
 

 

Abstract— For the influence of poisson noise images, in order to get 
rid of poisson noise, this paper put forward image reconstruction 
method by using multiscale compressed sensing. the algorithm can 
approximate the optimal sparse representation of the image edge 
details such as the characteristics of theShearlet domain based 
multi-scale compressed sensing method. The image is decomposed 
into the high-frequency subbands byShearlet, and the compressed 
sensing  is applied into each subband  to reconstruct the image. In this 
paper, A total variation of RL iterative algorithm constructed by 
nonlinear projection algorithm based on closed convex set is explored 
as the reconstruction method, which use derivation of the nonlinear 
projection instead of total variation. In mathematics, Shearlet has been 
proved to be a better tool for edge characterization than traditional 
wavelet. By using the nonlinear projection scheme to constrain the 
residual coefficients in the Shearlet domain, a better estimation can be 
obtained from the Shearlet representation. Numerical examples show 
that the denoising effect of these methods is very good, which is better 
than the correlation method based on Curvelet transform. In addition, 
the number of iterations required by our scheme is far less than that of 
our competitors. 
Keywords—Image reconstruction,Poisson noise,nonlinear projection, 
image reconstruction. 

I. INTRODUCTION 
 
iomedical and astronomical imaging systems are usually 
disturbed by Poisson noise[1,2]. In order to solve the 

deconvolution problem of Poisson noise, scholars have 
proposed some models and algorithms, such as Tikhonov 
Miller filter and Richardson Lucy (RL) [3] algorithm. The RL 
algorithm based on maximum likelihood (ML) estimation can 
adapt to the statistical characteristics of Poisson noise, It has 
been widely used, but after many iterations, the algorithm will  
amplify the noise, which is more serious in the case of low 
signal-to-noise ratio. This problem can be solved by 
introducing the regularization term. Based on this, the RL 
algorithm of total variation (TV) regularization is proposed in 
reference [4], Many authors use RL algorithm of wavelet 
regularization. Bayesian and multi-scale analysis framework, 
literature [5] gives another method, which decomposes Poisson 
likelihood function in multi-scale, and constrains the regularity 
of solution by prior probability distribution, and further applies 
expectation maximum (EM) [6]algorithm to solve the 
maximum posterior probability. However, this algorithm is 
only applicable to Haar multi-scale analysis based on wavelet. 

Compressed sensing (CS) is a new data sampling theory 
proposed by Donoho et al[7]. It considers that if a signal is 
compressible or sparse in a certain transform domain, the signal 
can be projected onto a low dimensional space by using a 
transform independent observation matrix.Then, the 

reconstructed image can be obtained by using the optimization 
method. It can be proved that such projection contains the 
reconstructed signal Enough information. Multiscale 
compressed sensing [8,9] is an extension of traditional 
compressed sensing, which is based on the known signal. After 
sparse decomposition of a signal, low-frequency and a series of 
high-frequency word bands can be obtained. MCS only 
reconstructs the high-frequency word band. Because the 
low-frequency information contains most of the energy, it 
retains all the information. When the signal itself or in the 
representation of a certain basis function is sparse enough, the 
quality of the reconstructed signal with multi-scale compressed 
sensing is significantly better than that of the traditional CS 
with the same number of observations. Compared with the 
traditional wavelet transform, the beyond wavelet transform 
can more sparsely represent the image edge, contour and other 
information, so the effect of image reconstruction is more 
ideal[10-12]. Since discreteShearlet transform (DST) [13]can 
approximate the optimal sparse representation of images, our 
work proposes  a multiscale compressed sensing, which 
decomposes image  inShearlet domain(MCS), After the image 
is decomposed by DST, all the low-frequency information is 
retained, and the directional sub-band information of each scale 
in the high-frequency region is observed and reconstructed by 
CS respectively. MCS is applied to the image with Poisson 
noise to restore the image. At the reconstruction end, a RL 
algorithm based on nonlinear projection for the total difference 
regularization term is proposed. The nonlinear projection on a 
closed convex set [14,15] can be used to replace the derivation 
of the regular term, Thus, more texture details can be retained. 
The experimental results also show that the proposed algorithm 
is better than RL-TV algorithm in reconstruction effect. 

