
 

 

 
Abstract—The paper discusses various methods of 

adaptive spline approximations for the flow of function 

values. It is considered  an adaptive compression 

algorithm, which, for a priori given , has the 

properties 1) the complexity of the algorithm is 

proportional to the length of the original flow, 2) by the 

piecewise linear interpolation of the compression result, it 

is possible to restore the original flow with an accuracy of 

3)  the compression result is close to optimal and has 

𝑶(𝑴) of arithmetic operations. The effectiveness of this 

approach  is demonstrated on rapidly changing initial 

flows of numerical  information in the digital  experiment . 

In addition, the paper presents an exact two-sided estimate 

for the number  𝑶(𝑴𝟐) of arithmetic operations for the 

optimal solution of the problem of compressing an 

informational numerical flow of length M with the 

possibility of recovering this flow with a predetermined 

accuracy. Provided that the original flow is convex, a 

compression algorithm is developed with an accurate two-

sided estimate of the number 𝑶(𝑴𝒍𝒐𝒈𝟐𝑴) and with the 

possibility of recovery with a prescribed accuracy. 

 
Keywords—spline approximation, computational 

complexity, adaptive grid, algorithms of enlargement.  

I. INTRODUCTION 
HE splines are a widespread apparatus for processing 
numerical information flows (see [1] – [33]). However, the 
needs associated with the constant increase in the volume of 

the numerical information require the further development of 
this apparatus. In this regard, we mention the development of 
splines that satisfy additional conditions. The various types of 
splines are considered, including sign-defined splines, the 
splines preserving the prescribed shape, and adaptive splines, 
etc. (see [13], [16], [25], [26], [31]). The complexity of the 
compression of numerical flows is a basic problem for signal 
processing. Standard compression of flow in classical wavelet 
algorithms is performed by removing components with odd 
knots (see [10]). In this case, there is no reason to hope for a 
qualitative approximation of the initial flow.  Paper [4] 
discusses the computer complexity for the interpolation of 𝑛 

 
 

data by the splines of order 𝑚 with the result 𝑚2𝑛/4 
arithmetical operations. In  paper [6], J.H.Friedman uses the 
splines for the modelling of the prediction in statistics. The 
method (named MARS) for flexible regression analysis of 
multivariate data is presented. The complexity of the model 
building algorithm depends significantly on the nature of the 
input data. Paper [7] is devoted to B-spline complexity in the 
case of a uniform grid. The complexity of the approximation is 
proportional to the number of data. The authors of paper [21] 
consider  strict conditions  that must obey the boundary curves 
of smooth finite elements  in the case of quadrangular grids. 
Fast polynomial spline with prescribed properties is 
represented in paper [23]. In the paper authors show that the 
complexity of calculating the unknown derivatives is a linear 
function of the length of the initial data flow. Usage of the 
cubic splines as the apparatus for application to construction 
of adaptive linear filter is discussed in  paper [27]. An 
application of parallel technology CUDA with usage of B-
splines is demonstrated in  paper [29]. The authors of all 
enumerated papers have a tendency to optimize spline 
processing. The natural source of optimization is the adaptive 
processing for the initial data flow. 
     The purpose of this work is to develop an adaptive 
compression algorithm that, for a priori given 𝜀 > 0, has the 
properties 1) the complexity of the algorithm is proportional to 
the length of the original flow, 2) by the piecewise linear 
interpolation of the compression result, it is possible to restore 
the original flow with an accuracy of 𝜀, 3) for rapidly changing 
smooth flows, the compression result is close to optimal. In 
addition, the paper presents an exact two-sided estimate for 
the number  𝑂(𝑀2) of arithmetic operations for the optimal 
solution of the problem of compressing an informational 
numerical flow of length 𝑀 with the possibility of recovering 
this flow with a predetermined accuracy. Provided that the 
original flow is convex, a compression algorithm is developed 
with an accurate two-sided estimate of the number 
𝑂(𝑀𝑙𝑜𝑔2𝑀) and with the possibility of recovery with a 
prescribed accuracy.  
      In the case of an analog signal the smoothness means the 
continuous differentiability of the function that generates the 
flow. For a discrete flow that means  the boundedness of the 
difference ratios. In this work, the complexity of the 
algorithms is determined by the number of calculations of the 
initial flow, by the number of additive and multiplicative 
operations, and by the number of comparison operations. All 
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of these characteristics are assessed separately. They are often 
referred to as arithmetic operations.    As a result we  obtain a 
small numerical flow which can be used for piece-wise linear 
restoration  𝑢̃(𝜉𝑗) of the  initial flow 𝑢(𝜉𝑗) with a 
predetermined precision 𝜀 > 0, where 𝜉𝑗  are knots of initial 
fine grid.  The best solution of this  problem exists and gives 
optimal compression. Generally speaking, this solution is 
required  of  𝑂(𝑀2)   arithmetic operations. This is due to the 
fact that an attempt to replace  "chord" 𝑢̃(t) to another  "chord"  
requires  finding of all  differences 𝑢̃(𝜉𝑗) − 𝑢(𝜉𝑗) in knots 
𝜉𝑗  of initial fine grid  (Section V contains  more details and 
accurate estimates). Thus, for 𝑀 = 109 the number  of  
arithmetic operations can be overwhelming. It is possible to 
improve the algorithm, if the  initial data has the convex 
property. In this case, it is sufficient 𝑂(𝑀𝑙𝑜𝑔2𝑀)   arithmetic 
operations (see Section VI for the exact wording). We propose 
a compression algorithm,  requiring 𝑂(𝑀) arithmetic 
operations. Of course, in this case  it is necessary to abandon 
the above-mentioned optimal compression. We obtain the 
resulting compressed flow on the grid  which depends on the  
initial flow essentially. Therefore, this grid is called the 
adaptive  grid. The relevant approximating spline is called the  
adaptive spline. The effectiveness of this approach  is 
demonstrated on rapidly changing initial flows of numerical 
information (see digital experiment in Section VII). 
      The idea behind this work is to replace the  computation of 
absolute values |𝑢̃(𝜉𝑗) − 𝑢(𝜉𝑗)| by calculating  their 
evaluations. The evaluations can include derivatives or   
corresponding difference relations. The evaluations   differ 
significantly from the mentioned absolute value because  they    
have the property of a monotonic increase with an increase of 
the considered  interval. Therefore it sufficient to find the 
maximum of  two numbers   instead of multiple calculations of 
mentioned  absolute value for the next interval.  As a result, 
the number of arithmetic operations  is substantially reduced. 
Instead of 𝑂(𝑀2) we get 𝑂(𝑀)     arithmetic operations.  

II. SOME AUXILIARY ASSERTIONS 

A. Adaptive grid  

Consider a positive continuous function 𝑓(𝑡), 
 𝑓 ∈ 𝐶[𝑎, 𝑏],        𝑓(𝑡) >  0 ∀𝑡 ∈ [𝑎, 𝑏].       (1)  
Let ε be a positive value. We suppose to discuss a grid  

 𝑋̃(𝑓, 𝜀): 𝑎 =  𝑥̃0  < 𝑥̃1  < . . . < 𝑥̃𝐾 <  𝑥̃𝐾+1  =  𝑏     (2)  
such that  

max
𝑡∈[𝑥𝑖,𝑥𝑖+1]

𝑓(𝑡) (𝑥̃𝑖+1 − 𝑥̃𝑖) = 𝜀   ∀𝑖 ∈ {0,1, . . . , 𝐾 − 1},    (3) 

 
max

𝑡∈[𝑥𝐾,𝑥𝐾+1]
𝑓(𝑡) (𝑥̃𝐾+1 − 𝑥̃𝐾) ≤ 𝜀.    (4) 

Grid (2)– (4) is named an adaptive grid for the function f. 
The next assertion holds. 
Lemma 1. If relations (1) are right, then for arbitrary 

𝜀𝜖(0, 𝜀0),       𝜀0 = (𝑏 − 𝑎) 𝑚𝑎𝑥
𝑡∈[𝑎,𝑏]

𝑓(𝑡),                (5)  

a natural number  K = K(f,ε) and a grid 

                      𝑋̃(𝑓, 𝜀) = {𝑥̃𝑖(𝑓, 𝜀)}𝑖𝜖{0,1,…,𝐾,𝐾+1}  

exist such that the properties (3)-(4) are fulfilled. The number 

K = K(f,ε) is unique. 

