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Abstract- The European Life project, called
DYNAMAP, has been devoted to provide a real
image of the noise generated by vehicular traffic
in urban and suburban areas, developing a dy-
namic acoustic map based on a limited number
of low-cost permanent noise monitoring stations.
In the urban area of Milan, the system has been
implemented over the pilot area named Area 9.
Traffic noise data, collected by the monitoring
stations, each one representative of a number
of roads with similar characteristics (e.g. daily
traffic flow), are used to build-up a “real time”
noise map. DYNAMAP has a statistical struc-
ture and this implies that information captured
by each sensor must be representative of an ex-
tended area, thus uncorrelated from other sta-
tions. The study of the correlations among the
sensors represents a key-point in designing the
monitoring network. Another important aspect
regards the “contemporaneity” of noise fluctua-
tions predicted by DYNAMAP with those effec-
tively measured at an arbitrary location. Integra-
tion times heavily affect the result, with correla-
tion coefficients up to 0.8-0.9 for updating times
of 1h. Higher correlations are observed when av-
eraging over groups of roads with similar traffic
flow characteristics.

Keywords- DYNAMAP, Dynamic noise map,
Noise prediction, Temporal correlations.

I. Introduction

NOISE mapping are becoming a necessary tool for
evaluating the noise exposure of citizens in large

cities, as it has been recognized by the strict dose-
harmful effect relationships reported both in the Direc-
tive 2002/49/EC [1] and the 2018 WHO Environmental
noise guidelines [2].

Strategic Noise Maps have been implemented to en-
able effective diagnostics on the acoustic environment
and provide useful information for local intervention
measures and policy-making [3, 4]. They evaluate the

overall exposure to noise in a given area due to dif-
ferent sources and, together with Action Plans, pro-
vide a framework to manage environmental noise and
its effects. Thus, they represent the usual approach for
noise prevention and control [5, 6]. Recently, noise maps
have been evolving towards a multi-source predictive ap-
proach [7, 8, 9, 10] also implemented by information re-
garding vehicles speed [11, 12] and annoyance [13, 14].
However, the introduction of dynamic noise maps consti-
tuted a further evolution in the direction of better rep-
resenting the “real” noise exposure.

To this end, the European project DYNAMAP [15]
has developed a dynamical acoustic map in two pilot ar-
eas: a large portion of the urban area of the city of Milan
(Area 9) [16] and the motorway surrounding Rome [17].
In both cases, one can predict traffic noise in an extended
area using a limited number of monitoring sensors and
the knowledge of traffic flows. Traffic noise data, col-
lected by the monitoring stations, each one representa-
tive of a number of roads within the pilot area showing
similar characteristics (e.g. daily traffic flow), are used
to build-up a “real time” noise map [18, 19, 20].

DYNAMAP relies on the update of pre-calculated ba-
sic noise maps. This process, denoted as noise map scal-
ing, is accomplished for different operating conditions
(sources, traffic and weather conditions), by detecting
noise and meteorological data from low-cost monitor-
ing stations and weather sensors distributed along the
road (just for Rome’s pilot area). The scaled basic noise
maps, one for each elementary noise source present in
the mapping area, are summed together to obtain the
complete noise map. This process is expected to consid-
erably reduce the use of simulation tools, thus decreas-
ing calculation times and costs. In addition, the devel-
opment of low cost noise monitoring stations and the
use of a GIS platform for implementing the maps scal-
ing and their energetic sum, further reduces operational
costs. DYNAMAP assumes that the noise patterns of
each selected group of raods to be stationary. The non-
compliance with this assumption would introduce a bias
in the system which would need groups reassignment.

In a more general perspective, several issues related
to the ones considered here have been discussed recently,
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such as the use of green walls in cities [21], new vehicle
speed models for residential areas [22], and the impact
of ring roads on a surrounded city[23].

In this work, we are interested in studying how traf-
fic noise in different parts of the city is correlated. This
knowledge is important for a better design of the net-
work, so that the sensors cover the pilot zone in an op-
timized way. First, we study the correlations among the
24 monitoring units building up the DYNAMAP net-
work, and second, we analize the “contemporaneity” of
noise fluctuations predicted by DYNAMAP and compare
them with field measurements at arbitrary locations in
the pilot zone.

