
 

 

 

Abstract—This paper is devoted to the construction of local 

approximations of functions of one and two variables using the 

polynomial, the trigonometric, and the exponential splines. These 

splines are useful for visualizing flows of graphic information. 
Here, we also discuss the parallelization of computations. Some 

attention is paid to obtaining two-sided estimates of the 

approximations using interval analysis methods. Particular 

attention is paid to solving the boundary value problem by using 

the polynomial splines and the trigonometric splines of the third 

and fourth order approximation. Using the considered splines, 

formulas for a numerical differentiation are constructed. These 

formulas are used to construct computational schemes for solving 

a parabolic problem. Questions of approximation and stability of 

the obtained schemes are considered. Numerical examples are 

presented. 

 

Keywords— Boundary value problem, exponential splines, 

interpolation, interval estimation, polynomial splines, 

trigonometric splines, exponential splines.  

I. INTRODUCTION 

 UITE often, interval analysis is used to verify the result. 

 In papers [1]–[4] an overview on applications of interval 

arithmetic is given and verification methods for solving linear 

systems of equations, nonlinear systems, the algebraic 

eigenvalue problem and initial value problems are discussed. In 

paper [3] interval estimation is used in epidemiological 

analysis.  

It is an important task to determine the upper and lower 

boundaries of solutions (see [5]-[6]). Two-sided estimates 

allow the verification to solve the problem. In paper [5] an 

approach for solving non-linear systems of equations is 

proposed. This approach is based on the Interval-Newton and 

Interval-Krawczyk operators and B-splines. The proposed 

algorithm is making great benefits of the geometric properties 

of B-spline functions to avoid unnecessary computations. For 

eigenvalue problems of self-adjoint differential operators, a 

universal framework is proposed to give explicit lower and 

 
 

upper bounds for the eigenvalues (see [6]). 

An important aspect of solving the problem is to improve the 

calculation accuracy (see [7]-[8]). The interval analysis 

technique and radial point interpolation method are adopted in 

[7] in order to improve the calculation accuracy and reduce the 

computational cost. The corresponding formulations of the 

structural acoustic system for the interval response analysis are 

deduced in [7] too. When processing flows of graphic 

information, great importance is often given to the compression 

and subsequent recovery of this information. The problems of 

data compression and visualization using radial basis functions 

are discussed in [8]. When solving various problems, various 

splines are very often used. Splines have proven themselves 

well in solving problems of approximation and functions, in 

visualizing the results of calculations. They often provide a 

solution with less error. A great contribution to the development 

of spline theory was made by J.H.Ahlberg, E.N.Nilson, 

J.L.Walsh, Carl de Boor, and other mathematicians. Currently, 

polynomial splines are widely used. Non-polynomial splines 

are less well known, but often provide a smaller approximation 

error. It should be noted that Prof. Yu.K.Demyanovich devotes 

a lot of attention to the study of quadratic polynomial splines of 

the Lagrangian type (see [9]). In paper [15], methods are given 

for constructing splines of generalized smoothness in the case 

of splines of the Lagrangian type on a differentiable manifold. 

In paper [16] methods for constructing splines of generalized 

smoothness are developed on a manifold and an application of 

the results obtained to splines of the Hermitian type of the first 

height is given.  

Recently, many authors have been trying to improve 

computational schemes for solving partial differential 

equations. When solving this problem, splines are very often 

used. Explicit formulae were developed to obtain the different 

derivatives of the linear partial differential equations in paper 

[17]. In paper [18], when solving the heat conduction problem, 

two types of basis functions are considered: B-spline and expo-

rational B-spline combined with Bernstein polynomials. Paper 

[19] presents a numerical algorithm for using radial basis 

function-generated finite differences to solve partial differential 
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equations on S2 using polyharmonic splines with added 

polynomials defined in a 2D plane. In paper [20] the hybrid 

spline difference method is used to solve the one-dimensional 

heat transfer equations. A novel multistep method based on the 

non-uniform rational basis spline curves is developed in [21] 

for the solution of a system of nonlinear differential equations. 

This paper discusses the issues of visualizing results, reducing 

counting time, and verification of calculations. This paper 

continues the series of papers on approximation with local 

polynomial and non-polynomial splines and interval estimation 

(see [10] – [14]). This paper focuses on the polynomial, the 

trigonometric and the exponential splines of the third order 

approximation. To construct the approximation, we need the 

values of the function at the grid nodes and the basis formulas 

splines. To construct the interval estimation of the 

approximation of the function or its first derivative, we need the 

function values at the grid nodes and the rules for working with 

real intervals. The proposed splines can be used to construct 

numerical methods for solving partial differential equations. In 

Section 6, we consider the application of polynomial and 

trigonometric splines to the solution of boundary value 

problems. It should be noted that different approaches lead to 

numerical differentiation formulas with different properties 

II. THE LEFT AND THE RIGHT SPLINES 

In some cases, the use of the trigonometric approximations is 

preferable to the polynomial approximations. Here we compare 

these two types of approximations. To approximate functions 

on a finite grid of nodes, we will use the left and right splines. 

Suppose 𝑎, 𝑏 are real numbers. We will apply left splines 

near the right end of the finite interval [𝑎, 𝑏]. Right splines will 

be applied near the left end of the finite interval [𝑎, 𝑏]. Let the 

set of nodes 𝑥𝑗  be such that 𝑎 < . . . < 𝑥𝑗−1 < 𝑥𝑗 < 𝑥𝑗+1 < . . . <

𝑏. We construct an approximation of function 𝑓(𝑥), 𝑓 ∈

𝐶(3)([𝑎, 𝑏]) with local splines, in which the support of the bases 

spline consists of three adjacent intervals. When approximating 

a function on a finite interval near the left and right boundaries 

of the interval [𝑎, 𝑏] we will use the approximation 

 𝐹𝐿(𝑥), 𝐺𝐿(𝑥), 𝑄𝐿(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], with the left or 

 𝐹𝑅(𝑥), 𝐺𝑅(𝑥), 𝑄𝑅(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]  with the right continuous 

splines: 

𝐹𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝑤𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝑤𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝑤𝑗+1
𝐿 (𝑥), 

𝐹𝑅(𝑥) = 𝑓(𝑥𝑗)𝑊𝑗
𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝑊𝑗+1

𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝑊𝑗+2
𝑅 (𝑥), 

𝐺𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝜔𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥), 

𝐺𝑅(𝑥) = 𝑓(𝑥𝑗)𝑣𝑗
𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝑣𝑗+1

𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝑣𝑗+2
𝑅 (𝑥). 

𝑄𝐿(𝑥) = 𝑓(𝑥𝑗−1)𝛼𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1
𝐿 (𝑥), 

𝑄𝑅(𝑥) = 𝑓(𝑥𝑗)𝛼𝑗
𝑅(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1

𝑅 (𝑥) + 𝑓(𝑥𝑗+2)𝛼𝑗+2
𝑅 (𝑥). 

 

Approximations using the trigonometric splines will be 

denoted by 𝐹𝐿(𝑥), 𝐹𝑅(𝑥). Approximations using the 

polynomial splines will be denoted by 𝐺𝐿(𝑥), 𝐺𝑅(𝑥). 
Approximations using the exponential splines will be denoted 

by 𝑄𝐿(𝑥), 𝑄𝑅(𝑥). 
The set of interpolation with the local left and right splines 

are called boundary minimal splines.  

In paper [14] it is shown that the left trigonometric basis be 

written as follows: 

𝑤𝑗
𝐿(𝑥) =

cos (𝑥 −
𝑥𝑗−1

2
−

𝑥𝑗+1

2
) − cos (

𝑥𝑗−1

2
−

𝑥𝑗+1

2
)

2 sin (
𝑥𝑗

2
−

𝑥𝑗+1

2
) sin (

𝑥𝑗+1

2
−

𝑥𝑗

2
)

, 

𝑤𝑗+1
𝐿 (𝑥) =

cos (
𝑥𝑗

2
−

𝑥𝑗−1

2
) − cos (

𝑥𝑗

2
+

𝑥𝑗−1

2
− 𝑥)

2 sin (
𝑥𝑗+1

2
−

𝑥𝑗−1

2
) sin (

𝑥𝑗+1

2
−

𝑥𝑗

2
)

, 

𝑤𝑗−1
𝐿 (𝑥) =

cos (
𝑥𝑗

2
−

𝑥𝑗+1

2
) − cos (

𝑥𝑗

2
+

𝑥𝑗+1

2
− 𝑥)

2 sin (
𝑥𝑗−1

2
−

𝑥𝑗

2
) sin (

𝑥𝑗−1

2
−

𝑥𝑗+1

2
)

. 

We consider that 𝑠𝑢𝑝𝑝 𝑤𝑗
𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The left 

trigonometric basis splines we obtain from the system of 

equation 𝐹𝐿(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, sin(𝑥) , cos(𝑥) , 𝑥 ∈

[𝑥𝑗 , 𝑥𝑗+1] .  

In paper [14] it is shown that the left polynomial basis splines 

can be written as follows: 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)
, 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1)
, 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)
. 

We consider that 𝑠𝑢𝑝𝑝 𝜔𝑗
𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The left 

polynomial basis splines we obtain from the system of equation 

𝐺𝐿(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, 𝑥, 𝑥2, for 𝑥 ∈

[𝑥𝑗 , 𝑥𝑗+1] . Using the notation 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1],   𝑥𝑗+1 =

𝑥𝑗 + ℎ,   𝑥𝑗−1 = 𝑥𝑗 − ℎ, we get 

𝜔𝑗
𝐿(𝑥𝑗 + 𝑡ℎ) = −(𝑡 − 1)(𝑡 + 1), 

𝜔𝑗+1
𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝑡(𝑡 + 1)/2, 

𝜔𝑗−1
𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝑡(𝑡 − 1)/2. 