Proof. The lemma is proved by mathematical induction over 
the number of knots.  

I. The induction base is set as follows. Consider a 
function 𝜑0(𝜏) = max

𝑡∈[𝑥0,τ]
𝑓(𝑡) (𝜏 − 𝑥̃0). Let the variable τ 

increase from 𝑎 =  𝑥̃0  to  𝑏.  Then, in view of the assumptions 
(1) the function 𝜑0(𝜏)  strictly increases from 0 to 
max

𝑡∈[𝑎,b]
𝑓(𝑡) (𝑏 − 𝑎).  By condition (5) the unique point 

𝜏1𝜖[𝑎, 𝑏] exists   that max
𝑡∈[𝑎,𝜏1]

𝑓(𝑡) (𝜏1 − 𝑎) = 𝜀.  If we  put 

𝑥̃1 = 𝜏1 in the last formula we have relation (3) for 𝑖 = 0.  The 
induction base is set. 

 II. Now let us make an induction transition. We suppose 
that knots 𝑥̃1, 𝑥̃2, … , 𝑥̃𝑠   of the grid 𝑋̃ have been defined, and 
relations (3) hold for 𝑖 = 0,1,2, . . . , 𝑠 − 1.   If 𝑥̃𝑠 = 𝑏, then we 
put  𝐾 = 𝑠 − 1. By the induction hypothesis, relation (3) holds 
for 𝑖=s-1, so max

𝑡∈[𝑥̃𝑠−1,𝑥𝑠]
𝑓(𝑡) (𝑥̃𝑠 − 𝑥̃𝑠−1) = 𝜀  Replacing  here s 

on 𝐾 + 1, we see that formula (4) is valid. In this case the 
construction of the grid 𝑋̃(𝑓, 𝜀) satisfying the conditions (3) – 
(4),  is completed.   

Otherwise, if 𝑥̃𝑠 < 𝑏, the construction of the grid continues.    
Consider a function 𝜑𝑠(𝜏) = max

𝑡∈[𝑥𝑠,𝜏]
𝑓(𝑡) (𝜏 − 𝑥̃𝑠). If   𝜏  

changes  from 𝑥̃𝑠  to 𝑏  then the function 𝜑𝑠(𝜏)   increases 
from 0 to 𝑚𝑠 = max

𝑡∈[𝑥𝑠,𝑏]
𝑓(𝑡) (𝑏 − 𝑥̃𝑠). In the case under 

consideration,  two options are  possible: 1) 𝜀 < 𝑚𝑠 and  
2) 𝑚𝑠 ≤ 𝜀. Let us consider each of them.  

1) If  𝜀 < 𝑚𝑠 then there is a unique number 𝜏𝑠+1,  𝜏𝑠+1 < 𝑏,  
such that 𝜑𝑠(𝜏𝑠+1) = 𝜀. Setting 𝑥̃𝑠+1 = 𝜏𝑠+1 from the last 
formula we find  

𝜑𝑠(𝑥̃𝑠+1) = 𝜀 <=> max
𝑡∈[𝑥𝑠,𝑥̃𝑠+1]

𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠) = 𝜀, 

so relation (3) holds for 𝑖=s. In this case the step of the 
induction ends. 
2) If 𝑚𝑠 ≤ 𝜀 then we put 𝐾 = 𝑠, 𝑥̃𝑠+1 = 𝑏. Insofar as 

𝑚𝑠 ≤ 𝜀 <=> max
𝑡∈[𝑥𝐾,𝑥𝐾+1]

𝑓(𝑡) (𝑏 − 𝑥̃𝑠) ≤ 𝜀, 

then replacing s with K, we arrive at inequality (4). This 
completes the induction transition.  

Thus, the induction transition is complete on the whole. 
By relation (3) we have  

 𝑥̃𝑖+1 −  𝑥̃𝑖 =
𝜀

max
𝑡∈[𝑥̃𝑖,𝑥̃𝑖+1]

𝑓(𝑡)
≥

𝜀

max
𝑡∈[𝑎,𝑏]

𝑓(𝑡)
     ∀𝑖 ∈ {0,1, . . . , 𝐾 − 1}. 

 Therefore we can conclude that the discussed process is finite.  
 The Lemma is completely proved. 
  It is possible to discuss an initial fine grid 

    𝛯:  … < 𝜉−2 < 𝜉−1 < 𝜉0 < 𝜉1 < 𝜉2 < ⋯ 
 and consider the function 𝑓(𝑡) defined on a   grid segment 
|[𝑎, 𝑏]| = {𝑎 = 𝜉0, 𝜉1, … , 𝜉𝑀+1 = 𝑏}.     

  It is evident in this case there is analog of the Lemma 1, in 
which 𝑋̃ ⊂  |[𝑎, 𝑏]|, and instead of condition (3) it needs to 
discuss the condition 

max
𝑡∈[𝑥𝑖,𝑥𝑖+1]

𝑓(𝑡) (𝑥̃𝑖+1 − 𝑥̃𝑖) ≤ 𝜀 < 

< max
𝑡∈[𝑥𝑖+1,𝑥𝑖+2]

𝑓(𝑡) (𝑥̃𝑖+2 − 𝑥̃𝑖+1)    

                ∀𝑖 ∈ {0,1, . . . , 𝐾 − 1}. 
  It is clear to see that the next assertions are right. 
  Lemma 2.  If conditions (1) - (4) are true  and  𝜀 → +0 
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 then the integer function K(𝑓, 𝜀) increases. The next relations 

   lim
𝜀→0

 𝑚𝑎𝑥𝑠∈{0,1,…,𝐾}( 𝑥̃𝑠+1 −  𝑥̃𝑠) = 0,     lim
𝜀→0

𝐾(𝑓, 𝜀) = +∞ 
are right. 

 Lemma 3. Under conditions (1)   --  (4) the relation 

   lim
𝜀′→0

𝐾(𝑓, 𝜀′)𝜀′ = ∫ 𝑓(𝑡)𝑑𝑡 ≤ 𝐾(𝑓, 𝜀) + 1
𝑏

𝑎
               (6) 

is fulfilled. 

Summing (3) -- (4), we have 
 𝐾𝜀 = ∑ max

𝑡∈[𝑥𝑠,𝑥𝑠+1]
𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠) ≤𝐾−1

𝑠=0

     ≤ ∑ max
𝑡∈[𝑥𝑠,𝑥𝑠+1]

𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾
𝑠=0 .                                  (7) 

 

B. Digital complexity 

  It is easy to see that the proof of Lemma 1 is actually   an 
algorithm for construction   of the grid  𝑋̃ . Consider the 
question of the complexity of the calculations in this 
algorithm. 