The paper is organized as follows. In Section II.,
we briefly review the DYNAMP sensor network concepts
and main strategy. In Section III., we study the noise
correlations among sensors, and the corresponding DY-
NAMAP predictions. Section IV. is devoted to the Dis-
cussion of the results, and Sect. V. to the Conclusions.

II. Network of sensors and dynamic noise
mapping

A sample made of 93 noise time series (24-hour each),
distributed over the entire city of Milan, has been ana-
lyzed by standard clustering techniques. The result of
the analysis is shown in Fig. 1 illustrating the two mean
normalized noise cluster profiles, ∆k, k = 1, 2.

Fig. 1: Mean normalized cluster profiles, ∆k, and the
corresponding ± standard deviations. Here, k = 1, 2
indicates the cluster index.

The two clusters present a similar trend during the
daytime but behave differently during the evening/night-
time and the morning rush-hour. This result suggested
the idea of describing the noise profile of an arbitrary
road as a combination of the two mean cluster profiles
[24, 25, 26]. The traffic noise at any road section can be
predicted if knowledge of a non-acoustic parameter x is
available for each road belonging within the entire road
network. In our case x represents the logarithm of the
total daily traffic flow, T , of a single road [27, 28, 29].
For instance if say, T = 3000 vehicles/day, then x = 3.5.

Since our aim is to use a small number of sensors, we
need to aggregate the roads into groups showing a similar
traffic behaviour. Thus, we divided the entire range of x
values into groups in such a way that each group contains
approximatly the same number of roads.

Fig. 2: Percentage of roads in each group. The intervals
of variability of the non-acoustic parameter x = LogT
are also shown for each group (g1, g2, . . . , g6). The latter
have an associated value given by the mean

〈
x
〉

within

the group. For instance, for g5 we have
〈
x
〉

= 4.35.

The roads are sorted into six groups according to the
value of x and denoted as (g1, g2, . . . , g6) (Fig. 2) [18, 30].
For the effective implementation of DYNAMAP, we have
24 noise monitoring stations (4 for each group) deployed
within the pilot area. Each group of roads is represented
by a single noise map. This means that all the roads be-
longing to a group will be described by the same acoustic
map. The latter is the result of two contributions:

(a) A reference static contribution (basic noise map),
Leqref(gi)(Tref), derived from the CadnaA software at
the time interval Tref = (08:00-09:00), for each group gi
(Fig. 3), from which one can obtain the total static noise
map (Fig. 4);

(b) A dynamic contribution δ(gi) for each group gi
retrieved from the 24 monitoring stations [31, 32].

The level Leqa(t), at location a at time t, can then be
obtained by energetically adding the local contribution of
each basic map, Leqref(gi,a), and the dynamical variation
δ(gi), according to

Leqa(t) = 10 · Log
6∑
i=1

10(Leqref(gi,a)+δ(gi))/10, (1)

where δ(gi) is obtained by averaging the sensors’ δ(gi,j)
in each group [16]. Here, δ(gi,j) for the generic monitor-
ing sensor j = 1, ...., 24, is obtained as

δ(gi,j)(t) = Leq(gi,j)(t)− Leqref(gi,j)(Tref), (2)

where t represents the updating time of the noise map
also referred to as integration time.
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Fig. 3: Static map (basic noise map), Leqref(gi), for all roads belonging to groups gi, i = 1, 2, ...., 6.
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Fig. 4: Static map (basic noise map) for all roads be-
longing to urban Area 9.

III. Noise correlations

In this section, we study the contemporaneity of
noise fluctuations as recorded by the monitoring sta-
tions, δ(gi,j)(t), where i = 1, .., 6 and j = 1, ...., 24.
Thus, we can study intragroup correlations (same index
i) or intergroup ones (different i). In order to describe
the temporal correlation between two sensors say, s(i, j)
and s′(i′, j′), we use the Pearson’s correlation coefficient,
ρ(s, s′), defined as the covariance, cov(s, s′), of the two
time series, δ(gs,s′)(t), divided by the product of their
standard deviations, σs,s′ ,

ρ(s, s′) =
cov(s, s′)

σsσs′
. (3)

The covariance is a measure of the joint variability of
the two times series for s and s′, and it is defined in the
standard fashion as the mean value of the product of the
deviations from their mean values [33].

