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Abstract—The compressed sensing algorithm based on the 

hybrid sparse base (TFWBST+wave atom) usually uses two 

kinds of image sparse transformations to realize the sparse 

representation of structure and texture respectively. 

However, due to the lack of constraints on image texture 

and structure and the lack of orthogonality of the two 

sparse bases, the sparse coefficient of structure and the 

sparse coefficient of texture after transformation are often 

not good enough to reflect their respective components, that 

is, the texture coefficient often loses the detail information 

of texture. To overcome this phenomenon, this paper 

combines the compressed sensing algorithm based on 

hybrid base with the layered variational image 

decomposition method to form the variational multi-scale 

compressed sensing, which is to establish the CS image 

reconstruction model with minimal energy functional. The 

layered variational image decomposition decomposes image 

into different feature components by minimizing energy 

functional. The reconstruction of each layer by compressed 

sensing algorithm is very suitable for texture and detail 

reconstruction. In this model, TFWBST transform and 

wave atom are combined as a joint sparse dictionary, and 

the image decomposition is carried out under the (BV, G, E) 

variational framework, which is introduced into multi-scale 

compressed sensing technology to reconstruct the original 

image. In this new functional, TFWBST transform and 

wave atom are used to represent structure and texture 

respectively, and multiscale (BV, G, E) decomposition which 

can decompose an image into a sequence of image structure,  

 

 

 

 

 

 

texture and noise is added for restricting image parts. 

Experiments show that the new model is very robust for 

noise, and that can keep edges and textures stably than 

other multi-scale restoration and reconstruction of images. 

Keywords—Variational model, Multi-scale, Compressed 

sensing, CS reconstruction. 

 

I. INTRODUCTION 

Compressed Sensing is a new sampling theorem, it points 

out that if a signal can be compressed under some conditions, 
that a very accurate reconstruction can be obtained from a 
relatively small number of nontraditional samples[1].  

Since exploiting a prior knowledge of the original signals is 
critical to the success of CS theory, numerous studies have been 
performed to build more realistic models for real-world 
signals[2]. Conventional CS recovery exploits the l1-norm 
based sparsity of a signal and the resulting convex optimization 
problems can be efficiently solved by the class of surrogate-
function based methods. More recently, the concept of sparsity 
has evolved into various sophisticated forms. The wavelet 
transform has been proven to be powerful in many signal and 
image processing applications such as compression, denoise, 
image enhancement, and image feature extraction.wavelets are 
not optimal in capturing the two-dimensional singularities 
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found in images. Therefore, several transforms have been 
proposed for image signals that have incorporated directionality 
and multiresolution and hence, could more efficiently capture 
edges in natural images[3].  

On the basis of compressed sensing,the paper presents 
multiscale compressed sensing.We proposes a new image 
tranform based on wavelets and shear filter,referred as tight 
frame wavelet based Shearlet transform (TFWBST). we first 
used wavelet transform to perform multiscale decomposition of 
the image. Then in the high frequency subband, we used shear 
filter to perform multi-direction decomposition of the image, 
which can represent the image more sparsely. TFWBST 
transform and wave atom are combined as a joint sparse 
dictionary, and the image decomposition is carried out under 
the ）（ EGBV ,,  variational framework, which is introduced into 
multiscale compressed sensing technology to reconstruct the 
original image.The numerical experiments demonstrate that 
multiscale compressed sensing can give better quality 
reconstruction than a literal deployment of the compressed 
sensing methodology. 

 

 

 

II. TFWBST SPARSE REPRESENTATION 
A The Construction Principle of TFWBST 

The contour, edge and some texture of the natural image are 
the discontinuities of the image, which are often manifested as 
point singularity, curve singularity or plane singularity. 
According to the research results of physiologists on human 
visual system and the statistical model of natural image, a 
“sparsest” image representation method should have three basic 
characteristics: multi-resolution, locality and directionality.  In 
spatial domain and frequency domain, the primary function of 
sparse representation method has localized performance. 
TFWBST is constructed based on the above ideas. The 
realization is divided into two stages: the multi-scale 
decomposition of the two-dimensional orthogonal wavelet 
basis and the directional subdivision of the high-frequency 
coefficients by the shear operation of the shear filter. A two-
dimensional separable orthogonal wavelet basis spanned by an 
one-dimensional wavelet has a square support interval. Under 
different resolution, its support interval is a square of different 
sizes. In fact, the process of two-dimensional wavelet 
approaching the singular curve of the image is essentially the 
process of using points to approach the line[4]. However, when 
the decomposition scale gets smaller, the number of non-zero 
wavelet coefficients increases exponentially, and a large 
number of non-negligible coefficients appear, which finally can 
not be sparse to represent the original image.  