  Let 𝑁𝑎𝑑𝑑 = 𝑁𝑎𝑑𝑑(𝑓) and 𝑁𝑚𝑢𝑙 = 𝑁𝑚𝑢𝑙(𝑓)  be a number 
of additive  and a number of  multiplicative operations 
accordingly, as well as 𝑁(𝑓) and  𝑁𝑐𝑜𝑚𝑝 = 𝑁𝑐𝑜𝑚𝑝(𝑓) be a 
number of calculations of   the function 𝑓(𝑡) and a number   of 
comparisons. 

   Lemma 4. The algorithm for the construction of the 

adaptive grid 𝑋̃(𝑓, 𝜀)   has the next properties  

𝑁(𝑓) = 𝑁𝑎𝑑𝑑 = 𝑁𝑚𝑢𝑙 = 𝐾 + 𝑀 + 2,  
               𝑁𝑐𝑜𝑚𝑝 = 2(𝐾 + 𝑀 + 2).                                            (8) 

  Proof.   The resulting grid  has the form 
 𝑋̃ = 𝑋̃(𝑓, 𝜀): {𝑎 =  𝑥̃0  < 𝑥̃1  < . . . < 𝑥̃𝐾 <  𝑥̃𝐾+1  =  𝑏} =

     {𝑎 = 𝑥̃0 =  𝜉0  < 𝑥̃1 = 𝜉𝑝1
 < . . . < 𝑥̃𝐾 = 𝜉𝑝𝐾

<

 𝑥̃𝐾+1 =       𝜉𝑝𝐾+1
=  𝑏},                                           (9)                        

where 𝑝𝐾+1 = 𝑀 + 1.  At the 𝑠-th step of this algorithm, we 
move from the knot 𝑥̃𝑠   to the knot 𝑥̃𝑠+1. 

  Suppose that  𝑥̃𝑠 = 𝜉𝑝𝑠
, 𝑥̃𝑠+1 = 𝜉𝑝𝑠+1

.  It is not difficult to 
see that with the mentioned transition it is required  

1) to   calculate  𝑝𝑠+1- 𝑝𝑠 + 1 times the function 𝑓(𝑡)    (at 
points 𝜉𝑝𝑠+1,𝜉𝑝𝑠+2, … , 𝜉𝑝𝑠+1+1);   

 2) to find the maximum of two numbers  𝑝𝑠+1- 𝑝𝑠 +
1 times, namely find the next maximums 

𝜇1 = 𝑚𝑎𝑥{𝑓(𝜉𝑝𝑠
), 𝑓(𝜉𝑝𝑠+1)}, 𝜇2 = 𝑚𝑎𝑥{𝜇1, 𝑓(𝜉𝑝𝑠+2)}, …, 

𝜇 𝑝𝑠+1− 𝑝𝑠+1 = 𝑚𝑎𝑥{𝜇 𝑝𝑠+1− 𝑝𝑠
, 𝑓(𝜉𝑝𝑠+1+1)} = max

𝑡∈[𝑥𝑠,𝑥𝑠+1]
𝑓(𝑡) ; 

   3) to execute  𝑝𝑠+1- 𝑝𝑠 + 1 additive operations, namely 
find the next differences 

𝜎1 = 𝜉𝑝𝑠+1 − 𝑥̃𝑠, 𝜎2 = 𝜉𝑝𝑠+2 − 𝑥̃𝑠 , . . . , 𝜎𝑝𝑠+1− 𝑝𝑠+1

= 𝜉𝑝𝑠+1+1 − 𝑥̃𝑠; 
   

4) to execute  𝑝𝑠+1- 𝑝𝑠 + 1 multiplicative operations,  
namely find the following products 

𝜃1 = 𝜇1𝜎1, 𝜃2 = 𝜇2𝜎2, . . . , 𝜃𝑝𝑠+1− 𝑝𝑠+1 =

= 𝜇𝑝𝑠+1− 𝑝𝑠+1𝜎𝑝𝑠+1− 𝑝𝑠+1 =

= max
𝑡∈[𝑥̃𝑠,𝑥𝑠+1]

𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠); 

5) to make   𝑝𝑠+1- 𝑝𝑠 + 1 comparisons with 𝜀,  namely, to 
obtain the following inequalities 

𝜃1 ≤ 𝜀, 𝜃2 ≤ 𝜀, . . . , 𝜃𝑝𝑠+1− 𝑝𝑠
≤ 𝜀, 𝜃𝑝𝑠+1− 𝑝𝑠+1 > 𝜀 

Since parameter  𝑠  should be changed from 0 to 𝐾, then    the 
total number of 𝑁(𝑓) calculations of the function 

𝑓 is 𝑁(𝑓) = ∑ (𝑝𝑠+1 −  𝑝𝑠 + 1) = 𝐾 + 1 +𝐾
𝑠=0 𝑝𝐾+1 − 𝑝0.        

Since, in accordance with (2)  and  (9), 𝑝0 = 0,  𝑝𝐾+1 = 𝑀 +
1, then as a result, we get  𝑁(𝑓) = 𝐾 + 𝑀 + 2. The same way 
we   find the number 𝑁𝑎𝑑𝑑 = 𝐾 + 𝑀 + 2 additive and the 
number 𝑁𝑚𝑢𝑙 = 𝐾 + 𝑀 + 2 multiplicative operations, as well 
as the number 𝑁𝑐𝑜𝑚𝑝 comparisons.  So we get (8).  This   
completes the proof. 

Remark. Note that counting the number of operations is a 

very thankless task, because the result depends on the 

computing system and the programming style. For example, if 

the calculations  in question are not performed on the remote 

computational modules, but  on one module, then the estimate 

𝑁(𝑓) can be improved. Really, there is no need to calculate 

the value  𝑓(𝑡) twice in knots  of the form 𝜉𝑝𝑠+1, 𝜉𝑝𝑠+1+1 (in the 

segment [𝜉𝑝𝑠+1
, 𝜉𝑝𝑠+2

] 𝑦𝑜𝑢 𝑐𝑎𝑛 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓(𝜉𝑝𝑠+1+1), 

which is calculated in the previous stage of the calculation). In 

this case, the estimate 𝑁(𝑓)takes the form 𝑁(𝑓) = 𝑀 + 1. In 

this work, such subtleties are not considered. It is important 

for us that the complexity of the algorithm for obtaining the 

adaptive grid is proportional to the length of the  initial data 

flow. 

C. Pseudo-equidistant grid 

    Let  𝐽𝐾be a set  {0,1,2, … , 𝐾}. The subset 
𝑋̅:       𝑎 =  𝑥̅0 < 𝑥̅1 < ⋯ < 𝑥̅𝑁+1 = 𝑏                            (10)   

of the grid segment |[𝑎, 𝑏]|  is called   pseudo-equidistant grid 

with width ℎ > 0, if the next relations hold      
  𝑥̅𝑗+1 − 𝑥̅𝑗 − 2𝜏 ≤ ℎ < 𝑥̅𝑗+1 − 𝑥̅𝑗 + 2𝜏       𝑗𝜖𝐽𝑁,  (11)    

where = 𝑚𝑎𝑥𝑗𝜖𝐽𝑀
(𝜉𝑗+1 − 𝜉𝑗) . 

Suppose that the condition  
               2 𝜏 ≤ ℎ < 𝑏 − 𝑎                                                          (12) 
is fulfilled. 

Let 𝑞 be a real value. The expression ⌊𝑞⌋    means an integer 
number 𝑘1  with the property 0 ≤ 𝑞 − 𝑘1 < 1.  Analogously  
⌈𝑞⌉ means an integer 𝑘2 with the property 0 ≤ 𝑘2 − 𝑞 < 1. 