A. Noise correlations among monitoring stations
The recorded noise time series from the 24 monitor-

ing stations were analyzed using a specifically developed
detection algorithm [34, 35] in order to highlight the pre-
sence of possible anomalous noise events such as techni-
cal systems (thermal power stations or ventilation sys-
tems), construction sites, railway, and tram lines, which
need to be erased in order to account just for traffic noise
sources.

To study the noise correlations among the 24 sensors,
we use the equivalent levels recorded over a period of five
consecutive days to improve the statistics, and employ
two normalization procedures:

(P1) From each time series, we remove the hourly
median value. In this way, we obtain what we called a
de-trended time series.

(P2) From each time series, we remove the mean Leq
level calculated between (06:00)-(22:00). This normali-

zation procedure retains both high and low frequency
fluctuations.

Then, we calculate the correlation coefficient ρ(s, s′),
Eq. (3), between the sensors time series obtained at five
different integration times, i.e. t=(5, 10, 15, 30, 60) min,
and take the median value. The top panel in Fig. 5
reports the median of the correlation coefficient among
all the de-trended monitoring stations (P1). The re-
ported band corresponds to the median absolute devi-
ation, MAD=| xi − X̃ |, where X̃ = median(X) and
X ≡ (x1, ...., xn) is a generic time series. The correlation
coefficient is rather low, around 0.1, for all the integra-
tion times considered. The results within each group gi
are reported in the bottom panel of Fig. 5.

Fig. 5: Top panel: Median of the correlation coefficient
among all the de-trended monitoring stations normalized
according to (P1). The reported band corresponds to
the median absolute deviation, MAD. Bottom panel:
Same as above within each group gi (P1). The dashed
line is the median correlation among all stations and is
included for comparison.

Procedure (P1) removes all long period fluctuations,
thus only high frequency fluctuations remain. To analyse
this feature, we calculated the power spectrum of a five-
day time series recorded at the monitoring station hb129.
In this case, the normalizazion refers to a “standard”
normalization, i.e. according to procedure (P2), and an
example is shown in Fig. 6 for a typical 24-h normalized
(P2) noise pattern.

The resulting periodgram for the monitoring station
hb129 is shown in Fig. 7. We can clearly identify two
regions: a long period regime (low frequencies) and a
short period regime (high frequencies). The former is
associated with daily, morning and night time fluctua-
tions (the maximum period is at 86400 s corresponding
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Fig. 6: Normalized Leq profile according to procedure
(P2) for the monitoring station hb136. Integration time:
5 min.

Fig. 7: Power spectrum of a five-days time series
recorded by the monitoring station hb129, normalized
according to procedure (P2). Blue vertical lines refer to
high frequency fluctuations. Red vertical lines refer to
low frequency fluctuations.

to 1 day, the dashed red lines are harmonics), and the
second one corresponds to time periods of the order 1
min (∼75 s, the dashed blue lines in Fig. 7 are harmon-
ics). The features at high frequencies are the result of
short time scale fluctuations as those produced by the
presence of traffic lights. Thus, the low correlation coef-
ficients at “high frequencies” are much likely due to the
unsynchronization between traffic lights which act as ex-
ternal driving forces. This situation is similar to what
it can be observed when forced oscillations are present
in an oscillating system driven by a periodic force that
is external to the oscillating system. In such a case, the
oscillator is compelled to move at the frequency of the
driving force [36].