To make full use of the geometric regularity of the image[5], 
the square support interval of the two-dimensional orthogonal 

wavelet basis is further divided in the direction by referring to 
the mode of direction decomposition of the discrete shear filter 
in the frequency domain, and the new “basis” is expected to 
have a structure of direction and length and width 
transformation. The discrete shear filter is a localized window 
function on symmetric trapezoid pairs, which is constructed on 
the basis of continuous shear waves. Through the study of 
synthetic wavelet theory, the affine system can be used to 
combine geometry and multi-scale analysis to construct shear 
waves. When the dimension 2n , the definition of 
continuous shear wave transform is as follows: 

       tsaftsafSH ,,,,,                            (1) 

where tsaRtRsa ,,
2 ,,,0  is called shear wave, which is 

expressed as 
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where 1̂ and 2̂ are smooth functions, and their support 
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In frequency domain, the tsa ,,̂  is defined as 
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Therefore, for each shear wave tsa ,,̂ , the frequency domain 
support is as follows: 
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That is, each element tsa ,,̂ is supported on a trapezoid pair, 

the approximate size is jj 222  , and the direction is along a 
straight line with a slope of jl 2 . Based on the above analysis 
of shear wave support interval, a discrete shear filter is 
constructed [6]. It is still assumed that   2
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where 102 ,,ˆ DD  has been defined. For 2221  jj l , each

  d

lj , is a window function localized on a trapezoid pair, as 
shown in Fig.1. 

 

Fig. 1. The frequency domain support of Shearlet window function 

When jl 2  or 12  jl , at the junction of 0D  and 1D ,

  d

lj ,  is the superposition of these two functions, and 

  d

lj ,  is called discrete shear filter. On the pseudo polar 

lattice [7], the further processed   d

lj , can divide the high 
frequency coefficients into components in different directions. 

B Wave Atoms 

Texture, as the background component of the image, is a 
special structure of image information, which can not be 
represented sparsely in the wavelet domain or curvelet [8] 
domain. In texture image processing, the wave atom is widely 
used and has achieved good results. 

The wave atom is a kind of variant wavelet packet, which can 
also be regarded as the “interpolation” between wavelet and 
Garbo. Its support domain satisfies the parabolic proportion 
relationship:  2diameterwavelength  . A formal definition of 
a two-dimensional wave atom will be given. The wave atom is 
recorded as  x , and its subscript 

   2121 ,,,,,, nnmmjnmj  ，  2,1,,  iZnmj ii . 
  ,x  is regarded as any point in the phase space and satisfies 
the relation 

j

i

jjj CmCmnx 2max2,2,2 21        (8) 

Among them, 1C , 02 C , which are constants.  ,x

represent the center of wave atom in space domain and 
frequency domain respectively. The localization condition of 
the wave atom near the   ,x point in the phase space must 
also be satisfied [9]. 

III. MULTI-SCALE COMPRESSED SENSING ALGORITHM 
BASED ON LAYERED VARIATIONAL IMAGE DECOMPOSITION 

A Multi-Scale Image Decomposition Algorithm Based on 

Layering ),,( EGBV  

A new single parameter ),,( EGBV ternary decomposition 
model is proposed, and then the single parameter in the model 
is selected as a changing binary sequence to get the multi-scale 
decomposition of the image, and the convergence of the multi-
scale decomposition is proved. Note that the ternary 
decomposition model proposed by Aujol and Chambolle is not 
directly selected in this paper, because there are three 
parameters in this model that need to be adjusted. A single 
parameter in the new model proposed in this paper is enough to 
control the scale of the extracted structure, texture and noise. 