The relationships 𝑤𝑗
𝐿(𝑥𝑗 + 𝑡ℎ) = 𝜔𝑗

𝐿(𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2), 

𝑤𝑗+1
𝐿 (𝑥𝑗 + 𝑡ℎ) = 𝜔𝑗

𝐿(𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2), 𝑤𝑗−1
𝐿 (𝑥𝑗 + 𝑡ℎ) =

𝜔𝑗−1
𝐿 (𝑥𝑗 + 𝑡ℎ) + 𝑂(ℎ2) establish the relations between left 

polynomial and trigonometric splines.  

  We consider that 𝑠𝑢𝑝𝑝 𝑊𝑗
𝑅(𝑥) = [𝑥𝑗−1, 𝑥𝑗+2]. The right 

trigonometric basis splines we obtain from the system of 

equation 𝐹𝑅(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1,  sin(𝑥) ,  cos(𝑥) ,

for  𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] . Formulas for right polynomial and 

trigonometric splines are given in paper [14]: 

 

𝑊𝑗
𝑅(𝑥) =

cos (
𝑥𝑗+1

2
−

𝑥𝑗+2

2
) − cos (𝑥 −

𝑥𝑗+2

2
−

𝑥𝑗+1

2
)

2 sin (
𝑥𝑗

2
−

𝑥𝑗+2

2
) sin (

𝑥𝑗

2
−

𝑥𝑗+1

2
)

, 

𝑊𝑗+1
𝑅 (𝑥) =

cos (𝑥 −
𝑥𝑗+2

2
−

𝑥𝑗

2
) − cos (

𝑥𝑗

2
−

𝑥𝑗+2

2
)

2 sin (
𝑥𝑗+1

2
−

𝑥𝑗+2

2
) sin (

𝑥𝑗

2
−

𝑥𝑗+1

2
)

, 
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𝑊𝑗+2
𝑅 (𝑥) =

cos (
𝑥𝑗

2
−

𝑥𝑗+1

2
) − cos (𝑥 −

𝑥𝑗

2
−

𝑥𝑗+1

2
)

2 sin (
𝑥𝑗

2
−

𝑥𝑗+2

2
) sin (

𝑥𝑗+1

2
−

𝑥𝑗+2

2
)

. 

The formulas for the right polynomial basis splines 𝑣𝑗
𝑅(𝑥),

 𝑣𝑗+1
𝑅 (𝑥), 𝑣𝑗+2

𝑅 (𝑥) , 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], can be written as follows: 

 

𝑣𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
, 

𝑣𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗)
, 

𝑣𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+1)
. 

When 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1], we obtain for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]: 

𝑣𝑗
𝑅(𝑥𝑗 + 𝑡ℎ) = 1 − (3/2)𝑡 + 𝑡2/2, 

𝑣𝑗+1
𝑅 (𝑥𝑗 + 𝑡ℎ) = 2𝑡 − 𝑡2, 

𝑣𝑗+2
𝑅 (𝑥𝑗 + 𝑡ℎ) = 𝑡2/2 − 𝑡/2. 

The left (or right) exponential basis splines we obtain from the 

system of equation 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥) (or 𝑄𝑅(𝑥) = 𝑓(𝑥) ), when 

𝑓(𝑥) = 1, exp (𝑥), exp (−𝑥), for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] . For the left 

exponential splines we have: 

𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗−1)𝛼𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1
𝐿 (𝑥), 

where 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝛼𝑗−1
𝐿 (𝑥) =

−𝐴𝑗−1exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐴𝑗−1 = exp(𝑥𝑗 − 𝑥𝑗+1) − exp(𝑥𝑗+1 − 𝑥𝑗) + exp(𝑥 − 𝑥𝑗) 

−exp(𝑥 − 𝑥𝑗+1) − exp(𝑥𝑗 − 𝑥) + exp(𝑥𝑗+1 − 𝑥), 

𝛼𝑗
𝐿(𝑥) =

−𝐴𝑗exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐴𝑗 = exp(𝑥 − 𝑥𝑗+1) − exp(𝑥𝑗+1 − 𝑥) + exp(𝑥𝑗−1 − 𝑥) + 

−exp(𝑥𝑗−1 − 𝑥𝑗+1) + exp(𝑥𝑗+1 − 𝑥𝑗−1) − exp(𝑥 − 𝑥𝑗−1), 

𝛼𝑗+1
𝐿 (𝑥) =

𝐴𝑗+1exp (𝑥𝑗+1)exp (𝑥𝑗)exp (𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐴𝑗+1 = exp(𝑥 − 𝑥𝑗) − exp(𝑥𝑗 − 𝑥) − exp(𝑥𝑗−1 − 𝑥𝑗) 

+exp(𝑥𝑗−1 − 𝑥) − exp(𝑥 − 𝑥𝑗−1) + exp(𝑥𝑗 − 𝑥𝑗−1). 

We consider that 𝑠𝑢𝑝𝑝 𝛼𝑗
𝐿(𝑥) = [𝑥𝑗−2, 𝑥𝑗+1]. The formula of 

the basis spline 𝛼𝑗
𝐿(𝑥) when  𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗],   we obtain from 

𝑄𝐿𝛼(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, exp (𝑥), exp (−𝑥), where 

𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗−2)𝛼𝑗−2
𝐿 (𝑥) + 𝑓(𝑥𝑗−1)𝛼𝑗−1

𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛼𝑗
𝐿(𝑥). 

The formula of the basis spline 𝛼𝑗
𝐿(𝑥) when  𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1], 

we obtain from 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) = 1, exp (𝑥),

exp (−𝑥), where 𝑄𝐿𝛼(𝑥) = 𝑓(𝑥𝑗)𝛼𝑗
𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛼𝑗+1

𝐿 (𝑥) +

𝑓(𝑥𝑗+2)𝛼𝑗+2
𝐿 (𝑥). 

Combine the basis spline formulas obtained at these intervals 

we have a formula on the interval [𝑥𝑗−2, 𝑥𝑗+1]. The plot of the 

exponential basis spline 𝛼𝑗
𝐿(𝑥), when ℎ = 1, 𝑗 = −1,  is given 

in Fig 1. 

 
Fig. 1. The plot of the exponential basis spline 𝛼𝑗

𝐿 

Denote 𝑓𝑘 = 𝑓(𝑥𝑘). When we have the equidistant set of nodes, 

𝑥𝑗+1 − 𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first 

derivative of the approximation at 𝑥 = 𝑥𝑗 is as follows:  

(𝑄𝐿(𝑥))′|𝑥=𝑥𝑗
= (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 

where  𝑔𝑗 = (𝛼𝑗
𝐿(𝑥))′|𝑥=𝑥𝑗

= 0,  

𝑔𝑗−1 = (𝛼𝑗−1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
−exp (ℎ)

(exp(ℎ)−1)(exp(ℎ)+1)
,  

𝑔𝑗+1 = (𝛼𝑗+1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
exp(ℎ)

(exp(ℎ) − 1)(exp(ℎ) + 1)
. 

We can obtain the formula when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0,1]: 

𝑔𝑗−1 = −
1

2ℎ
+

ℎ

12
+ 𝑂(ℎ3), 𝑔𝑗+1 =

1

2ℎ
−

ℎ

12
+ 𝑂(ℎ3), 

Thus, when we have the equidistant set of nodes, the formula 

𝑓′(𝑥𝑗) = (𝑄𝐿𝛼(𝑥))′|𝑥=𝑥𝑗
+ 𝑂(ℎ) can be used. 

Remark 1. We can also obtain the left (or right) exponential 

basis splines from the system of equation 𝑄𝐿𝛽(𝑥) = 𝑓(𝑥) (or 

𝑄𝑅𝛽(𝑥) = 𝑓(𝑥) ), when 𝑓(𝑥) = 1, exp (−𝑥), exp (−2𝑥), 𝑥 ∈

[𝑥𝑗 , 𝑥𝑗+1] . For the left exponential splines we have: 

𝑄𝐿𝛽(𝑥) = 𝑓(𝑥𝑗−1)𝛽𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛽𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛽𝑗+1
𝐿 (𝑥), 

where 

𝛽𝑗−1
𝐿 (𝑥) =

𝐵𝑗−1exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

𝐵𝑗−1 = exp(−𝑥𝑗 − 2𝑥𝑗+1) − exp(−𝑥𝑗+1 − 2𝑥𝑗) 

+ exp(−𝑥 − 2𝑥𝑗) − exp(−𝑥 − 2𝑥𝑗+1) 

+ exp(−𝑥𝑗+1 − 2𝑥) − exp(−𝑥𝑗 − 2𝑥), 

 

𝛽𝑗
𝐿(𝑥) =

𝐵𝑗exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 𝐵𝑗 = exp(−𝑥 − 2𝑥𝑗+1) − exp(−𝑥𝑗+1 − 2𝑥) 

−exp(−𝑥𝑗−1 − 2𝑥𝑗+1) + exp(−𝑥𝑗+1 − 2𝑥𝑗−1) 

− exp(−2𝑥𝑗−1 − 𝑥) + exp(−2𝑥 − 𝑥𝑗−1), 
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𝛽𝑗+1
𝐿 (𝑥) =

𝐵𝑗+1exp (2𝑥𝑗+1)exp (2𝑥𝑗)exp (2𝑥𝑗−1)

exp(𝑥𝑗+1 − 𝑥𝑗−1) exp (𝑥𝑗 − 𝑥𝑗−1)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where  𝐵𝑗+1 = exp(−𝑥 − 2𝑥𝑗) − exp(−𝑥𝑗 − 2𝑥) 

−exp(−𝑥𝑗−1 − 2𝑥𝑗) + exp(−𝑥𝑗−1 − 2𝑥) 

− exp(−2𝑥𝑗−1 − 𝑥) + exp(−2𝑥𝑗−1 − 𝑥𝑗). 