  For  𝑗𝜖𝐽𝑁 we find 𝑠𝜖𝐽𝑀 such that the inequality  
                         𝜉𝑠 ≤ 𝑗ℎ < 𝜉𝑠+1                                    (13)   

is right. By supposition (12) the unique number 𝑠 = 𝑠(𝑗) 
exists.   Let us discuss 

𝑥̅𝑗 = 𝜉𝑠(𝑗)         ∀𝑗 ∈ 𝐽𝑁.                                                         (14) 
        Lemma 5. The next relation holds 

                  ℎ − 2𝜏 < 𝑥̅𝑗+1 − 𝑥̅𝑗 ≤ ℎ + 2𝜏.                        (15) 
       Proof. We assume that 
       𝜉𝑠 ≤ 𝑗ℎ < 𝜉𝑠+1,   𝜉𝑝 ≤ (𝑗 + 1)ℎ < 𝜉𝑝+1. 
      By supposition (12)   we have  𝑠 < 𝑝. If we put  

ƞ = 𝑗ℎ − 𝜉𝑠,     𝛿 = (𝑗 + 1)ℎ − 𝜉𝑝 
     then we have 
            𝜉𝑠 = 𝑗ℎ − ƞ,          𝜉𝑝 = (𝑗 + 1)ℎ − 𝛿.              (16)         
    By (16)    we deduce 

0 ≤ ƞ < 𝜉𝑠+1 − 𝜉𝑠 ,         0 ≤ 𝛿 < 𝜉𝑝+1 − 𝜉𝑝 .                         (17)   
    According to formulas (13)  --  (14)   we define 

𝑥̅𝑗 = 𝜉𝑠,        𝑥̅𝑗+1 = 𝜉𝑝 . 
   Thus we have 
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  𝑥̅𝑗+1 − 𝑥̅𝑗 = 𝜉𝑝 − 𝜉𝑠 = ℎ − 𝛿 + ƞ.                               (18) 
By relations (18)   and (17)   we obtain    (15).This completes 
the proof. 

Relation (11) follows from (15),   therefore the obtained 
grid is pseudo-equidistant. 

Remark. If the initial grid is equidistant, 

𝜉𝑠 = 𝑠𝜏,      𝜏 =
𝑏 − 𝑎

𝑀 + 1
,      𝑠 = 0,1,2, … , 𝑀 + 1, 

 then inequality   (13)    has the form 𝑠𝜏 ≤ 𝑗ℎ < (𝑠 + 1)𝜏.  The 
last one is equivalent to the relation 𝑠 ≤

𝑗ℎ

𝜏
< 𝑠 + 1.   

Therefore we can put 𝑠 = ⌊𝑗
ℎ

𝜏
⌋. Thus we have 𝑥̅𝑗 = 𝜉

⌊𝑗
ℎ

𝜏
⌋
. 

     Let  𝜀 > 0 be a positive value. We suppose that 

                         N=⌈
||𝑓||

𝐶[𝑎,𝑏]

𝜀
(𝑏 − 𝑎)⌉>3.                        (19) 

   Then 
||𝑓||

𝐶[𝑎,𝑏]

𝜀
(𝑏 − 𝑎) ≤ 𝑁 <

||𝑓||
𝐶[𝑎,𝑏]

𝜀
(𝑏 − 𝑎) + 1.            (20) 

The last inequality is equivalent to the relation 
     ||𝑓||

𝐶[𝑎,𝑏]
(𝑏 − 𝑎) ≤ 𝑁𝜀

< ||𝑓||
𝐶[𝑎,𝑏]

(𝑏 − 𝑎) + 𝜀        (21)    
    We suppose that 

                           
𝑏 − 𝑎

𝑁 + 1
> 4𝜏.                                                (22) 

      Choosing the value $h$ according to the formula 
                                          ℎ =

𝑏−𝑎

𝑁+1
− 2𝜏,                             (23)  

            
   We see that by conditions   (19) – (23) relation (12) is 

fulfilled.   By 20) and (23) we have 𝑁 + 1 > ||𝑓||𝐶[𝑎,𝑏]/𝜀 and 
                            ℎ + 2𝜏 < 𝜀||𝑓||𝐶[𝑎,𝑏]                                (24) 
 By (24) we have 

          ||𝑓||𝐶[𝑎,𝑏] (𝑥̅𝑠+1 − 𝑥̅𝑠) ≤ ||𝑓||
𝐶[𝑎,𝑏]

 (ℎ + 2𝜏) ≤ 𝜀.     (25) 
By (25) we obtain 
     𝑚𝑎𝑥𝑡𝜖[𝑥̅𝑠,𝑥̅𝑠+1]𝑓(𝑡)(𝑥̅𝑠+1 − 𝑥̅𝑠) ≤ 𝜀      ∀𝑠𝜖𝐽𝑁 .             (26) 
 The previous arguments prove the following statement. 
 
   Theorem 1. If relations (19),     (22) are right then the 

pseudo-equidistant grid  (10)  exists and    properties  (21),    

(26)   are fulfilled. 

     

D. Some assertions 

 
 Lemma 6. If conditions (1)– (4), (19)– (23) are right then the 

next inequality is fulfilled:  
∑ max

𝑡∈[𝑥𝑠,𝑥̃𝑠+1]
𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠) − 𝜀𝐾

𝑠=0

(𝑏 − 𝑎) max
𝑡∈[𝑎,𝑏]

𝑓(𝑡) + 𝜀
≤

𝐾(𝑓, 𝜀)

𝑁(𝑓, 𝜀)
 

≤

∑ max
𝑡∈[𝑥𝑠,𝑥𝑠+1]

𝑓(𝑡) (𝑥̃𝑠+1 − 𝑥̃𝑠)𝐾
𝑠=0

(𝑏 − 𝑎) max
𝑡∈[𝑎,𝑏]

𝑓(𝑡)
.                        (27) 

 
  Proof.   By (7) we have 
∑ 𝑚𝑎𝑥

𝑡∈[𝑥𝑠,𝑥̃𝑠+1]
𝑓(𝑡)𝐾

𝑠=0 (𝑥̃𝑠+1 − 𝑥̃𝑠) − 𝜀 ≤ K𝜀 =

    ∑ 𝑚𝑎𝑥
𝑡∈[𝑥𝑠,𝑥̃𝑠+1]

𝑓(𝑡)𝐾−1
𝑠=0 (𝑥̃𝑠+1 − 𝑥̃𝑠).                        (28)        

By (21) and (28) we obtain (26). 
    Theorem 2. If the conditions of Lemma 5 

   are true then the relation 

               𝑙𝑖𝑚𝜀→0

𝐾(𝑓, 𝜀)

𝑁(𝑓, 𝜀)
=

1
𝑏 − 𝑎 ∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎

𝑚𝑎𝑥𝑡𝜖[𝑎,𝑏]𝑓(𝑡)
               (29) 

    is right. 

Proof. Passaging to the limit in (27) under condition 
 𝜀 → 0, we obtain relation (29). 

III. ON QUANTITY OF KNOTS FOR THE ADAPTIVE GRID 
    Consider a grid 
           𝑋̂:  𝑎 = 𝑥̂0 < 𝑥̂1 < ⋯ < 𝑥̂𝐾 < 𝑥̂𝐾+1 = 𝑏.              (30) 
       Suppose 𝑢𝜖𝐶[𝑎, 𝑏]. Let 𝑢̃(t)  be a piecewise linear 

function 
                       𝑢̃(t)=𝑢(𝑥̂𝑖)+

𝑢(𝑥̂𝑖+1)−𝑢(𝑥̂𝑖)

𝑥̂𝑖+1−𝑥̂𝑖
 (𝑡 − 𝑥̂𝑖)    𝑡𝜖[𝑥̂𝑖 , 𝑥̂𝑖+1].    

