic covariation 
spectrum exhibit the similar performance in Gaussian noise, 
they are immune to Gaussian noise. However, Fig. 1(b) shows 
that the conventional cyclic spectrum is masked severely in 
impulsive noise, the cyclostationarity of BPSK signal can not be 
distinguished. Compared with cyclic spectrum the cyclic 
covariation spectrum reveals a highly suppression capability of 
impulsive noise 
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Fig. 1 Effects of impulsive noise on cyclostationarity 
(a) Cyclic spectrum in Gaussian noise. (b) Cyclic spectrum in 

impulsive noise. (c) Cyclic covariation spectrum in Gaussian noise. (d) 
Cyclic covariation spectrum in impulsive noise 
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Fig.2 Outputs of the cyclic matched filter(a) Gaussian noise (b) 
Impulsive noise 

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(a) 

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
                             (b) 

Fig.3 Outputs of the robust cyclic matched filter(a) Gaussian noise 
(b) Impulsive noise 

B. Effects of impulsive noise on cyclic matched filter 

The exponent characteristic of alpha-stable process is 2, and 
GSNR is 0 dB. The outputs of conventional cyclic matched 
filters of ten independent simulations in the presence of 
Gaussian noise ( 2  ) and impulsive noise ( 1.8  ) are 
shown in Fig. 2. Fig.3 shows the results of the new robust cyclic 
matched filters in the presence of Gaussian noise ( 1.2p  ) and 
impulsive noise ( 1.2p  ). 

C. Effects of interference on the conventional and proposed 

approaches 

In this case, the interference [4] consists of five AM signals 
with carrier frequencies of 1 0.156 / sf T , 2 0.203 / sf T , 

3 0.266 / sf T , 4 0.313 / sf T , and 5 0.375 / sf T , with 
bandwidths of 1 0.04 / sB T , 2 0.05 / sB T , 3 0.045 / sB T , 

4 0.04 / sB T , and 5 0.08 / sB T . The signal-to-interference 
ratio (SIR) of each AM signal is 0 dB and GSNR is 0 dB, which 
yields a total signal-to-noise ratio (SNR) of -8 dB. The 
characteristic exponent of S S noise is 1.6  . The cycle 
frequencies exploited by the algorithms are 0, 0.0625 / sT  , 
2 , and 2 cf . Outputs of the proposed robust cyclic matched 
filter using different cycle frequencies from ten independent 
simulations are shown in Fig.4. Simulation results show that 
2 cf  detector is superior to the other detectors. It is that the cycle  
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        (d) 

Fig.4 Outputs of the robust cyclic matched filter (a) 0   (b) k   

(c) 2 k   (d) 2 cf   

frequency 2 cf   is typically stronger than that at 

k  , 2 k  . 
Detection performance for the matched filter (ML), the 

fractional lower-order covariance based matched filter  

 
(a) 

 
(b) 

Fig.5 Performance of different detection algorithms in impulsive 
noise (a) 1.6   (b) 1.8  . 

(FLOC-ML) and the proposed robust multi cycle frequency 
(MCF) detector in the highly impulsive noise ( 1.6  ) and 
slightly impulsive noise ( 1.8  ) are shown in Fig.5. It can be 
seen from simulation results that the impulsive characteristic is 
an important factor for the performance of all algorithms, 
because the detection ratio for all the algorithms in the case of 

1.6   is inferior to the case of 1.8  . However, the 
fractional lower-order statistics based FLOC-MF and the 
proposed algorithm based on the fractional lower-order 
cyclostationarity are more robust to the impulsive noise than the 
second order statistics based matched filter. In addition, since 
the AM interferences are present, the performance of the 
proposed cyclic algorithms outperforms the FLOC-MF and MF. 
Moreover, it is clear that the multi cycle frequencies can 
improve the performance. Because the cyclostationarity of the 
signal of interest  is stronger in 2 cf   than in k    and 

2 k  , thus, from Fig.5(a) and Fig.5(b) we can see that 
performance of the double cycle frequencies detector is superior 
to the single cycle frequency detector, but is inferior to the triple 
cycle frequencies detector.  
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VI. CONCLUSION 
In this paper, we study the representation of cyclostationarity 

and TDOA estimation methods for cyclostationary signals in the 
presence of interfering signals and heavy-tailed α-stable 
impulsive noise. Conventional second-order cyclostationarity 
exploiting methods perform poorly in impulsive noise 
environments. We propose two types of representations for 
revealing the cyclostationarity property of signals using 
PFLOM operation. We introduce two classes of TDOA 
estimation algorithms based on fractional lower-order 
cyclostationarity. The new methods parameterized by PFLOM 
exponent make better use of the cyclostationarity property and 
FLOS. The performance of the proposed estimation methods is 
examined in simulations. Simulation results demonstrate the 
effectiveness and robustness of the new representations and 
algorithms. It is shown that the performance of the proposed 
algorithms is significantly better than the conventional 
estimators in a wide range of interference and noise 
environments.  
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