The ternary variational decomposition model of the new single 
parameter ),,( EGBV  is defined as follows： 
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f u v v


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  
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where 0 is the adjustment parameter. By solving the 
minimization problem (9), the image f is decomposed into four 
parts rvuf   , where BVu represents the structural 
part of the image, Gv represents the texture part of the image,

E represents the noise of the image, and  vufr

represents the residual after decomposition. 
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Model solving: CS reconstruction is carried out by using the 
introduced layered variational decomposition algorithm. In this 
paper, the alternating iterative algorithm is used to solve the 
minimization problem (9). 

v and  are fixed, and u is solved by the following 
minimization problem 

 21
0 22inf

Lk

k

BVBVu
vuru   


            (10) 

u and  are fixed, and  is solved by the following 
minimization problem 
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u and v are fixed, and  is solved by the following 
minimization problem: 

      
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G
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21
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The coupling problems (10) - (12) are solved respectively. 

First, the minimization problem (10) is solved. Using the 
projection algorithm[10] proposed by Chambolle in the dual 
frame, the solution of the minimization problem (10) can be 
written as follows: 
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 is 
equivalent to solving the following minimization problem 
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The Euler Lagrange equation of functional (14) is as follows: 

0))(2)(( ,,,  jijijikk avrdiv         (15) 

where jia , is the Lagrange multiplier. According to the 

complementary relaxation theorem, the jia , satisfies 
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Using the semi implicit fixed point iterative algorithm to solve 

the variable in equation (13), the following can be got: 
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In the above equation, 1n
ji,
 is solved, and the final iteration 

format is obtained as follows: 
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The discrete gradient operator is defined as: 
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21 )),((  is defined as 











































Niif

iif

Niif

Njif

jif

Njif

div

ji

ji

jiji

ji

ji

jiji

ji

,

1,

1,

,

1,

1,

)),((
2

,1

2
,

2
,1

2
,

1
1,

1
,

1
1,

1
,

,
21















     
 (19) 

Then the minimization problem (14) is solved. Since G norm is 

defined by the
L norm of function, the Euler-Lagrange 

equation of functional (14) cannot be solved [11], so the 
minimization problem (14) cannot be solved directly. In this 
paper, using the method of reference [12], the minimization 
problem (14) can be approximately as follows: 

}||)(||||||{inf 212
22 LLkk vvur           (20) 

The Euler-Lagrange equation of functional (20) is as follows: 
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The boundary condition is 0|)(
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

n

rvu k
, where n

represents the normal vector outside the boundary n . Using 
the gradient descent method, the solution of equation (15) is 
equivalent to the steady-state solution of the following 
evolution equation 
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In the discrete case, the semi implicit finite difference scheme 
is used to solve (15), and the iterative scheme can be obtained 
as follows 
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The discrete Laplacian operator is defined as 
,))((u ,, jiji udiv  ）（ , where ji,.）（ and jidiv ,.）（ are 

calculated by equations (15) and (14), respectively [13]. 

Finally, the minimization problem (15) is solved. Using wavelet 
soft threshold (threshold is 2

4  ) algorithm, the solution of the 
minimization problem (12) is approximately: 
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where WST is the wavelet soft threshold operator, which is 

defined as ji
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wavelet decomposition of g . 

In practical calculation, this paper first solves  , then v , and 
finally u to speed up convergence. And the latest value is 
brought into the next iteration to speed up the convergence. The 
final algorithm is described as follows 
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Step4. Calculate 
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0  n， .   

The stop condition is 
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The stop condition is   |}||,max{| 11 nnnn vvuu . 

The above algorithm describes how to solve coupling problems 
with fixed values, such as formula (10) - (12). In order to obtain 
the multi-scale variational decomposition, 1k  is first set, 
and then the above algorithm is used to iterate over and over 
again, and 1 kk  is reassigned in each step. The statement 
with the highest frequency in this algorithm is the calculation 
of ))(( dig  and ))(( udiv  , which requires a two-layer 
loop, so the time complexity of this algorithm is )(0 N . 
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Figure 1 is the free-body diagram of VTOL aircraft on Oxy 
plane, which considers the vertical y-axis and lateral x-axis and 
ignores the exercise in front and back (ie, z-direction). Oxy is 
the inertial coordinate system.