The plot of the exponential basis spline 𝛽𝑗
𝐿(𝑥), when ℎ = 1, 𝑗 =

−1,  is given in Fig 2. 

 

Fig. 2. The plot of the exponential basis spline 𝛽𝑗
𝐿  

   When we have the equidistant set of nodes, when 𝑥𝑗+1 − 𝑥𝑗 =

𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first derivative of the 

approximation at 𝑥 = 𝑥𝑗 is as follows:  

𝑄𝐿𝛽(𝑥))′|𝑥=𝑥𝑗
= (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 

where  𝑔𝑗 = (𝛽𝑗
𝐿(𝑥))′|𝑥=𝑥𝑗

= −1,  

𝑔𝑗−1 = (𝛽𝑗−1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
−1

(exp(ℎ)−1)(exp(ℎ)+1)
,  

𝑔𝑗+1 = (𝛽𝑗+1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
exp (2ℎ)

(exp(ℎ)−1)(exp(ℎ)+1)
. 

We can obtain that when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0,1]: 

 𝑔𝑗−1 = −
1

2ℎ
+

1

2
+ 𝑂(ℎ), 𝑔𝑗+1 =

1

2ℎ
+

1

2
+ 𝑂(ℎ). 

Thus, this variant of the approximation of the first derivative 

with 𝑄𝐿𝛽 is not very good and is not recommended for the 

calculation of the first derivative of the function.  

 

Remark 2. We can also obtain the left (or right) exponential 

basis splines from the system of equation 𝑄𝐿𝛾(𝑥) = 𝑓(𝑥)(or 

𝑄𝑅𝛾(𝑥) = 𝑓(𝑥) ), when 𝑓(𝑥) = 1, exp (𝑥), exp (2𝑥), 𝑥 ∈

[𝑥𝑗 , 𝑥𝑗+1] . For the left exponential splines we have: 

𝑄𝐿𝛾(𝑥) = 𝑓(𝑥𝑗−1)𝛾𝑗−1
𝐿 (𝑥) + 𝑓(𝑥𝑗)𝛾𝑗

𝐿(𝑥) + 𝑓(𝑥𝑗+1)𝛾𝑗+1
𝐿 (𝑥), 

where 

𝛾𝑗−1
𝐿 (𝑥) =

𝐶𝑗−1

exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐶𝑗−1 = exp(𝑥𝑗 + 2𝑥𝑗+1) − exp(𝑥𝑗+1 + 2𝑥𝑗) 

+ exp(𝑥 + 2𝑥𝑗) − exp(𝑥 + 2𝑥𝑗+1) 

− exp(𝑥𝑗 + 2𝑥) + exp(𝑥𝑗+1 + 2𝑥), 

 

𝛾𝑗
𝐿(𝑥) =

−𝐶𝑗

exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐶𝑗 = exp(𝑥 + 2𝑥𝑗+1) − exp(2𝑥 + 𝑥𝑗+1) 

+ exp(2𝑥 + 𝑥𝑗−1) − exp(𝑥𝑗−1 + 2𝑥𝑗+1) 

+ exp(𝑥𝑗+1 + 2𝑥𝑗−1) − exp(2𝑥𝑗−1 + 𝑥), 

 

𝛾𝑗+1
𝐿 (𝑥) =

−𝐶𝑗+1

exp(𝑥𝑗−1 − 𝑥𝑗+1) exp (𝑥𝑗−1 − 𝑥𝑗)exp (𝑥𝑗 − 𝑥𝑗+1)
, 

where 

𝐶𝑗+1 = exp(2𝑥 + 𝑥𝑗) − exp(𝑥 + 2𝑥𝑗) 

+ exp(𝑥𝑗−1 + 2𝑥𝑗) − exp(2𝑥 + 2𝑥𝑗−1) 

+ exp(𝑥 + 2𝑥𝑗−1) − exp(2𝑥𝑗−1 + 𝑥𝑗) . 

The plot of the exponential basis spline 𝛾𝑗
𝐿(𝑥), when ℎ = 1, 𝑗 =

−1, is given in Fig 3. 

   When we have the equidistant set of nodes, when 𝑥𝑗+1 − 𝑥𝑗 =

𝑥𝑗 − 𝑥𝑗−1 = ℎ, then the formula of the first derivative of the 

approximation at 𝑥 = 𝑥𝑗 is as follows:  

𝑄𝐿𝛾(𝑥))′|𝑥=𝑥𝑗
= (𝑓𝑗−1𝑔𝑗−1 + 𝑓𝑗𝑔𝑗 + 𝑓𝑗+1𝑔𝑗+1), 

where  𝑔𝑗 = (𝛾𝑗
𝐿(𝑥))′|𝑥=𝑥𝑗

= 1,  

𝑔𝑗−1 = (𝛾𝑗−1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
−exp (2ℎ)

(exp(ℎ)−1)(exp(ℎ)+1)
,  

𝑔𝑗+1 = (𝛾𝑗+1
𝐿 (𝑥))′|𝑥=𝑥𝑗

=
1

(exp(ℎ)−1)(exp(ℎ)+1)
. 

We can obtain that when 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0, 1]. 

 𝑔𝑗−1 = −
1

2ℎ
−

1

2
+ 𝑂(ℎ), 𝑔𝑗+1 =

1

2ℎ
+

1

2
+ 𝑂(ℎ). 

Thus, this variant of the approximation of the first derivative of 

the function 𝑓(𝑥) with (𝑄𝐿𝛾)′ is not very good and is not 

recommended for the calculation of the first derivative of the 

function.  

 

Fig. 3. The plot of the basis spline 𝛾𝑗
𝐿 

Theorem 1. Let function 𝑓(𝑥) be such that 𝑓 ∈

𝐶(3)([𝛼, 𝛽]), [𝛼, 𝛽] ⊂ [𝑎, 𝑏]. The set of nodes such that 𝑥𝑗+1 −

𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 = ℎ. Then for 𝑥 ∊ [𝑥𝑗 , 𝑥𝑗+1] we have  

1) ‖𝑓 − 𝐺𝐿‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾1ℎ3‖𝑓′′′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 

2) ‖𝑓 − 𝐺𝑅‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾1ℎ3‖𝑓′′′‖ [ 𝑥𝑗,𝑥𝑗+2], 

3) ‖𝑓 − 𝐹𝐿‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾2ℎ3‖𝑓′′′ + 𝑓′′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 

4) ‖𝑓 − 𝐹𝑅‖[𝑥𝑗, 𝑥𝑗+1] ≤ 𝐾2ℎ3‖𝑓′′′ + 𝑓′′‖[𝑥𝑗, 𝑥𝑗+2], 

5) ‖𝑓 − 𝑄𝐿𝛼‖[𝑥𝑗, 𝑋𝑗+1] ≤ 𝐾3ℎ3‖𝑓′′′ − 𝑓′‖ [ 𝑥𝑗−1,𝑥𝑗+1], 

where 𝐾1 =
0.385

3!
≈ 0.0642, 𝐾2 = 0.0835, 𝐾3 =0.12. 

Proof. The method of the proof of the statements 1)-5) is given 

in [12]. The proofs of the statements 1)-4) can be seen in paper 
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[14]. In short we explain the estimation 5) when the basis 

functions are constructed from the condition f = QLα,  𝑓 =
1, exp(𝑥), exp(−𝑥). Function 𝑓(𝑥) can be written, as follows:  

𝑓(𝑥) = ∫ (𝑓′′′ − 𝑓′)(−2 + 𝑒𝑡−𝑥 + 𝑒𝑥−𝑡)𝑑𝑡
𝑥

𝑥𝑗
. 

The method of the construction this representation of  𝑓(𝑥) can 

be seen in [12]. Using this formula we construct the estimation 

5). 

The plots of the errors of approximations of functions and the 

first derivatives of these functions are given in Figures 4-7. 

Fig.4 (left) shows the error of the approximation of function 

𝑓 = sin(3𝑥) which was obtained with the use the exponential 

spline 𝑄𝐿𝛼. Fig.4 (right) shows the error of the approximation 

of the first derivative of the function 𝑓 = sin(3𝑥) which was 

obtained with the use the exponential spline 𝑄𝐿𝛼. Here ℎ = 0.1. 

 

Fig.4. The error of the approximation of function 𝑓 = 𝑠𝑖𝑛(3𝑥) (left), 

and the error of the approximation of 𝑓’(𝑥) obtained with the use the 

exponential spline 𝑄𝐿𝛼 (right) 

Fig.5 (left) shows the error of the approximation of function 

𝑓 = sin(3𝑥) which was obtained with the use the exponential 

spline 𝑄𝐿𝛽. Fig.5 (right) shows the error of the approximation 

of the first derivative of the function 𝑓 = sin(3𝑥) which was 

obtained with the use the exponential spline 𝑄𝐿𝛽. Here ℎ = 0.1. 

    

Fig.5. The error of the approximation of function 𝑓 = sin(3𝑥) (left) 

and the error of the approximation of 𝑓’(𝑥) with the use the 

exponential spline 𝑄𝐿𝛽(right) 

Fig.6 (left) shows the error of the approximation of function 

𝑓 = sin(3𝑥) which was obtained with the use the exponential 

spline 𝑄𝐿𝛾. Fig.6 (right) shows the error of the approximation 

of the first derivative of the function 𝑓 = sin(3𝑥) which was 

obtained with the use the exponential spline 𝑄𝐿𝛾. Here ℎ = 0.1. 

Table 1 shows the theoretical and actual errors of 

approximation with the trigonometrical splines in the interval 

[−1,1] with the grid step of ℎ = 0.1. Table 2 shows the 

theoretical and actual errors of approximation with the 

exponential splines 𝑄𝐿𝛼 in the interval [−1,1] with the grid step 

of ℎ = 0.1. 