The next assertion is evident. 
  Lemma 7. Suppose 𝑡𝜖[𝑥̂𝑖 , 𝑥̂𝑖+1].    If 𝑢𝜖𝐶1[𝑥̂𝑖 , 𝑥̂𝑖+1]  then 

the inequality |𝑢(𝑡) − 𝑢̃(𝑡)| ≤(𝑥̂𝑖+1 −
𝑥̂𝑖)𝑚𝑎𝑥𝜉𝜖[𝑥𝑖,𝑥𝑖+1]|𝑢′(𝜉)| 

 is fulfilled. If 𝑢𝜖𝐶2[𝑥̃𝑖 , 𝑥̃𝑖+1] then the inequality 

|𝑢(𝑡) − 𝑢̃(𝑡)| ≤ (𝑥̂𝑖+1 − 𝑥̂𝑖)2𝑚𝑎𝑥𝜉𝜖[𝑥𝑖,𝑥𝑖+1]|𝑢′′(𝜉)| 

holds. 

 Theorem 3. Let 𝑢𝜖𝐶1[𝑎, 𝑏] . Suppose the condition 

                   𝑢′(𝑡) ≠ 0     ∀𝑡𝜖[𝑎, 𝑏]                                   (31)                                           
   is true. If for ƞ > 0  the grid (30)   coincides with the grid  

𝑋̃(|𝑢′|, ƞ)  then 

   1) the quantity 𝐾𝑢
′ (ƞ)=K(|u’|,ƞ)   of knots  satisfies 

relations 

 𝑙𝑖𝑚
𝜀′→0

𝐾(|𝑢′|, 𝜀′)𝜀′ = ∫ |𝑢′|𝑑𝑡 ≤
𝑏

𝑎
   𝐾(|𝑢′|, 𝜀) + 1,        (32) 

   2) the inequality  

|𝑢(𝑡) − 𝑢̃(𝑡)| ≤ ƞ   ∀𝑡𝜖[𝑎, 𝑏]                                           (33) 

   is fulfilled. 
   Proof. Assuming  𝑋̂ = 𝑋̃(|𝑢′|, ƞ), we apply   Lemma 3. 

As a result we have relation (32).  Inequality (33) follows 
from Lemma 7 and formulas   (3) --  (4)  for  𝑓 = |𝑢′| and 𝜀 =
ƞ. 

   Theorem 4. If  𝑢𝜖𝐶2[𝑎, 𝑏] ,  the condition 

                𝑢′′(𝑡) ≠ 0       ∀𝑡𝜖[𝑎, 𝑏]                                    (34)                                        

is fulfilled. If for ƞ > 0  the grid (30)   coincides with the grid 

𝑋̃(|𝑢′′|, ƞ)  then 

   1) the quantity 𝐾𝑢
′′(ƞ) = 𝐾(|𝑢’’|, ƞ)   of knots  satisfies 

relations 
 lim
𝜀′→0

𝐾 (√|𝑢′′|, 𝜀′) 𝜀′ = 

= ∫ √|𝑢′′|𝑑𝑡 ≤ (
𝑏

𝑎

𝐾(√|𝑢′′|, 𝜀) + 1),                                   (35) 

   2) the inequality  

 |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ ƞ2   ∀𝑡𝜖[𝑎, 𝑏]                                           (36) 

  holds. 
Proof.  Analogously to the proof of the previous theorem 

we put 𝑋̂ = 𝑋̃ (√|𝑢′′|, ƞ).    Implementing (6), we obtain 
relation  (35).   Inequality   (36) follows from  Lemma 7 and 
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relations   (3)    --  (4)  for  𝑓 = √|𝑢′′|,    𝜀 = ƞ2. 

IV. ON QUANTITY OF KNOTS IN THE CASE OF AN EQUIDISTANT 
GRID 
    By the value ƞ > 0 we construct an equidistant 
grid   𝑋̅(|𝑢′|, ƞ) with the step ℎ = (𝑏 − 𝑎)/𝑁(|𝑢′|, ƞ), 
where  𝑁(|𝑢′|, ƞ)   is the quantity of knots    for the mentioned 
grid. 
   Theorem 5. Consider 𝑢𝜖𝐶1[𝑎, 𝑏], ƞ > 0.   If the grid  𝑋̂ 

coincides with the grid 𝑋̅(|𝑢′|, ƞ) then 

   1) the number 𝑁𝑢
′ (ƞ) = 𝑁(|𝑢′|, ƞ) of  knots 

   satisfies to the relation 

𝑁(|𝑢′|, ƞ) = ⌈(𝑏 − 𝑎)𝑚𝑎𝑥𝑡𝜖[𝑎,𝑏]𝑢′(𝑡)/ƞ⌉,                    (37) 

   2) the inequality |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ ƞ       ∀𝑡𝜖[𝑎, 𝑏]         (38) 

is true. 

       Proof. Setting 𝑋̂ =  𝑋̅(|𝑢′|, ƞ),  we apply  formula   (19). 
  As a result we obtain relation (37). Inequality  (38) follows 
from  definition   of the grid  𝑋̅(|𝑢′|, ƞ)     (see Lemma 7 and 
formulas  (19)  --  (22),  (25)     for 𝑓 = |𝑢′|,    𝜀 = ƞ). 
 
     Theorem 6. Suppose that 𝑢𝜖𝐶2[𝑎, 𝑏], ƞ > 0. If the grid  𝑋̂ 

coincides with the grid 𝑋̅(|𝑢′′|, ƞ) then 

   1) the number 𝑁𝑢
′′(ƞ) = 𝑁(√|𝑢′′|, ƞ)  of knots 

   satisfies the relations  

𝑁 (√|𝑢′′|, ƞ) = ⌈(𝑏 − 𝑎)𝑚𝑎𝑥𝑡𝜖[𝑎,𝑏]√|𝑢′′(𝑡)|/ƞ⌉,      (39) 

   2) the inequality 

                     |𝑢(𝑡) − 𝑢̃(𝑡)| ≤ ƞ2   ∀𝑡𝜖[𝑎, 𝑏]                     (40) 

   is right. 

     Proof. The proof of the theorem is similar to the   proof of 
the previous one. Relations (39)    --  (40) we obtain   by 
formula   (19), assuming  𝑓 = |𝑢′′|   and  𝜀 = ƞ. 

 The next assertion is true. 
 Theorem 7. Let a function 𝑢𝜖𝐶1[𝑎, 𝑏] with property 

                 𝑢′(𝑡) ≠ 0       ∀𝑡𝜖[𝑎, 𝑏]                                 (41)                                 
be fixed. If the deviations of the piece-wise linear 

interpolations 

from the mentioned function $u$ is equal to $\eta$ then the 

ratio 

 𝐾𝑢
′ (ƞ)/𝑁𝑢

′ (ƞ)    has the next asymptotic    behavior 

            𝑙𝑖𝑚ƞ→0

𝐾𝑢
′ (ƞ)

𝑁𝑢
′ (ƞ)

=

1
𝑏 − 𝑎 ∫ |𝑢′(𝑡)|𝑑𝑡

𝑏

𝑎

𝑚𝑎𝑥𝑡𝜖[𝑎,𝑏]|𝑢′(𝑡)|
.               (42) 

Proof. Implementation of relations (32) --  (33)  and 
    (37)  --  (38) let us conclude that formula   (42) is right 
under condition   (41).  
 Theorem 8. Let a function  𝑢𝜖𝐶2[𝑎, 𝑏]  have the property 

                                                 𝑢′′(𝑡) ≠ 0.                               (43)   

    Then 

            𝑙𝑖𝑚ƞ→0

𝐾𝑢
′′(ƞ)

𝑁𝑢
′′(ƞ)

=

1
𝑏 − 𝑎 ∫ |𝑢′′(𝑡)|𝑑𝑡

𝑏

𝑎

𝑚𝑎𝑥𝑡𝜖[𝑎,𝑏]|𝑢′′(𝑡)|
.                        (44) 

 Proof. Usage of relations (35)  --  (36) and   (39)  --  (40)  
allow us to obtain formula  (44) under condition  (43). 