From the analysis of the time series normalized ac-
cording to the procedure (P2), we can observe an impor-
tant increase of the correlation coefficient as we increase
the updating times. At 1s integration time, the corre-
lation coefficient is 0.4 going up to about 0.8 at 1h, as
displayed in the top panel of Fig. 8 for all the monitoring

stations. The correlation coefficients within each group
are reported in the bottom panel of Fig. 8. In both
bottom panels of Figs. 5 and 8, group g1 presents the
lowest correlation. This is due to the group classifica-
tion process based on the road membership according to
its non-acoustic parameter x. In fact, group g1 contains
roads with x values within the interval (0 − 3), corre-
sponding to a total daily flow of (1− 1000) vehicles and
therefore with a large dynamic variability. This variabil-
ity impacts considerebly on the intra-group correlation
over long time scales.

Fig. 8: Top panel: Median of the correlation coefficient
among all the monitoring stations normalized according
to procedure (P2). The reported band corresponds to
the median absolute deviation, MAD. Bottom panel:
Median of the correlation coefficients among all the mon-
itoring stations normalized according to procedure (P2).
The dashed line is the median correlation among all sta-
tions, and is included for comparison.

B. Correlation of DYNAMAP predictions
Testing the results of DYNAMAP predictions re-

quired a dedicated measurement campaign which was
completed in 2019. The test measurements were per-
formed in 21 locations within Area 9, displayed by the
blue stars in Fig. 9, equally distributed in the six groups
of roads. Sites were selected in order to test the system
in complex scenarios where the noise from roads belong-
ing to different groups may contribute. Figure 9 contains
also the position of the 24 monitoring stations together
with the indication of the six groups of roads represented
by different colours.
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Fig. 9: Area 9 of the city of Milan. Colours correspond
to the different groups of streets (g1, g2, . . . , g6). Black
triangles represent the sites where the monitoring sta-
tions are installed.

As already described in Sect. II, DYNAMAP pre-
dictions can be obtained by using Eq. 1. They are the
result of the superposition of the six noise maps covering
the entire Area 9.

The predefined updating times, τ , within the day are:
τ = 5 min (07:00-21:00); τ = 15 min (21:00-01:00); and
τ = 60 min (01:00-07:00). This choice has been moti-
vated by the need to provide the shortest time interval
for the update of the acoustic maps keeping the asso-
ciated error approximately constant over the entire day
[19]. For the sake of simplicity, we consider, as in the
previous case, an updating time constant all over the
recorded period in order to highlight its influence over
the correlation outcome. Figure 10 presents two differ-
ent correlation results:

1) The correlation of each single measurement
(sk, k = 1, ..., 24) with the corresponding DYNAMAP
prediction.

2) The correlation between the mean of measure-
ments and the mean of DYNAMAP predictions (gi, i =
1, ..., 6).

All the time series have been normalized according
to procedure (P2). In the reported figures, the correla-
tion coefficient increases with the integration time and
presents, in some cases, quite low values at updating
times of 5 and 10 min.

As for point 2), the correlation has been calculated
with the same criteria of point 1) but averaging over
all the measurements and predictions in each integration
interval τ . In this case, the correlation results provide a
higher performance even at low integration times.

IV. Discussion

Designing a dynamic noise mapping is a complex task
owing to the large number of parameters that need to be
considered to describe with sufficient accuracy the traffic
noise in urban areas [11]. Here, we are underlying a fur-

ther factor which could help reduce the redundancies of
information carried by each monitoring station. When
we want to describe a road network by using a statisti-
cal approach such as the one featured in DYNAMAP, we
have to be sure that we are not introducing in our scheme
correlated information. As the traffic flow is highly fluc-
tuating in time on short time scales, we expect the corre-
lation among the monitoring sensors to be very low, and
actually this is the outcome illustrated in Fig. 5 with
the exception of g5. Within g5, we observe an increase of
the correlation coefficient for integration times of 30-60
min and this could be the sign of redundant information
carried within the group (correlation introduced by syn-
cronized traffic fluctuations). The other groups, instead,
present low correlation coefficients and this information
is useful to statistically describe the traffic source vari-
ability.