   

Fig.6. The error of the approximation of function 𝑓 = 𝑠𝑖𝑛(3𝑥) (left) 

and the error of the approximation of 𝑓’(𝑥) with the use the 

exponential spline 𝑄𝐿𝛾(right) 

Table 3 shows the theoretical and actual errors of 

approximation with the polynomial splines in the interval 

[−1,1] with the grid step of ℎ = 0.1. Table 4 shows the actual 

errors of approximation with the exponential splines 𝑄𝐿𝛽 and 

𝑄𝐿𝛾(𝑥) in the interval [−1,1] with the grid step of ℎ = 0.1.  
 

Table 1. The theoretical and actual errors of approximation 

with the trigonometrical splines 

𝑓(𝑥) actual err. theoret. err. 

sin𝑥

1 + 25𝑥2
 

0.71 · 10−2 0.13 · 10−1 

sin (
2𝑥

25
)cos (

2

25
+

𝑥

2
) 

0.12 · 10−5 0.16 · 10−5 

sin (
2𝑥

25
)cos (2𝑥 +

1

50
) 

0.56 · 10−4 0.74 · 10−4 

 

Table 2. The theoretical and actual errors of approximation 

with the exponential splines  𝑄𝐿𝛼 

𝑓 actual err. theoret. err. 

sin (𝑥)

1 + 25𝑥2
 

0.72 · 10−2 0.18 · 10−1 

sin (
2𝑥

25
)cos (

2

25
+

𝑥

2
) 

0.90 · 10−5 0.17 · 10−4 

sin (
2𝑥

25
)cos (2𝑥 +

1

50
) 

0.71 · 10−4 0.12 · 10−3 

 

Table 3. The theoretical and actual errors of approximation 

with the polynomial splines 

𝑓(𝑥) Actual err. Theoret. 

err. 

sin𝑥

1 + 25𝑥2
 

0.72 · 10−2 0.97 · 10−2 

sin (
2𝑥

25
)cos (

2

25
+

𝑥

2
) 

0.39 · 10−5 0.39 · 10−5 

sin (
2𝑥

25
)cos (2𝑥 +

1

50
) 

0.61 · 10−4 0.62 · 10−4 
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Table 4. The actual errors of approximation with the 

exponential splines  𝑄𝐿𝛾and . 𝑄𝐿𝛽 

𝑓(𝑥) actual 

err.𝑄𝐿𝛾 

actual 

err. 𝑄𝐿𝛽 

sin𝑥

1 + 25𝑥2
 

0.71 · 10−2 0.71 · 10−2 

sin (
2𝑥

25
)cos (

2

25
+

𝑥

2
) 

0.15 · 10−4 0.13 · 10−4 

sin (
2𝑥

25
)cos (2𝑥 +

1

50
) 

0.95 · 10−4 0.86 · 10−4 

 

III. INTERVAL EXTENSION 

As is known, the task of interval estimation is to find the 

narrowest possible estimation interval. 

For interval estimation of approximation with splines, we 

will use operations on intervals (see, for example, book [1]). 

Interval result over real intervals 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] 
can be obtained using the formulas:  

1. 𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], 
2. 𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] = 𝐴 + [−1,1] ∙ 𝐵, 
3. 𝐴 ∙ 𝐵 = min {𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}, 

max {𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}], 

4. 𝐴 ∶ 𝐵 = [𝑎1, 𝑎2, ] · [1/𝑏2, 1/𝑏1], 0 ∉ 𝐵. 

For a unary operation we use the rule: 

5. 𝑟(𝐴) = [min
𝑥∈𝐴

(𝑟(𝑥)) , max
𝑥∈𝐴

(𝑟(𝑥))], where 𝑟(𝐴) is 

the unary operation. 

   Theorem 1 helps us to choose the correct length ℎ = 𝑥𝑗+1 −

𝑥𝑗  of the interval [𝑥𝑗 ,  𝑥𝑗+1]. 

Suppose we know the values of function 𝑓(𝑥) at nodes 

{𝑥𝑘}. Using formulas of trigonometrical splines and the 

technique of interval analysis [1] we can construct the upper 

and lower boundaries for every interval  𝑌𝑗 = [𝑥𝑗 ,  𝑥𝑗+1]. Thus, 

we avoid the calculations of approximation 𝑓(𝑥) in many 

points of every interval   [𝑥𝑗 ,  𝑥𝑗+1] if we need to know the 

boundaries of the interval, where the function 𝑓(𝑥) varieties. 

In order to obtain the boundaries of variety 𝑓(𝑥)  we construct 

the approximation 𝐹(𝑥), 𝑥 ∈ 𝑌𝑗  and consider 𝐹(𝑌𝑗). 

In order to get the narrowest estimation interval we consider 

formulas for the left and the right basis trigonometric splines. 

First, we consider the estimate of the lower bound of the 

estimating interval of the basis spline 𝑤𝑗−1(𝑥). 

Let 𝑥𝑗−1
𝑚𝑎𝑥 be the maximum 

𝑥𝑗−1
𝑚𝑎𝑥 = max

𝑥∈[𝑥𝑗,𝑥𝑗+1]
(cos (

𝑥𝑗

2
− 𝑥 +

𝑥𝑗+1

2
) . 

Then the upper boundary of 𝑤𝑗−1(𝑥) will be the following  

𝑤𝑗−1
𝑀𝐴 = 2 sin (𝑥𝑗/2 − 𝑥𝑗+1/2)/sin(𝑥𝑗 − 𝑥𝑗−1) − sin(𝑥𝑗 −

𝑥𝑗−1) − sin(𝑥𝑗 − 𝑥𝑗−1)𝑥𝑗−1
𝑚𝑎𝑥 + 𝑤𝑗−1

𝐴 , 

 where      𝑤𝑗−1
𝐴 = sin(𝑥𝑗+1 − 𝑥𝑗)/sin (𝑥𝑗 − 𝑥𝑗−1) −

sin(𝑥𝑗+1 − 𝑥𝑗−1) − sin(𝑥𝑗 − 𝑥𝑗+1). 

After calculating the upper boundaries of 𝑤𝑗−1(𝑥), 𝑤𝑗(𝑥) and 

𝑤𝑗+1(𝑥) we can calculate the upper boundary of 𝐹(𝑥). Now the 

upper boundary of 𝐹(𝑥) will be the following: 

𝐹𝑀𝐴𝑋 = 𝑓(𝑥𝑗−1)𝑤𝑗−1
𝑀𝐴 + 𝑓(𝑥𝑗)𝑤𝑗

𝑀𝐴 + 𝑓(𝑥𝑗+1)𝑤𝑗+1
𝑀𝐴. 

 

A program was developed in the MAPLE environment to 

visualize the interval estimation of the variation of a function 

and its first derivative. To obtain an interval estimate of the 

function or its first derivative, values of the function in grid 

nodes are required. The program uses trigonometric basic 

splines. Directional machine rounding is not used in this version 

of the program. 

Note that in the case of applying a similar method of 

interval estimation using polynomial quadratic splines resulting 

evaluating the interval is wider than in the case of trigonometric 

splines. As shown in Alefeld’s book [1], a polynomial of the 

second degree 𝑥2 + 𝑏(1)𝑥 + 𝑏(0) should be reduced to (𝑥 +

𝑎(1))
2

+ 𝑎(0), where  𝑎(1) = 𝑏(1)/2,  𝑎(0) = 𝑏(0) − (𝑏(1))2/4. 

Fig. 7 shows the estimation interval for the function 𝑥2/625 

after applying polynomial splines. Fig. 8 shows the estimation 

interval for the function 𝑥2/625 after applying trigonometric 

splines. 

 
Fig. 7. The estimation interval for the function 𝑥2/625 after 

applying polynomial splines 

 

 
Fig. 8. The estimation interval for the function 𝑥2/625 after 

applying trigonometric splines 
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IV. FUNCTIONS OF SEVERAL VARIABLES AND INTERVAL 

ESTIMATION 

Suppose that a function of several variables is specified at 

grid nodes.  

First consider a function of two variables. Suppose, for 

example, that the function is 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦) cos(2𝑥 +
𝑦/2) (see Fig. 9). We fix one of the variables and use the 

proposed interval estimation technique. 

Let us put 𝑦 = 1/25 in 𝑆(𝑥, 𝑦) = sin((2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function 

 𝑄1(𝑥) = 𝑆(𝑥, 1/25). The plots of 𝑄1(𝑥)and the result of the 

interval estimation are given in Fig. 10. The plot of the error of 

the approximation of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25) is given 

in Fig. 11. 

Let us put  𝑥 = 1/25 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  

𝑄2(𝑦) = 𝑆(1/25, 𝑦). The plots of 𝑄2(𝑦) and the result of the 

interval estimation are given in Fig. 12. 

 
Fig. 9. The plot of the function  

𝑆(𝑥, 𝑦) = sin((2𝑥𝑦)cos(2𝑥 + 𝑦/2) 

 

 
Fig. 10. The plot of the function  𝑄1(𝑥) = 𝑆(𝑥, 1/25)and the 

result of the interval estimation 

 

 
Fig. 11. The plot of the error of the approximation of the function 

 𝑄1(𝑥) = 𝑆(𝑥, 1/25) 

 
Fig. 12. The plot of the function 𝑄2(𝑦) = 𝑆(1/25, 𝑦) and the 

result of the interval estimation  

Let us put 𝑦 = 1 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). Now 

we can determine the interval estimation of the function 

 𝑄3(𝑥) = 𝑆(𝑥, 1). The plots of 𝑄3(𝑥)and the result of the 

interval estimation are given in Fig. 13. The plot of the error of 

the approximation of the function  𝑄3(𝑥) = 𝑆(𝑥, 1) is given in 

Fig. 14. 

 Let us put  𝑥 = 1 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  

𝑄4(𝑦) = 𝑆(1, 𝑦). The plots of 𝑄4(𝑦) and the result of the 

interval estimation are given in Fig. 15. 