V. THE NUMBER OF OPERATIONS 
   First, we consider the adaptive grid construction algorithms 

described in the proof of Lemma 1. 
   Theorem 9. If the conditions of Theorem 3 are fulfilled   

then 

𝑁(𝑢′) = 𝑁𝑎𝑑𝑑(𝑢′) = 𝑁𝑚𝑢𝑙(𝑢′) = 𝐾𝑢
′ (ƞ) + 𝑀 + 2, 

                       𝑁𝑐𝑜𝑚𝑝(𝑢′) = 2𝑁𝑚𝑢𝑙(𝑢′).                            (45)          

If the conditions of Theorem 4 are fulfilled   then 

𝑁(𝑢′′) = 𝑁𝑎𝑑𝑑(𝑢′′) = 𝑁𝑚𝑢𝑙(𝑢′′) = 𝐾𝑢
′′(ƞ) + 𝑀 + 2, 

                       𝑁𝑐𝑜𝑚𝑝(𝑢′′) = 2𝑁𝑚𝑢𝑙(𝑢′′).                          (46)           

      The proof of formulas (45)   --  (46) follows from Lemma 
4, Theorem 3 and Theorem 4. 
       Consider the fine equidistant grid segment 

|[𝑎, 𝑏]| = {𝑎 = 𝜉0, 𝜉1, … , 𝜉𝑀+1 = 𝑏}, 
 where  𝜉𝑖 = 𝑖ℎ̂,       ℎ̂ =

𝑏−𝑎

𝑀+1
.  

It is easy to see that the proof of Lemma 1 can be carried out 
 so that the grid 𝑋̃  is a subset   of the set |[𝑎, 𝑏]|.  In this case, 
the proof of  Lemma 1   can be considered as an algorithm for 
constructing the grid   𝑋̃. The number of operations in this 
algorithm   is of the order of   𝑀.   
     Now we consider the construction of the approximation of 
this function in a situation in which the mentioned derivatives 
are not known. 
     We discuss the function  
           Φ(𝜉,𝑥0, 𝑥1) =𝑢(𝜉)-𝑢(𝑥0)- 𝑢(𝑥1)−𝑢(𝑥0)

𝑥1−𝑥0
(ξ − 𝑥0) 

∀∈[𝑥0, 𝑥1],  𝑎 ≤ 𝑥0 < 𝑥1 ≤ 𝑏,    𝜉, 𝑥0, 𝑥1𝜖𝛯.                    (47)            
The value Φ(𝜉,𝑥0, 𝑥1) can be called  the deviation of the chord 

L(𝑥0, 𝑥1)  from the function u at the point 𝜉. Consider the 
process of constructing the grid 𝑋̃ = 𝑋̃(𝑢, 𝜀),which consists of 
the fact that  after finding the knot 𝑥̃𝑠 , the knot 𝑥̃𝑠+1 is 
searched using the two-point criterion: 
    1) Φ(𝜉,𝑥𝑠 , 𝑥𝑠+1) ≤ 𝜀    for 𝑥𝑠<𝜉<𝑥𝑠+1, 
    2) for a value 𝛿>0 we have Φ(𝜉,𝑥𝑠, 𝑥𝑠+1) > 𝜀   for 
𝑥𝑠+1<𝜉<𝑥𝑠+1 +  δ. 
        This criterion is   checked on the initial grid 𝛯. 
  We have 𝑋̃ ⊂ 𝛯.  Consider the operation of searching for the 
difference 

 Φ(ξ𝑖,𝑥̃𝑠, ξ𝑗) = 𝑢(ξ𝑖) − 𝑢(𝑥̃𝑠) −  
𝑢(ξ𝑗)−𝑢(𝑥𝑠)

ξ𝑗−𝑥𝑠
(ξ𝑖 − 𝑥̃𝑠) .       (48) 

     The considered algorithm is iterative. It consists of   the 
sequential selection of suitable knots of the initial  grid. This 
algorithm will be described in more   detail. 
   Algorithm (P): 
     0. Let 𝑥̃0 = 𝑎. 
     1. Suppose the knots 𝑥̃0 < 𝑥̃1 < ⋯ < 𝑥̃𝑠  of the desired 
adaptive grid has already been found, and 𝑥̃𝑠 = ξ𝑗𝑠

. If  𝑗𝑠 +

1 ≤ 𝑀, then  we change the parameter 𝑗 in formula (48), 
 sequentially taking 𝑗 = 𝑗𝑠 + 2, 𝑗𝑠 + 3, … , 𝑀 +1 and 
checking every  time the fulfillment of all inequalities 
|Φ(ξ𝑖,𝑥̃𝑠, ξ𝑗)| ≤ 𝜀    𝑖 = 𝑗𝑠 + 1, 𝑗𝑠 + 2, … , 𝑗 − 1.         (49) 
 If all inequalities (49)   are satisfied, and 𝑗 < 𝑀 + 1, then we 
   add a unit to 𝑗 and go back to checking inequalities   (49), 
i.e. repeat point 1. 
    2. This process is interrupted in one of two cases: 
   a /. It turned out that 𝑗 = 𝑀 + 1. In that case,   select the 
knot 𝑥̃𝑠+1 = ξ𝑀+1   and put 𝐾 = 𝑠. The construction of the 
adaptive grid  𝑋̃   is finished. 
   b /. For 𝑗 < 𝑀 + 1, at least one of the inequalities  (49) is 
violated. In this case, we  select the knot 𝑥̃𝑠+1 = ξ𝑗−1.We 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.78 Volume 14, 2020

ISSN: 1998-4464 611



 

 

reassign variables by setting 𝑠 ≔ 𝑠 − 1, 𝑗𝑠 ≔ 𝑗 − 1 and go to 
step 1, i.e. make the next  iteration cycle. 
 It is clear to see that the previous discussion proves the next 
 assertion. 
    Theorem 10. The number  𝑉 of calculations of  expression  

(48)  satisfies the inequalities  

 
𝑀+1

𝐾+1
(𝑀 − 𝐾) ≤  2𝑉 ≤ (𝑀 − 𝐾 + 1)(𝑀 − 𝐾).             (50) 

  The left side of this inequality turns into equality, if the 

adaptive grid, which is found in accordance with the 

algorithm (𝑃),   turns out to be uniform. The right inequality 

(50)   turns into equality if the mentioned grid can be formed 

removing one consecutive group of knots from the source grid. 