           

     
 

IV. HYBRID BASE COMPRESSED SENSING ALGORITHM 
BASED ON VARIATIONAL DECOMPOSITION 

The structure component u and the texture component
obtained by the variational decomposition are reconstructed by 
the compressed sensing[14]. To further enhance the sparseness 
of u  and ν , TFWBST and wave atom are used to represent the 
sparseness respectively. 

TFWBST as a new multiscale geometric transform. 
deecompose the image by using 2D separable orthogonal 
wavelet bases and implement direction partition with dynamic 
window functions in the pseudo-polar grid. Therefore, a new 
multiscale geometric transform with tight framework is 
constructed.The new sparse bases are the optimally sparse for 
the image with various edges. 

 the reconstruction model is as follows 

1
1

1
1 ||||minarg||||minarg vuX AT




  

 2||)(||.. vuybs                        (23) 

X̂ represents the reconstructed original image, -1
T and -1

A

represent the inverse transform of TFWBST and wave atom 
respectively, and Gaussian matrix is used for the observation of 
u  and v  components. 

Therefore, taking noise variance 2σ as the stop criterion of 
iteration can effectively recover image structure information 
and remove the influence of noise. 

Step1. Initialization: Initialize the reconstructed image 0ˆ X , 
where k is the number of iterations, and 1k . 

Step2. Random projection: the random projection sampling is 
carried out for the image  uX after variational 
decomposition to obtain the observation value: Xy  . 

Step3. Carry out hard threshold iteration based on hybrid base; 

         T Tk T T k k A A k kX Ψ u y u Ψ v y v   

        Ψ Φ Φ Ψ Φ Φ1 1 1 1

1

, where Φ1 represents the inverse process of measurement 

matrix, and  











T0

T
T

x

xx
x stands for hard threshold 

operator. 

Step4. 1
ˆˆ

 kXXX , Residual 

 Xy , number of 
iterations 1 kk . 

Step5. Repeat steps 3-4 until the residual 2σγ  completes the 
iterative reconstruction. 
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Experimental test image: in this section, six test images 
commonly used in the field of compressed sensing are selected f
or the experiment. The test image is shown in Fig.2, including 

Lena, Peppers, Leaves, Baboon, House and Barbara. The r
esolution of six images is 256256 . There are differences in 

the characteristics of these images, for example, Lena has both 
smooth areas and areas rich in detail and texture; Peppers are r
elatively smooth as a whole; Leaves have significant edges; 

Baboon has very rich details; House and Barbara have more 
texture areas. Therefore, the test results on these images can r
eflect the comprehensive performance of the algorithm. 

 

     
Fig. 2 The test images used in this section 

Test images used in this chapter: Peppers, Leaves, Baboon, House, 
Barbara 

 

Sampling rate setting: To comprehensively test the 
performance of the proposed algorithm under different 
sampling rates, experiments were carried out under the 
sampling rate of 20%, 30% and 40%. 

Experimental environment: The test experiment of this paper 
was completed on a desktop computer configured with Intel i7 
CPU and 32 GB memory. The programming software used was 
Matlab 2014b. 

B Analysis of Experimental Results 

For images with rich texture details, such as Baboon, Leaves 
and Barbara images, the algorithm in this paper has no obvious 
advantages over WSGSR[15] algorithm in the reconstruction of 
image details, especially for the whisker area of Baboon image 
and the texture area of Barbara image. WSGSR algorithm has a 
little advantage in detail reconstruction compared with the 
algorithm in this paper, but there is noise interference in the 
reconstructed image. This is because the algorithm adopts the 
weighted sparse representation of non-local similar image block 
structure group, which can effectively reduce the loss of low-
frequency components of the image while recovering the high-
frequency details of the image. However, since the 
reconstruction adopts the iterative hard threshold algorithm, the 
noise and artifact phenomena are more obvious. The algorithm 
in this paper is too smooth for the reconstruction of image 

details, resulting in unsatisfactory or missing reconstruction of 
some details.  