 
Fig. 13. The plot of the function  𝑄3(𝑥) = 𝑆(𝑥, 1) and the result of 

the interval estimation 

 
Fig. 14. The plot of the error of the approximation of the function 

 𝑄3(𝑥) = 𝑆(𝑥, 1) 

 

Fig. 15. The plot of the function 𝑄4(𝑦) = 𝑆(1, 𝑦) and the result of 

the interval estimation 

Let us put 𝑦 = 1/2 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function 
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 𝑄5(𝑥) = 𝑆(𝑥, 1/2). The result of the interval estimation are 

given in Fig. 16. 

Let us put  𝑥 = 1/2 in 𝑆(𝑥, 𝑦) = sin(2𝑥𝑦)cos(2𝑥 + 𝑦/2). 
Now we can determine the interval estimation of the function  

𝑄6(𝑦) = 𝑆(1/2, 𝑦). The result of the interval estimation are 

given in Fig. 17. 

 

Fig. 16. The plot of the function  𝑄5(𝑥) = 𝑆(𝑥, 1/2).  and the 

result of the interval estimation 

 

 

Fig. 17. The plot of the function 𝑄6(𝑦) = 𝑆(1/2, 𝑦) and the 

result of the interval estimation 

 

V. PARALLELING CALCULATIONS AT APPROXIMATION WITH THIRD-ORDER 

SPLINES 

Basic splines of the third order of approximation, 

convenient for interpolating the functions of one variable, were 

considered in detail in Sections 2-4. 

In this section, we discuss the construction of the 

interpolation of a function of two variables in a rectangular 

region on a plane. Consider the approximation of the function 

of the two variables in domain 𝐷. Suppose that two families of 

parallel lines are constructed in domain 𝐷. 𝑥0 + 𝑖ℎ, 𝑖 =
0, ±1, … , 𝑦0 + 𝑘ℎ1, 𝑘 = 0, ±1, … , ℎ1, ℎ > 0. 

Let the values of the function of two variables at the grid 

nodes (the intersection points of these lines) be known. Let us 

discuss the construction of the approximation of a function in 

this domain and the parallelization of this process. Applying the 

direct (tensor) product, we can obtain the formulas for the basis 

splines of two variables. The formula of the right polynomial 

basis spline  𝛺𝑗,𝑘
𝑅 = 𝛺𝑗,𝑘

𝑅 (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ), when 𝑠𝑢𝑝𝑝 𝛺𝑗,𝑘
𝑅 =

[𝑥𝑗−2, 𝑥𝑗+1] × [𝑦𝑘−2, 𝑦𝑘+1], on a uniform grid with step h, has 

the form, which is different for different position of the small 

square: 

𝛺𝑗,𝑘
𝑅 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4, 

  0 ≤ 𝑡 ≤ 1 , 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,   

−1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 − 2)/4,    

−2 ≤ 𝑡 ≤ −1, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 + 2)/4,  

−2 ≤ 𝑡 ≤ −1, −2 ≤ 𝑡1 ≤ −1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/4,  

0 ≤ 𝑡 ≤ 1, −2 ≤ 𝑡1 ≤ −1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,   

−1 ≤ 𝑡 ≤ 0, −2 ≤ 𝑡1 ≤ −1, 

𝛺𝑗,𝑘
𝑅 (𝑧) = (𝑡 + 1)(𝑡 − 1)(𝑡1 + 1)(𝑡1 − 1),  

−1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 

𝛺𝑗,𝑘
𝑅 (𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 − 1)/2,  

0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 

𝛺𝑗,𝑘
𝑅 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 − 1)/2,   

−2 ≤ 𝑡 ≤ −1, −1 ≤ 𝑡1 ≤ 0, 

where 𝑧 = (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ). The image of this spline is 

shown in Fig. 18.  

 

Fig. 18. The plot of the right basis function 𝛺𝑗,𝑘
𝑅 (𝑧). 

The formula of the left polynomial basis spline 𝛺𝑗,𝑘
𝐿 =

𝛺𝑗,𝑘
𝐿 (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ), when 𝑠𝑢𝑝𝑝 𝛺𝑗,𝑘

𝐿 = [𝑥𝑗−1, 𝑥𝑗+2] ×

[𝑦𝑘−1, 𝑦𝑘+2], on a uniform grid with step ℎ along the axes has 

the form: 

𝛺𝑗,𝑘
𝐿 (𝑧) = (𝑡 + 1)(𝑡 − 1)(𝑡1 + 1)(𝑡1 − 1),  

0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝐿 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 + 1)/2,  

−1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝐿 (𝑧) = −(𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 + 1)/2,  

−1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘
𝐿 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4,    

1 ≤ 𝑡 ≤ 2, 1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘
𝐿 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,    

0 ≤ 𝑡 ≤ 1, 1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘
𝐿 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 − 1)(𝑡1 − 2)/4,      

−1 ≤ 𝑡 ≤ 0, 1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘
𝐿 (𝑧) = (𝑡 + 1)(𝑡 + 2)(𝑡1 + 1)(𝑡1 + 2)/4,      

−1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 

𝛺𝑗,𝑘
𝐿 (𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,    

  0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 

𝛺𝑗,𝑘
𝐿 (𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/4,      
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1 ≤ 𝑡 ≤ 2, 1 ≤ 𝑡1 ≤ 0, 

where 𝑧 = (𝑥𝑗 + 𝑡ℎ, 𝑦𝑘 + 𝑡1ℎ). The image of this spline is 

shown in Fig. 19. 

 
Fig. 19. The plot of the right basis function 𝛺𝑗,𝑘

𝐿   

 

The basic trigonometric splines of two variables can be 

similarly constructed. We construct the interpolation of the 

function 𝑢(𝑥, 𝑦) separately in each elementary rectangle, with 

vertices in nodes (𝑥𝑗 , 𝑦𝑘), (𝑥𝑗+1, 𝑦𝑘), (𝑥𝑗 , 𝑦𝑘+1), (𝑥𝑗+1, 𝑦𝑘+1).  

In the case of using the left basis splines, the approximation has 

the form:  

𝑈𝐿(𝑡, 𝑡1) = 𝑢𝑗−1,𝑘−1𝜔𝑗−1
𝐿 (𝑡)𝜔𝑘−1

𝐿 (𝑡1) + 𝑢𝑗−1,𝑘𝜔𝑗−1
𝐿 (𝑡)𝜔𝑘

𝐿(𝑡1) 

+𝑢𝑗−1,𝑘+1𝜔𝑗−1
𝐿 (𝑡)𝜔𝑘+1

𝐿 (𝑡1) + 𝑢𝑗,𝑘𝜔𝑗
𝐿(𝑡)𝜔𝑘

𝐿(𝑡1) 

+𝑢𝑗+1,𝑘𝜔𝑗+1
𝐿 (𝑡)𝜔𝑘

𝐿(𝑡1), +𝑢𝑗,𝑘+1𝜔𝑗
𝐿(𝑡)𝜔𝑘+1

𝐿 (𝑡1) 

+𝑢𝑗+1,𝑘+1𝜔𝑗+1
𝐿 (𝑡)𝜔𝑘+1

𝐿 (𝑡1) + 𝑢𝑗,𝑘−1𝜔𝑗
𝐿(𝑡)𝜔𝑘−1

𝐿 (𝑡1) 

+𝑢𝑗+1,𝑘−1𝜔𝑗+1
𝐿 (𝑡)𝜔𝑘−1

𝐿 (𝑡1), 𝑡 ∈ [𝑡𝑗, 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑗 , 𝑡𝑗+1]. 

The nodes necessary for constructing approximations with 

the left splines in the lower left rectangle of the region are 

shown in Fig. 20. 

 
Fig. 20. The nodes that are necessary for constructing the 

approximation with the left splines 𝛺𝑗,𝑘
𝐿 in the lower left elementary 

rectangle 

In the case of using the right basis splines, the 

approximation has the form: 
𝑈𝑅(𝑡, 𝑡1) = 𝑢𝑗+2,𝑘+2𝑣𝑗+2

𝑅 (𝑡)𝑣𝑘+2
𝑅 (𝑡1) + 𝑢𝑗+2,𝑘𝑣𝑗+2

𝑅 (𝑡)𝑣𝑘
𝑅(𝑡1) 

+𝑢𝑗+2,𝑘+1𝑣𝑗+2
𝑅 (𝑡)𝑣𝑘+1

𝑅 (𝑡1) + 𝑢𝑗,𝑘𝑣𝑗
𝑅(𝑡)𝑣𝑘

𝑅(𝑡1) 

+𝑢𝑗+1,𝑘𝑣𝑗+1
𝑅 (𝑡)𝑣𝑘

𝑅(𝑡1) + 𝑢𝑗,𝑘+1𝑣𝑗
𝑅(𝑡)𝑣𝑘+1

𝑅 (𝑡1) 

+𝑢𝑗+1,𝑘+1𝑣𝑗+1
𝑅 (𝑡)𝑣𝑘+1

𝑅 (𝑡1) + 𝑢𝑗,𝑘+2𝑣𝑗
𝑅(𝑡)𝑣𝑘+2

𝑅 (𝑡1) 

 +𝑢𝑗+1,𝑘+2𝑣𝑗+1
𝑅 (𝑡)𝑣𝑘+2

𝑅 (𝑡1), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑗, 𝑡𝑗+1]. 

Often it is necessary to construct an approximation of a function 

in large areas. Note that using the locality property, we can 

construct an approximation simultaneously in several parts of 

the region. In parallel computing, two schemes are used: 

“parquet laying” and “Fox's wall”. The "parquet laying" scheme 

is used where calculations can be carried out, by analogy with 

parquet laying, independently, starting from any place. The 

“Fox Wall” scheme differs in that the calculations are carried 

out in parallel, but sequentially in layers. The next layer cannot 

be built if there is no previous one. We use the "parquet laying" 

scheme. 