VI. CONVEX FLOWS 
  Let 𝜀 be a positive value. Discuss the function 𝑢(𝑥) 

defined     on the set 𝛯. 
     Definition 1. We say that the function 𝑢(𝑥) is weakly 

convex (up) on the set 𝛯 if for  any 𝑎′, 𝑏′𝜖𝛯, 𝑎′ < 𝑏′,  
inequality 

𝑢(𝜉)≥ 𝑢(𝑎′)+ 𝑢(𝑏′)−𝑢(𝑎′)

𝑏′−𝑎′
(ξ − 𝑎′)   ∀ξ𝜖𝛯,  𝑎′ < ξ < 𝑏′,     (51) 

is right.  
   In this section, we assume that the arguments of the 

considered functions lie in the set 𝛯.  In particular, referring to   
representation (47), we assume that  

𝑥0 ≤ ξ ≤ 𝑥1,   𝑥0 < 𝑥1  ,     𝑥0, ξ , 𝑥1𝜖𝛯. 
It follows from formula  (47) that the relations 

Φ(𝑥0,𝑥0, 𝑥1) = Φ(𝑥1, 𝑥0, 𝑥1) = 0  are valid. If the function 
𝑢(𝑥) is weakly convex (up), then 

                           Φ(𝜉,𝑥0, 𝑥1) ≥ 0 for  ξ𝜖[𝑥0, 𝑥1].           (52)  
    To prove relation  (52), it is sufficient to use    the 

definition of the weak convexity  (51),  setting   𝑎′ = 𝑥0,   𝑏′ =

𝑥1. 
   Consider the supremum  𝐹(𝑥) of the function  Φ(𝜉,𝑎, 𝑥) 

with respect to  ξ𝜖(𝑎, 𝑥) ∩ 𝛯, where 𝑎 < 𝑥,   𝐹(𝑥) =

𝑠𝑢𝑝 ξ𝜖(𝑎,𝑥)∩𝛯Φ(ξ, 𝑎, 𝑥). It is clear to see that the next assertion 
holds. 

    Theorem 11. If the function  𝑢(𝑥) is  weakly convex   

(up)  then 𝐹(𝑥′) ≤ 𝐹(𝑥′′)     ∀𝑥′, 𝑥′′𝜖(𝑎, 𝑏) ∩ 𝛯,    𝑥′ < 𝑥′′.  
  Consider the algorithm for finding an adaptive grid, based 

on the idea of bisection. The algorithm   described here is 
suitable for the weakly convex function.  It is significantly 
more economical than the previous one. 

   We suppose that 𝑏 = ξ𝑗0
, 𝐹(ξ𝑗0

) ≥ 𝜀. 
     Algorithm (Q): 
     0. We accomplish assignments  𝑥̃0 ≔ ξ0,    𝑠 ≔ 0. 
     1.  Suppose that the previous knot 𝑥̃𝑠 = ξ𝑖 has been 

found i.e. F(ξ𝑖)≤ 𝜀. 
     2. We do assignment 𝑗 ≔ 𝑗0. 
     3. We calculate 𝑘 = ⌊(𝑖 + 𝑗)/2⌋. 
     If  F(ξ𝑘) ≤ 𝜀 then we put 𝑖 ≔ 𝑘, 
     but if F(ξ𝑘) > 𝜀 then we put j≔ 𝑘. 
     If  𝑗 − 𝑖 > 1 then we go to point 3, but if 𝑗 = 𝑖 + 1  then 

we put   𝑥̃𝑠+1 = ξ𝑖. Thus the next knot of the adaptive grid has   
been found. 

     4.  If  𝑖 < 𝑗0 − 1 then we put 𝑠 ≔ 𝑠 + 1 and go to point 

2, but if  𝑖 = 𝑗0 − 1 then the Algorithm (Q) has finished, 
because the adaptive grid  has been obtained. A next fragment 
of  the initial grid   will begin with knot 𝑎 ≔ 𝑏. 

   Thus, the adaptive grid 𝛯 is determined by the sequential 
knot computation. Due to Theorem 10 (see also Corollary 1), 
the  algorithm  (Q)   is   effectively implemented.  Amount   𝑉̃ 
of computations of expression  (48)    has the order of 
𝑀𝑙𝑜𝑔2𝑀. 

      We give a two-sided estimate of the number 𝑉̃ assuming 
that 𝑀 = 2𝑘.  We suppose that a relation from  (48) is  
violated at each   step of the algorithm  (Q). In this case,  the 
analyzed chords are constantly decreasing.  

Ultimately  we get 𝑥̅𝑠+1 = 𝜉𝑖. The first step in implementing  
the algorithm (Q)     is an analysis of the deviation of the chord 
L(𝑥0, 𝑥𝑀)   from the function 𝑢. Thus, the first step requires 
 2𝑘 − 1   calculations of expression  (48).  By convention, this  
deviation is greater than the value 𝜀. The second  step is an 
analysis of the deviation of the chord L(𝑥0, 𝑥2𝑘−1) from the 
function 𝑢. It is evident that the second step requires 2𝑘−1 − 1 
calculations of expression  (48). 

   We suppose that this deviation is more than 𝜀.   Further 
we continue this way. Each time we suppose that  the  
deviation of the considered chord from 𝑢 is greater than 𝜀. The 
final step is to consider the chord  L(𝜉0, 𝜉2).  It requires one 
calculation of expression  (48). 

  General number 𝑉̃0 of calculations for  (48)  presents with 
the formula 

       𝑉̃0 = ∑ 2𝑗 − 1 𝑘
𝑗=1 =2𝑘+1 − 𝑘 − 2                          (53) 

   Consider the case of the deviation  of the considered   
chords  is not greater than the value 𝜀. The final result is the 
assignment 𝑥̅𝑠+1 = 𝜉2𝑘−1−1. In this case, the length of the 
chords (starting from the third one)  increases. As in the 
previous case, the first step is an analysis of the deviation of 
the chord L(𝑥0, 𝑥𝑀)  from the function  𝑢. It requires 2𝑘−1 − 1 
calculations of expression (48). 

      By convention, this evasion is greater than the value 
𝜀.The second  step is the analysis of the deviation of  the chord 
L(ξ0, ξ2𝑘−1) from the function 𝑢. It requires 2𝑘−1 −

1 calculations of expression   (48). We suppose that this 
deviation  is not more  than 𝜀. The third step is the analysis of 
the  deviation for the chord  L(ξ0, ξ2𝑘−1+2𝑘−2) from the 
function 𝑢. It requires 2𝑘−1 + 2𝑘−2 − 1 calculations of 
expression  (48). We again suppose that  gives the deviation 
 not more than the value 𝜀. 

    Continuing further this way,   every time we suppose that 
the deviation of the considered  chord from 𝑢  is   no more 
than the value 𝜀. In  the last step  we discuss   the  deviation  
of the chord L(ξ0, ξ𝑞)   from  the function 𝑢. Here 𝑞 = 2𝑘−1 +

2𝑘−2+. . . +20.  The general number 𝑉̃1   of calculations of   
formula  (48) is presented by expression  

𝑉̃1=(2𝑘 − 1) + (2𝑘−1 − 1)+(2𝑘−2 − 1)+. . . +(2𝑘−1 +

  +2𝑘−2+. . . +20 − 1 = 𝑘(2𝑘 − 1).                                    (54) 
By formulas  (53) and  (54)   we see that the next assertion 

has been proved. 
Theorem 12. Suppose the Algorithm (Q) is implemented to  
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a weakly convex flow {𝑢(𝜉𝑖)},  𝑖 ∈ {0,1,2, … , 𝑀}, where 𝑀 =

2𝑘. Then the number 𝑉̃ of calculations of formula (48)  

satisfies inequality 

        2𝑘+1 − 𝑘 − 2 ≤ 𝑉̃ ≤ 𝑘(2𝑘 − 1).                                (55)        

  Inequality (53) is exact: the left and right parts   can be 

reached for some flows. 