In this paper, a multi-scale variational decomposition model 
with single parameter is proposed, and the relationship between 
this parameter and each component scale is discussed 
theoretically. This model has the following advantages for 
multi-scale image restoration and reconstruction. Multi-scale 
variational decomposition can decompose the image into a 
sequence of structures, textures and noises of different scales, 
which can be used for multi-scale image restoration and 
reconstruction conveniently. The decomposition is a ternary 
decomposition, which can separately extract the structure, 
texture and noise of the image at different scales.In this way, 
the texture of the reconstructed image can be better 
reconstructed, and the noise can be eliminated. Due to the multi-
scale and variational decomposition methods, the image feature 
information is fully taken into account, so there is almost no 
noise and artifact interference in the reconstruction. 

 

               a)                                    b)                                    c) 

Fig. 3  The CS reconstruction results of Leaves at sampling rate 0.2 

a) Original image  b) WSGSR algorithm reconstruction image c) 
Multiscale compression sensing of variational model algorithm 

reconstruction image 

 

a)                                       b)                                    c) 

Fig. 4 The CS reconstruction results of Leaves at sampling rate 0.2 

a) Original image b) WSGSR algorithm reconstruction image c) 
Multiscale compression sensing of variational model algorithm 

reconstruction image 

a)                                        b)                                     c) 

Fig. 5 The CS reconstruction results of Leaves at sampling rate 0.2 

a)Original image b) WSGSR algorithm reconstruction image 
c) Multiscale compression sensing of variational model 

algorithm reconstruction image 
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a)                                  b)                                       c) 

Fig. 6 The CS reconstruction results of Leaves at sampling rate 0.2 

a)Original image b) WSGSR algorithm reconstruction image c) 
Multiscale compression sensing of variational model  algorithm 

reconstruction image 

 

a)                                    b)                                   c) 

Fig. 7 The CS reconstruction results of Leaves at sampling rate 0.2 

a) Original image b) WSGSR algorithm reconstruction image c) 
Multiscale compression sensing of variational model  algorithm 

reconstruction image 

 

 

a)                                b)                                   c) 

 Fig. 8 The CS reconstruction results of Leaves at sampling rate 0.2 

a)Original image b) WSGSR algorithm reconstruction image c) 
Multiscale compression sensing of variational model  algorithm 

reconstruction image 

VI. CONCLUSION 
The variational image decomposition can decompose the 

image into different feature components by minimizing the 
energy functional, which can be used for image restoration and 
reconstruction. A multi-scale image compression sensing 
algorithm based on the variational framework is proposed. 
Firstly, a single parameter ),,( EGBV ternary variational 
decomposition model is given, and the scale relationship 
between parameters and different feature components is 
theoretically analyzed. Then, the parameters of this model are 
selected as a binary sequence, and the variational 
decomposition of multi-scale ),,( EGBV is obtained. The 
multi-scale variational decomposition can decompose the 
image into a sequence of image structure, texture and noise. The 
convergence of multi-scale decomposition is proved, and the 
numerical solution is given based on duality theory and 

alternating iterative algorithm. Finally, the variational 
decomposition of multi-scale ),,( EGBV is applied to image 
restoration and reconstruction. The experimental results prove 
the correctness of the theoretical analysis, and show the 
effectiveness of this model in the multi-scale restoration and 
reconstruction of images, and the superiority of the model 
compared with other decomposition models. 

When multi-scale decomposition is used for image 
restoration and reconstruction, noise is very easy to be 
reconstructed into the image along with texture at a certain 
scale, which reduces the quality of reconstructed image.This is 
mainly because there is no clean 'noise + texture' decomposition 
at a certain scale during image decomposition.Therefore, how 
to select appropriate space to model noise and texture is the 
focus of the subsequent variation-based multi-scale image 
restoration and reconstruction.Our idea is to integrate different 
statistics of texture and noise into the variational decomposition 
model, but we haven't implemented it yet, which will be the 
direction of our future research. 
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