 Using the method of geometric parallelism, the 

construction of the approximation of a function of two 

variables, if the values of the function are known at the grid 

nodes on the domain in the plane, can be significantly 

accelerated. Process data can be arranged in horizontal or 

vertical stripes (if the domain is rectangular). When distributing 

this data among the threads in order to construct interpolation, 

it is also necessary to distribute data in the resulting boundary 

band. In case of using splines of the third order of 

approximation, it is necessary to take into account the boundary 

layer with a width of one grid interval if we use basic splines of 

only one type (left or right). Thus, when using two-dimensional 

only left-side or only right-side splines, each thread must 

additionally distribute the function values in the grid nodes 

from the boundary strip (Fig. 21, (left)). If we carry out 

calculations simultaneously (at the same time), using 2 threads 

and starting from the lower left corner of the rectangular region, 

using only the left bases splines with two variables, and from 

the upper right corner (Fig. 21 (right), 22) then we have the 

acceleration. A feature of this approach is that the nodes in the 

boundary strip are located only at the vertices of the rectangles 

located in the strip on the diagonal of the rectangular region (see 

Fig.22). If using only the right (the left) basis splines from two 

variables for every thread (process), then additional process 

data will not be required for each process.  

 

 
Fig. 21. The distribution of function values in three vertical stripes 

into three threads (left), the distribution of function values into two 

triangular regions (two treads) starting from two opposite corners of 

the domain (right) 

 

To construct a parallel version of the program, we use C and 

Open MP. It is convenient to use #pragma omp parallel 

sections to parallelize computations. Let us count the number 

of multiplications and divisions necessary to calculate the 

approximation of the function of two variables at a point (𝑥, 𝑦). 

It is easy to see that there are about 50 of these operations. To 

speed up the calculations, each thread should have at least 2000 

operations. We constructed a rectangular grid of nodes in the 
[0,1]  ×  [0,1] area with a step of ℎ = 0.01, at the nodes of 

which we will calculate the approximate values of the function 

𝑓 = 𝑥𝑦. We carry out a series of numerical experiments by 

running the program 10 times, measuring the execution time 

each time and calculate the average value of the solution time. 

Acceleration of calculations, that is, the ratio of the running 

time of a sequential program to the operating time of a 

parallelized program is 2.91. 

Let us count the number of multiplications and divisions 

necessary to calculate the approximation of the function of two 

variables at the point (𝑥, 𝑦). It is easy to see that there are about 
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50 of these operations. To speed up the calculations, each thread 

should have at least 2000 operations. If there are more than 40 

grid nodes along each axis then the time of calculations is 

reduced when we use 2 threads. 

 
Fig. 22. The two-thread computing parallelization scheme 

 

To calculate the function approach in the lower left corner 

of the region, we need the function values at the grid nodes, as 

shown in Fig. 20. 

To calculate the function approach in the upper left corner 

of the region (upper left small rectangle, see 22), the following 

values of the function in the nodes and the following basic 

functions are required:  

𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 + 1)(𝑡1 + 2)/2, 

0 ≤ 𝑡 ≤ 1, −1 ≤ 𝑡1 ≤ 0, 
𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/2,   

−1 ≤ 𝑡 ≤ 0, 1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘(𝑧) = −(𝑡 + 2)(𝑡 + 1)(𝑡1 − 1)(𝑡1 − 2)/4,   

−2 ≤ 𝑡 ≤ −1,   1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘(𝑧) = −(𝑡 + 2)(𝑡 + 1)(𝑡1 − 1)(𝑡1 + 1)/2,    

−2 ≤ 𝑡 ≤ −1,     0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘(𝑧) = (𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 − 2)/4, 

  0 ≤ 𝑡 ≤ 1, 1 ≤ 𝑡1 ≤ 2, 

𝛺𝑗,𝑘(𝑧) = (𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 − 1),   

−1 ≤ 𝑡 ≤ 0, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,   

−1 ≤ 𝑡 ≤ 0, −1 ≤ 𝑡1 ≤ 0, 

𝛺𝑗,𝑘(𝑧) = −(𝑡 − 1)(𝑡 − 2)(𝑡1 − 1)(𝑡1 + 1)/2,   

0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑡1 ≤ 1, 

𝛺𝑗,𝑘(𝑧) = (𝑡 + 2)(𝑡 + 1)(𝑡1 + 1)(𝑡1 + 2)/2,  

−2 ≤ 𝑡 ≤ −1, −1 ≤ 𝑡1 ≤ 0. 
The image of this basis spline is presented in Fig.23. 

 
Fig. 23. The plot of the basis function    𝛺𝑗,𝑘 

 

To calculate the function approach in the upper left corner 

of the region, the following values of the function in the nodes 

and the following basic functions are required: 

𝑈𝑅𝐿(𝑡, 𝑡1) = 𝑢𝑗,𝑘𝑣𝑗
𝑅(𝑡)𝜔𝑘

𝐿(𝑡1) + 𝑢𝑗,𝑘+1𝑣𝑗
𝑅(𝑡)𝜔𝑘+1

𝐿 (𝑡1) 

+𝑢𝑗,𝑘−1𝑣𝑗
𝑅(𝑡)𝜔𝑘−1

𝐿 (𝑡1) + 𝑢𝑗+1,𝑘𝑣𝑗+1
𝑅 (𝑡)𝜔𝑘

𝐿(𝑡1) 

+𝑢𝑗+1,𝑘+1𝑣𝑗+1
𝑅 (𝑡)𝜔𝑘+1

𝐿 (𝑡1) + 𝑢𝑗+1,𝑘−1𝑣𝑗+1
𝑅 (𝑡)𝜔𝑘−1

𝐿 (𝑡1) 

+𝑢𝑗+2,𝑘𝑣𝑗+2
𝑅 (𝑡)𝜔𝑘

𝐿(𝑡1) + 𝑢𝑗+2,𝑘+1𝑣𝑗+2
𝑅 (𝑡)𝜔𝑘+1

𝐿 (𝑡1) 

+𝑢𝑗+2,𝑘−1𝑣𝑗+2
𝑅 (𝑡)𝜔𝑘−1

𝐿 (𝑡1), 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑡1 ∈ [𝑡𝑘, 𝑡𝑘+1]. 

Similar formulas can easily be obtained for basis splines and 

approximations of the function with these basis splines along 

the main diagonal of the region, starting from the lower left 

corner of the region (lower left rectangle, see Fig. 22).  

VI. APPLICATION TO THE BOUNDARY VALUE PROBLEM 

We apply the approximation with third-order polynomial and 

non-polynomial splines to the numerical solution of partial 

differential equations. Let 𝑢 = 𝑢(𝑥, 𝑡). We consider the 

boundary value problem 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕𝑢

𝜕𝑥
+ 𝑓(𝑥, 𝑡) 

in a rectangular domain 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇 under the 

boundary conditions: 𝑢|𝑥=0 = 𝜑(𝑡), 𝑢|𝑥=1 = ѱ(𝑡),  𝑢|𝑡=0 =
𝑢0. We construct a grid of nodes {(𝑥𝑗 , 𝑡𝑘)}, 𝑥𝑗 = 𝑗ℎ, 𝑡𝑘 =

𝑘𝜏,   𝑘 = 0,1,2 … 𝑀, 𝑗 = 0,1,2, … 𝑁.  Let 𝑢𝑗𝑘 = 𝑢(𝑥𝑗 , 𝑡𝑘). We 

apply the polynomial approximations of partial derivatives of 

the following type: 
𝜕𝑢

𝜕𝑡
=

𝑢𝑗𝑘+1 − 𝑢𝑗𝑘

𝜏
+ 𝑂(𝜏), 

𝜕𝑢

𝜕𝑥
≈ (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗𝑘+1 𝑔′𝑗 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1), 

where 

𝑔′𝑗−1 =
𝑥𝑗 − 𝑥𝑗+1

(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1)
, 

𝑔′𝑗 =
1

(𝑥𝑗 − 𝑥𝑗−1)
+

1

(𝑥𝑗 − 𝑥𝑗+1)
, 

𝑔′𝑗−1 =
𝑥𝑗 − 𝑥𝑗−1

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1)
. 

On a uniform grid with step ℎ, we obtain 𝑔𝑗 = 0, 
𝜕𝑢

𝜕𝑥
= (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1) + 𝑂(ℎ2), where 

  𝑔′𝑗−1 =
−1

2ℎ
, 𝑔′𝑗+1 = −𝑔′𝑗−1 =

1

2ℎ
. 

Thus, the use of the cubic polynomial splines on a uniform grid 

of nodes to construct a formula for numerical differentiation 

leads to a well-known formula: 

𝜕2𝑢

𝜕𝑥2
≈

𝑢𝑗−1𝑘+1 − 2𝑢𝑗𝑘+1 + 𝑢𝑗+1𝑘+1

ℎ2
. 

Thus, we have obtained the well-known difference equation 

[22], [23]: 
𝑢𝑗𝑘+1 − 𝑢𝑗𝑘

𝜏
=

𝑢𝑗−1𝑘+1 − 2𝑢𝑗𝑘+1 + 𝑢𝑗+1𝑘+1

ℎ2
. 