Figure 11 (top panel) illustrates the correlation ma-
trix among the time series recorded by the monitor-
ing network with integration time of 60 min and nor-
malized according to procedure (P1). Blackish boxes
indicate higher correlation which are found within g5
(hb106, hb136, hb151, hb123). A black box appears also in
correspondance with sensors (hb108, hb121) with correla-
tion coefficient of 0.77. These sensors are both installed
in via Pirelli, though belonging to different groups (see
map in Fig. 9). Also in this case, we are using redun-
dant information in DYNAMAP’s calculation scheme.
This characteristic emerges also analyzing the correlation
matrix among the time series recorded by the monitor-
ing network with integration time of 5 min, as reported
in the bottom panel of Fig. 11. In this case, the correla-
tion coefficient between sensors (hb108, hb121) is 0.65. In
order to better characterize these two locations, we con-
sidered the cross-correlation between these two stations.
It results that the maximum correlation is achieved at a
lag of 163 s. As the distance between the two sensors is
470 m, it means that the average traffic flow speed along
via Pirelli is like 10 km/h, which is quite reasonable if
we consider the presence of a traffic light in-between the
two monitoring stations.

DYNAMAP requires a high correlation over long time
scales, especially within each group, as groups have been
assembled from similarities among noise profiles. In this
sense, Fig. 8 (obtained using procedure (P2), suitable
for studying both high and low frequency fluctuations)
suggests that correlations are higher at longer integration
times, but reduce markedly at time scales τ < 5 min,
even within each group (see Fig. 8 bottom). This would
imply that roads belonging to a group could undergo a
group change as we are loosing similarities (similar noise
patterns) within the groups itself.

Dynamap predictions, shown in Figs. 10, present
good correlation results with the corresponding simul-
taneous measurements, especially at higher integration
times (τ > 10 min). Actually, this is an expected re-
sult, as it is well known that higher updating (integra-
tion) times reduce high frequency fluctuations letting low
frequency periodicities to emerge. On the other hand,
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Fig. 10: Correlation coefficient between DYNAMAP predictions and field measuremets within the six groups gi,
i = 1, 6. The black dashed line illustrates the group-average correlation.

the correlation performance is enhanced at all integra-
tion times when, within each group, we calculate mean
DYNAMAP’s predictions and compute the correlation
coefficient with the mean of the corresponding measure-
ments. This is consistent with the fact that DYNAMAP
noise description has a statistically-based approach and,
therefore, its performance is enhanced when averaging

over sufficient number of observations.

V. Conclusions

In this paper, we studied the correlations among
monitoring sensors that make up the dynamic noise map-
ping system of DYNAMAP. The results show that the
correlation coefficient the de-trended time series among
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Fig. 11: Correlation matrix among the time series
recorded by the monitoring network normalized accord-
ing to procedure (P1). Top panel: Integration time 60
min. Bottom panel: Integration time 5 min. Blackish
boxes indicate higher correlation.

all monitoring sensors, and within each group, show a
very low correlation. Indeed, the presence of high fre-
quency fluctuations associated with traffic noise short-
time scale variability makes this outcome a requirements.
The exception found for g5, for which we observe an in-
crease of correlations over integration times 30-60 min,
could be a sign that some sensor locations within the
group have not been chosen appropriately. This behav-
ior remains to be properly understood. Thus, this infor-
mation is useful as it may help optimize the monitoring
sensors’ location and account for “distributed” noise in-
formation.

As a general rule in statistically-base noise maps, each
sensor should be uncorrelated with respect to the other
sensors, especially inside its own group at short-time
scales (we did not go below 5 min) as it represents not
just the noise locally collected but also the noise from a
broader area, meaning that we do not want to account
for correlations due to local perturbations. Rather, we
expect highly correlated behavior over long-time scales to
maintain the similarities within the groups. DYNAMAP
predictions are well correlated with the corresponding
noise measurement (even at short integration times).
As DYNAMAP has a statistically-base structure, higher

correlations are observed when averaging both measure-
ments and predictions inside each group.

Future work will be devoted to the implementation
of road grid based MC simulations aimed at reproducing
the observed correlations in a complex traffic network.
In this way, we expect to learn how traffic noise correla-
tions are built in and how they evolve both in time and
space. The use of DYNAMAP available data will allow
us to study this issue accurately and eventually draw
conclusions of how to improve traffic planning in a large
urban environment.
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