    Corollary 1. In the general case (that is, when  𝑀 is not 

necessarily a power of two) under the conditions   of Theorem 

12,the estimate  2𝑀 − 1 − ⌈𝑙𝑜𝑔2𝑀⌉ ≤ 𝑉̃ ≤ (𝑀 − 1)⌈𝑙𝑜𝑔22𝑀⌉     
is right. 

 

VII.  DIGITAL EXPERIMENT 
The purpose of the numerical experiment is to determine the 
effectiveness of the proposed adaptive algorithm for 
compression of the initial flow  of numerical information. The 
initial flow 𝑢(𝜉𝑖) is generated by the function  𝑢(𝑡) using a 
uniform grid  𝜉𝑖 = 𝑖ℎ̂, 𝑖 = 0,1,…,𝑀 + 1 on the segment 
[𝑎, 𝑏],    ℎ̂ =

𝑏−𝑎

𝑀+1
. In this numerical experiment, we set 𝑎 = 0, 

𝑏 = 𝜋, 𝑀 + 1 = 1000. First, consider the standard 
compression 𝑢(𝜉2𝑗), obtained by deleting nodes with odd 
numbers, j=1,2,…,𝑁 + 1,  𝑁 + 1 = 500. Let   𝑈̃(𝑡) be a  
piecewise linear interpolation (interpolation spline) 
constructed by points (𝜉2𝑗 , 𝑢(𝜉2𝑗)) , 𝑗 = 0,1,2,…,𝑁 + 1. The 
deviation of this interpolation from the original flow is 
denoted 𝜀, 𝜀 = max

𝑖=1,2,3,...,𝑁−1
|𝑢(𝜉2𝑖+1) −  𝑈̃(𝜉2𝑖+1)|.  With the 

same uniform deviation 𝜀 we obtain  the  compressed flow of 
length 𝐾+1 using the proposed adaptive algorithm  of 
compression for the initial flow. Here we use Theorem 4  for 
𝜀 = ƞ2with usual difference approximation of the second 
derivative. The ratio (𝑀+ 1} / (𝐾+1) characterizes the degree 
of adaptive compression, the ratio (𝑁+ 1) / ( 𝐾+ 1) 
characterizes the degree of efficiency of applying adaptive 
compression in comparison with standard double compression. 
In the digital experiment we discuss the generating functions  
𝑢 (t)=ln (t), 1 / t, ln (t + 1), 1 / (t + 1) on the interval [ℎ̂, 𝜋] , 
and the function  𝑢 (t)=cot(t) on the interval [0.05, 𝜋 − 0.05]. 
In all cases we took  𝑀+1 = 1000, 𝑁+1 = 500 . The results are 
shown in the Table 1. The first column contains the runtime of 
proposed adaptive algorithm for  compression, second column 
contains generating function   𝑢(𝑡), the third column  contains 
the  deviation 𝜀 mentioned above, the fourth column gives the 
length 𝐾 + 1 of the compressed flow after applying the 
proposed adaptive algorithm of  compression to the original 
flow. The fifth and sixth columns contain characteristic of the 
degree of adaptive compression,  characteristic of the degree 
of efficiency for  applying adaptive compression in 
comparison with standard double compression. 
 
 Table 1. Computational results. 

 
Time 
(sec) 

  𝑢(𝑡)       𝜀 𝐾+1 𝑀 + 1

𝐾 + 1
 

𝑁 + 1

𝐾 + 1
 

0.28 ln(t) 0.59 23 43.6 21.8 
0.31 1/t 13.3 9 111 55.7 
0.33 cot( 𝑡) 0.062 61 16.4 8.21 

0.33 ln(t+1) 5 10−6 372 2.69 1.35 
0.30 1/(t+1) 10−5 289 3.46 1.73 

 
Remarks to Table 1. 

1. Instead of the second derivative, we used its 
approximation using the difference ratio. 

2. For cot(t), instead of the interval (0, 𝜋), the      
interval (0.05, 𝜋-0.05) was used. 

3.   The program is written in the Maple-17 system 
       (see [34]). The calculations were carried out on        
       an HP 27-p251ur monoblock. In the case of   
        𝑀+1=106at 𝑢(𝑡)=cot( 𝑡)   took Time=70 sec. It   
       turned out that 𝜀 = 3 10−5,  𝐾 + 1 = 3662,  
      (𝑀+ 1) / ( 𝐾+ 1) = 273, (𝑁+ 1) / ( 𝐾+ 1) = 136. 
4. The calculation time for definition of the  

number 𝜀 in all cases was approximately 0.5 
seconds 
 

The results of a digital experiment show that 
1) The proposed adaptive algorithm for compressing flows of 
numerical information in the case of rapidly changing flows, 
the compression ratio ranges from 16.4 to 111. 
2) In the case of slowly changing flows, the compression ratio 
is much lower: it fluctuates between 2.69 and 3.46. 
3) Behavior of the efficiency factor (relative to standard  
compression) similar to the behavior of the compression ratio 
(this ratio is half the compression ratio). 
4)  In the case of an increase in the length of the original flow, 
the coefficients of compression and efficiency increase 
significantly: for a flow of length 𝑀+1=106for the generating 
function 𝑢(𝑡)=cot( 𝑡) it turned out that 𝜀 = 3 10−5,  𝐾 + 1 = 
3662,  compression ratios and efficiency equal to 273 and 136, 
respectively (see paragraph 3 in Remarks to  
Table 1). 
 

VIII.   CONCLUSION 
 
In this paper we develop an adaptive compression algorithm 
with properties 1) the complexity of the algorithm is 
proportional to the length of the original flow, 2) by the 
piecewise linear interpolation of the compression result, it is 
possible to restore the original flow with an accuracy of 𝜀 >
0, 3) for rapidly changing smooth flows, the compression 
result is close to optimal. If  an analog signal is discussed then  
the smoothness means the continuous differentiability (first or 
second order) of the function that generates the flow. If the 
initial flow is a discrete flow then the smooth  means  the 
boundedness of the appropriate difference ratios. Under 
discussion of the algorithm complexity, the number of 
computations of the original flow, the number of additive and 
multiplicative arithmetic operations, and the number of 
comparisons were separately taken into account. It is clear to 
see that the problem of  the  smallest numerical flow which 
can be used for piece-wise linear restoration  𝑢̃(𝜉𝑗) of the  
initial flow 𝑢(𝜉𝑗) with a predetermined precision 𝜀 > 0,  has 
solution. This solution is required  of  𝑂(𝑀2)   arithmetic 
operations (Section V contains the accurate estimates). Section 
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VI contains the improved  algorithm, that gives  𝑂(𝑀𝑙𝑜𝑔2𝑀)   
arithmetic operations in the case of convex flow.  We propose 
the adaptive algorithm of compression,  requiring 𝑂(𝑀) 
arithmetic operations in the case of smooth initial flow. The 
numerical experiment described in Section VII is consistent 
with the  obtained theoretical results.  
     The approach used in this work is based on replacing the 
exact compression criterion with a weakened one. Instead of 
multiple calculations of the value  |𝑢̃(𝜉𝑗) − 𝑢(𝜉𝑗)|, we used 
one or another of its estimates with the property of 
monotonicity with an increase in the considered interval. By 
the mentioned weakening, instead of the optimal (best) 
solution to the problem of compressing the initial flow, we 
obtain a result of weaker quality. The advantage of this 
approach is that the number of arithmetic operations is sharply 
reduced. For a smooth initial flow of length M, instead of 
𝑂(𝑀2), we have 𝑂(𝑀) arithmetic operations. The considered 
approach can be applied in other cases: for compression using 
the generalized Haar approximation, splines of different 
orders, etc. The author hopes to take part in further research of 
this kind. 
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