Now let's see what formula for numerical differentiation can be 

obtained using the approximation with the trigonometric 

splines. In the trigonometric case on a non-uniform grid, we can 

use the formula  
𝜕𝑢

𝜕𝑥
≈ (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗𝑘+1 𝑔′𝑗 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1), 

where 
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𝑔′𝑗−1 =
sin (𝑥𝑗/2 − 𝑥𝑗+1/2)

2sin (
𝑥𝑗−1

2
−

𝑥𝑗

2
)sin (

𝑥𝑗−1

2
−

𝑥𝑗+1

2
)
, 

𝑔′𝑗+1 =
sin (𝑥𝑗/2 − 𝑥𝑗−1/2)

2sin (
𝑥𝑗−1

2
−

𝑥𝑗+1

2
)sin (

𝑥𝑗

2
−

𝑥𝑗+1

2
)
, 

𝑔′𝑗 =
cos (𝑥𝑗/2 − 𝑥𝑗−1/2)

2sin (
𝑥𝑗

2
−

𝑥𝑗−1

2
)

+
cos (𝑥𝑗/2 − 𝑥𝑗+1/2)

2sin (
𝑥𝑗

2
−

𝑥𝑗+1

2
)

. 

On a uniform grid with step ℎ, we have 𝑔𝑗 = 0. Thus, we can 

use the formula: 
𝜕𝑢

𝜕𝑥
= (𝑢𝑗−1𝑘+1𝑔′𝑗−1 + 𝑢𝑗+1𝑘+1𝑔′𝑗+1) + 𝑂(ℎ2), 

where  𝑔′𝑗−1 =
−1

2 sin(ℎ)
, 𝑔′𝑗+1 = −𝑔′𝑗−1 =

1

2 sin(ℎ)
. 

We also need a formula for the second derivative. Let us 

construct the formula of the second derivative using 

approximation 𝑈𝑀(𝑥) of the function 𝑢(𝑥) on the grid interval 

[𝑥𝑖, 𝑥𝑖+1] with the trigonometric spline of the fourth order of 

approximation (see [11]): 

𝑈𝑀(𝑥) = 𝑢(𝑥𝑖−1)𝑔𝑖−1 + 𝑢(𝑥𝑖)𝑔𝑖 + 𝑢(𝑥𝑖+1)𝑔𝑖+1 
+𝑢(𝑥𝑖+2)𝑔𝑖+2, 

where 

𝑔𝑖−1 = 𝐴𝑖−1/𝐵𝑖−1, 

𝐴𝑖−1 = sin (
𝑥

2
−

𝑥𝑖

2
) sin (

𝑥

2
−

𝑥𝑖+1

2
) sin (

𝑥

2
−

𝑥𝑖+2

2
), 

𝐵𝑖−1 = sin (
𝑥𝑖−1

2
−

𝑥𝑖

2
) sin (

𝑥𝑖−1

2
−

𝑥𝑖+1

2
) sin (

𝑥𝑖−1

2
−

𝑥𝑖+2

2
), 

𝑔𝑖 = 𝐴𝑖/𝐵𝑖, 

𝐴𝑖 = sin (
𝑥

2
−

𝑥𝑖−1

2
) sin (

𝑥

2
−

𝑥𝑖+1

2
) sin (

𝑥

2
−

𝑥𝑖+2

2
), 

𝐵𝑖 = sin (
𝑥𝑖

2
−

𝑥𝑖−1

2
) sin (

𝑥𝑖

2
−

𝑥𝑖+1

2
) sin (

𝑥𝑖

2
−

𝑥𝑖+2

2
), 

𝑔𝑖+1 = 𝐴𝑖+1/𝐵𝑖+1, 

𝐴𝑖+1 = sin (
𝑥

2
−

𝑥𝑖−1

2
) sin (

𝑥

2
−

𝑥𝑖

2
) sin (

𝑥

2
−

𝑥𝑖+2

2
), 

𝐵𝑖+1 = sin (
𝑥𝑖+1

2
−

𝑥𝑖−1

2
) sin (

𝑥𝑖+1

2
−

𝑥𝑗

2
) sin (

𝑥𝑖+1

2
−

𝑥𝑖+2

2
), 

𝑔𝑖+2 = 𝐴𝑖+2/𝐵𝑖+2, 

𝐴𝑖+2 = sin (
𝑥

2
−

𝑥𝑖−1

2
) sin (

𝑥

2
−

𝑥𝑖+1

2
) sin (

𝑥

2
−

𝑥𝑖

2
), 

𝐵𝑖+2 = sin (
𝑥𝑖+2

2
−

𝑥𝑖−1

2
) sin (

𝑥𝑖+2

2
−

𝑥𝑖+1

2
) sin (

𝑥𝑖+2

2
−

𝑥𝑖

2
), 

we receive the formula: 

(𝑈𝑀(𝑥))
′′

= 𝑢(𝑥𝑖−1)𝑔′′
𝑖−1

(𝑥) + 𝑢(𝑥𝑖)𝑔′′
𝑖
(𝑥)

+ 𝑢(𝑥𝑖+1)𝑔′′
𝑖+1

(𝑥) + 𝑢(𝑥𝑖+2)𝑔′′
𝑖+2

(𝑥). 

When 𝑥𝑖−1 = 𝑥𝑖 − ℎ,  𝑥𝑖+1 = 𝑥𝑖 + ℎ, 𝑥𝑖+2 = 𝑥𝑖 + 2ℎ,  it is 

not difficult to obtain the formula: 

(𝑈𝑀(𝑥𝑖))
′′

= 𝑢(𝑥𝑖−1)𝑔′′
𝑖−1

(𝑥𝑖) + 𝑢(𝑥𝑖)𝑔′′
𝑖
(𝑥𝑖)

+ 𝑢(𝑥𝑖+1)𝑔′′
𝑖+1

(𝑥𝑖) + 𝑢(𝑥𝑖+2)𝑔′′
𝑖+2

(𝑥𝑖), 

where 

𝑔′′
𝑖
(𝑥𝑖) = −

3

4
−

cos2(ℎ/2)

2 sin2(ℎ/2)
, 

𝑔′′
𝑖−1

(𝑥𝑖) =
cos (ℎ/2)

2 sin (
ℎ
2

) sin (
3ℎ
2

)
+

cos (ℎ)

2 sin(ℎ) sin (
3ℎ
2

)
, 

𝑔′′
𝑖+1

(𝑥𝑖) =  
cos (ℎ/2)

2 sin2 (
ℎ
2

)
−

cos(ℎ)

2sin(h) sin (
ℎ
2

)
. 

Example. Let us solve the problem: 

 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 + 𝑓(𝑥, 𝑡), 𝑡 ∈ [0, 0.1], 𝑥 ∈ [0,1], 

 

where 𝑓(𝑥, 𝑡) = (2𝑡 + 0.5) cos(2𝑥 − 1) − 0.5 cos(1), 
in the domain  [0,1] ×  [0, 0.1], when  𝑢|𝑡=0 = 0, 𝑢|𝑥=1 = 0,  
𝑢|𝑥=0 = 0. 
The exact solution of the problem is 𝑢 = 𝑡 sin(𝑥) sin (1 − 𝑥). 

We have constructed the right side of the equation according to 

the model solution, for debugging the program and calculating 

the actual errors. Let us construct the grid nodes with a uniform 

grid of nodes when 𝑁 = 20, 𝑀 = 30. Consider the difference 

equation in the internal nodes of the grid in the polynomial case: 

 
𝑢𝑗𝑘+1−𝑢𝑗𝑘 

𝜏
 = 

𝑢𝑗−1𝑘+1−2𝑢𝑗𝑘+1 +𝑢𝑗+1𝑘+1

ℎ2  + 𝑓(𝑥𝑗 , 𝑡𝑘+1), 

𝑗 = 1, 2, … 𝑀 − 1, 𝑘 = 1,2, … 𝑁 − 1, 
𝑢𝑗,0 = 𝑢0(𝑗ℎ), 𝑗 = 0,1, … 𝑀, 

and 

𝑢0,𝑘 = 𝜑(𝑘𝜏), 𝑘 = 1,2, … 𝑁, 
𝑢1,𝑘 = ѱ(𝑘𝜏), 𝑘 = 1,2, … 𝑁. 

Along the border of the domain, the values of the solution are 

known. We carry out calculations from the bottom to the top on 

the grid layers. As it is known, the implicit scheme in the 

polynomial case is stable for calculations for any ℎ, 𝜏. Thus, we 

can use the following implicit scheme using the trigonometric 

formula for numerical differentiation: 

𝑢𝑗,𝑘+1 = 𝑢𝑗,𝑘 + 𝜏 (𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 +

𝑢𝑗,𝑘+1𝑔′′𝑗 + 𝑓(𝑥𝑗 , 𝑡𝑘+1)), 

𝑗 = 1, 2, … 𝑀 − 1, 𝑘 = 1,2, … 𝑁 − 1, 
 

𝑢𝑗,0 = 𝑢0(𝑗ℎ), 𝑗 = 0,1, … 𝑀, 

𝑢0,𝑘 = 𝜑(𝑘𝜏), 𝑘 = 1,2, … 𝑁, 
𝑢1,𝑘 = ѱ(𝑘𝜏), 𝑘 = 1,2, … 𝑁. 

On each layer we need to solve a system of linear algebraic 

equations. Let us verify that the matrix of this system of 

equations has a diagonal dominance. We write the system of 

equations in the form: 

𝑎𝑗𝑣𝑗−1 + 𝑏𝑗𝑣𝑗 + 𝑐𝑗𝑣𝑗+1 = 𝑞𝑗 , 

𝑣0 = 𝜑((𝑘 + 1)𝜏), 𝑣𝑀 = (ѱ(𝑘 + 1)𝜏), 

where 𝑣𝑗 = 𝑢𝑗,𝑘+1, 𝑞𝑗 = 𝜏𝑓(𝑥𝑗 , 𝑡𝑘+1) + 𝑢𝑗,𝑘, 

𝑏𝑗 = 1 − 𝜏𝑔′′𝑗, 𝑎𝑗 = −𝜏𝑔′′
𝑗−1

, 𝑐𝑗 = −𝜏𝑔′′
𝑗+1

. 

It is easy to see that for | τ | <1 the inequality holds: 

|𝑏𝑗| > |𝑎𝑗| + |𝑐𝑗|. 

Therefore, the system has a unique solution. 

Fig.24 shows the error of the solution obtained using the 

polynomial splines. Fig.25 shows the error of the solution 

obtained using the trigonometric splines.  

Thus, the use of the trigonometric splines gives 

approximation errors less than in the case of the polynomial 

splines. The stability will be discussed in the next Section. 
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Fig.24.The plot of the errors in absolute value of the solution 

obtained using polynomial splines 

 

 

Fig.25.The plot of the errors in absolute value of the solution 

obtained using trigonometric splines 

VII. ABOUT STABILITY 

In this section, we discuss aspects related to the convergence of 

the constructed difference schemes. First of all, we recall some 

definitions. We have to solve the boundary value problem 𝐿𝑢 =
𝑓 in domain D with the border Γ. Let 𝐷ℎ = {𝑀ℎ}  be the set of 

nodes in 𝐷 ∪ Γ. Let 𝑢 = 𝑢(𝑥, 𝑡)  be the solution of the problem. 

Let the function 𝑢(ℎ) be defined only in the set of nodes, so it 

will be called the mesh function. It is well-known that instead 

of solving the problem 𝐿𝑢 = 𝑓, we solve the difference scheme 

𝐿ℎ𝑢(ℎ) = 𝑓(ℎ). Let 𝑈ℎ be the linear normed space with the 

elements  𝑢(ℎ). Let 𝐹ℎ be the linear normed space with the 

elements  𝑓(ℎ).  Let  ∥⋅ ∥𝑈ℎ
, ∥⋅ ∥𝐹ℎ

 be the norms in the spaces 

𝑈ℎ, 𝐹ℎ: ∥ 𝑢(ℎ) ∥𝑈ℎ
= max

𝑗,𝑘
|𝑢𝑗𝑘| , 

 ∥ 𝑓(ℎ)  ∥𝐹ℎ
= max (max

𝑗
|𝑢0(𝑗ℎ)| , max

𝑘
|𝜑(𝑘𝜏)| , max

𝑘
|ѱ(𝑘𝜏)|, 

max
𝑗,𝑘

|𝑓(𝑗ℎ, 𝑘𝜏)|). 

   First, we examine for the stability, the implicit difference 

scheme:  
𝑢𝑗𝑘+1−𝑢𝑗𝑘

𝜏
= 𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 +

𝑢𝑗,𝑘+1𝑔′′𝑗+ 𝑓(𝑥𝑗 , 𝑡𝑘+1). 

We first discuss the stability of the initial value problem with 

respect to the initial data. We will look for a solution to a 

homogeneous problem (when 𝑓(𝑥𝑗 , 𝑡𝑘+1) = 0) in the form: 

𝑢𝑗𝑘 = 𝜆𝑘 exp (𝐼𝑗𝑎), where 𝐼 is the imaginary unit, 𝑎 is real. 

Now we have the equation: 
𝜆 − 1

𝜏
= 𝜆(𝑔𝑗+1 exp(𝐼𝑎) + 𝑔𝑗−1 exp(−𝐼𝑎) + 𝑔𝑗). 

Our aim is to find out for which 𝜏 and h the following inequality 

will satisfy | 𝜆 |≤1+c 𝜏 (von Neumann stability), when 𝑐 =
𝑐𝑜𝑛𝑠𝑡 does not depend on 𝜏 and h. Using the equality 

exp(𝐼𝑎) − 2 + exp(−𝐼𝑎) = −4sin2 (𝑎/2), we get  

| 𝜆 | = |
1

1 − 𝜏𝑔𝑗 + 2𝜏 (2 sin2 (
𝑎
2

) − 1)𝑔𝑗+1

| ≤ 1 + 𝑐𝜏, 

when 𝑐 = 0.0565. It is not difficult to see that the inequality  

| 𝜆 |≤1+𝑐𝜏 holds for any correlation between 𝜏 and h. Now we 

consider the stability of the initial-boundary value problem. 

Multiply both sides of the difference equation by −𝜏. We get 

𝜏 (𝑢𝑗−1,𝑘+1𝑔′′
𝑗−1

+ 𝑢𝑗+1,𝑘+1𝑔′′
𝑗+1

+ 𝑢𝑗,𝑘+1𝑔′′
𝑗
) − 𝑢𝑗𝑘+1 

=−𝜏 𝑓(𝑥𝑗 , 𝑡𝑘+1)-𝑢𝑗𝑘. 

We choose from all the values  𝑢𝑗,𝑘+1 which in absolute value 

equals to |𝑢𝑗,𝑘+1| such a value whose index 𝑗 takes the smallest 

value j=j*. Let us write the equation corresponding to this 

value: 

𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′
𝑗∗−1

+ 𝑢𝑗∗+1,𝑘+1𝑔′′
𝑗∗+1

+ 𝑢𝑗∗,𝑘+1𝑔′′
𝑗∗) 

−𝑢𝑗∗𝑘+1=−𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘. 

Let 𝑢𝑗∗,𝑘+1 > 0. Consider the right side of the equation  

𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′
𝑗∗−1

+ 𝑢𝑗∗+1,𝑘+1𝑔′′
𝑗∗+1

+ 𝑢𝑗∗,𝑘+1𝑔′′
𝑗∗) 

−𝑢𝑗∗𝑘+1 = 𝜏𝑔′′
𝑗∗+1

(𝑢𝑗∗+1,𝑘+1 − 𝑢𝑗∗,𝑘+1) 

+𝜏𝑔′′
𝑗∗−1

(𝑢𝑗∗−1,𝑘+1 − 𝑢𝑗∗,𝑘+1)    

+𝜏𝑢𝑗∗,𝑘+1 (𝑔′′
𝑗∗−1

+ 𝑔′′
𝑗∗+1

+ 𝑔′′
𝑗∗  ) − 𝑢𝑗∗,𝑘+1 ≤ −𝑢𝑗∗,𝑘+1. 

Therefore  −𝑢𝑗∗,𝑘+1 ≥ −𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘. 

Hence, max
𝑗

| 𝑢𝑗,𝑘+1| = 𝑢𝑗∗,𝑘+1 ≤ |𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘|  

≤ max
𝑗

| 𝑢𝑗,𝑘+1| + 𝜏max
𝑗,𝑘

| 𝑓(𝑥𝑗 , 𝑡𝑘+1)|. 

By the definition of stability, the solution of the difference 

scheme must satisfy the condition ∥ 𝑢(ℎ) ∥𝑈ℎ
≤  𝐾 ∥ 𝑓(ℎ)  ∥𝐹ℎ

 

for any 𝑓(ℎ). Thus, for any 𝜏 and h, the stability condition is 

satisfied for the difference scheme. Since the difference scheme 

also approximates the problem, the solution of the difference 

scheme converges to the solution of the problem. 

VIII. DISCUSSION OF RESULTS 

Section 2 discusses polynomial, trigonometric, and exponential 

local splines. These splines can be used to approximate 

functions of one or more variables. In this case, it is necessary 

to calculate the values of the function at additional nodes 

between the grid nodes. There can be a lot of these additional 

points, so it is advisable to parallelize the calculations. If the 

grid of nodes is rectangular, then it is possible to carry out 

calculations simultaneously from two opposite vertices of the 

rectangle. Simultaneous computation on different processors 

reduces the computation time. This is shown in Section 5. The 

considered splines are suitable not only for calculating the 

values of the function at the points between the grid nodes, but 

also for calculating the first derivative of this function. In 

particular, we can use these splines to construct formulas for 

numerical differentiation. Numerical differentiation formulas 

obtained on the basis of the polynomial, trigonometric, and 

exponential splines, are considered in the second section on a 

uniform grid of nodes. These splines approximate the first 
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derivative with the order 𝑂(ℎ2). Using these splines, we can 

construct a numerical differentiation formula to calculate the 

second derivative. The constructed formula will give an error  

𝑂(ℎ). If we need to use the formula for numerical 

differentiation that approximate the second derivative with the 

error 𝑂(ℎ2) we need splines with the fourth order of 

approximation. Thus we need to use cubic polynomial splines 

or non-polynomial splines which provide the error of the 

approximation 𝑂(ℎ4). The trigonometric splines with this order 

of error were used in Section 6. For the convergence of the 

constructed scheme, not only a good approximation is needed, 

but also stability as shown in Section 7, the constructed method 

is stable.  

   In the proposed method, the same rules should be preserved 

as in the traditional method.  It is necessary not to forget about 

the fatal error of numerical differentiation and not to select too 

small the grid step. The next relation should be fulfilled, the 

rounding error of numbers should be much less than ℎ2. 

IX. CONCLUSION 

In this paper we discuss the approximation with the 

trigonometric and polynomial splines of the third order. The 

results of the numerical experiments show that trigonometrical 

approximation is preferred to polynomial approximation when 

we approximate a trigonometrical function. To avoid 

calculation in many points we can use interval extension if we 

need to know only the upper and the lower boundaries of 

variation of the function between the nodes. But we have to 

keep in mind the theorem of approximation. The results of 

working the program of constructing interval extension are 

presented. This program uses the trigonometric basis splines. 

The results of the program that uses the polynomial basis 

splines are not good, because of the wider interval extension. 

The parallel calculations during the approximation of the 

function of two variables in rectangular domain can be done 

using three threads: beginning from the upper right and lower 

left corners (using the right or left basis splines) and along the 

main diagonal (using mix basis splines). In this paper, new 

computational schemes are constructed to solve a parabolic 

problem. The schemes are based on approximation of partial 

derivatives by the trigonometric splines. The examples 

considered in the paper show that in this case the error in 

solving the problem turns out to be less than when using the 

traditional method.  

   In the future, other numerical schemes will be constructed for 

solving partial differential equations based on the use of other 

non-polynomial splines. 
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