II. THE BASIC THEORY OF MCS METHOD 
The theoretical basis ofShearlet transform is synthetic 

wavelet. The decomposition ofShearlet transform consists 
of the following two steps: multi-scale subdivision and 
directional localization. 
(1) Multiscale subdivision. Haar wavelet is used to 
decompose the image. For example, the low-frequency 
coefficients and the high-frequency coefficients at different 
scales are obtained,(is the scale of decomposition). 
(2) Direction localization. In order to obtain the high 
frequency components in different directions, The high 
frequency coefficients at scale are divided by window 
functions with direction and scale variation.On the high 
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frequency subbands, D0 and D1 regions are decomposed by 
12 1j   window function. 

According to the traditional CS theory, if NRx ,which 
represents the known signal,are approximately represented 
by K（ NK  ）non-zero values under a certain basis function, 
then the definition is sparse in the domain. A measurement 
matrix NmR  （ Nm  ） is constructed to observe the 
signa xy  （ mRy ）, and the measured value y can be 
considered to contain all important information of  original x 
when measurement times    logm C K N   .The process of 

when measurement times    logm C K N   .The process of 
observation signal adopted here is non adaptive, and the 
measurement matrix   does not depend on the structure of the 
signal. By solving the optimization problem under 0  
norm[16], the signal can be reconstructed accurately,that is 

0
ˆmin . .T Tx s t y x  . Since it is a  NP-hard problem for 

the solution of optimization problem under norm, the solution 
method is often transformed into the solution of optimization 
problem under 1 norm with equivalent relation[17],that is 

1
ˆmin . .T Tx s t y x  . 

The key problem of CS theory is signal sparsity. For most 
natural images, they are non sparse,the quality of reconstructed 
image can be significantly improved by applying CS directly to 
the sparse part of the signal in the transform domain after 
effectively sparse representation by using effective image 
transformation. Among the existing multiscale image 
transforms, Guo et al. Constructed the discreteShearlet 
transform.Is constructed based on the theory of composite 
wavelet. The affine system is used to associate geometry and 
multi-scale analysis, which can realize the "thinnest" 
representation of image edge. The most important feature of 
discreteShearlet transform (DST) is to use Laplacian pyramid 
(LP) defined in frequency domain of pseudo polar lattice to 
cascade frequency domain directional filter banks (FDFB) to 
realize multi-scale and multi-directional decomposition of 
two-dimensional image. Because the spectrum of each 
directional filter in FDFBsatisfies the tight support, the 
directional filter does not produce spectrum aliasing. In Fig.1,it 
is  presented an example of image spectrum segmentation 
without leakage using six directional filters in pseudo polar 
array frequency domain. 

 

=+ + + + +

 
Fig.1. In PPFC, FDFB(with six directional filters) splits the spectrum without leakage 

 
The original image f which decomposed by DST , is 

expressed as follows:
. 
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(1) 

0p ， sp, are the scale  and Shearlet function 

respectively. Since
0p contains most of the energy of the 

image, it is almost not sparse, so all the information of 
0p is 

retained. The directional subband information sp, of high 
frequency scale ,which is the edge , texture and other details of 
the image,  has strong sparsity. By using this property, the CS is 
only applied into o sp,

.
 

spspspy ,,,   

 

(2) 

By solving the optimization problem,it is obtained sp,̂  

spspsp
TV

sp yts ,,,, ..ˆmin    

 

(3) 

Finally, the image reconstructed by MCS method is as 
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00 ,,
ˆ  . The MCS method can 

reconstruct the image accurately with less sampling points, 
which is superior to the traditional CS algorithm 

III. IMPROVED RL_TV ALGORITHM 

A. Construction of image deconvolution Chambolle 
projection  

 
In image processing, the labeling model of deconvolution 

of image restoration [18,19] is as follows: 
                          

2|| ||
min ( )

2u X

Ru g
J u




  

 

(4) 

 
Where: x is the two-dimensional image space, u is the original 
image to be restored, GX is the observed degraded image, R is 
the degenerate convolution operator, 0   is a constant and 

2| u || ,u u  represents the inner product. 
Let v = Ru , suppose R is reversible, then the above formula can 
be transformed into:

               2
1|| ||min ( )

2v X

v g
J R v








  

 

(5) 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.79 Volume 14, 2020

ISSN: 1998-4464 617



 

 

If the optimal solution of the above formula is solved, the 
optimal solution of the original image u to be restored will also 
be solved. 
The Euler equation of the above formula is as follows: 

1 0v g R J R v


 - 1 T - 1（ - ）+( ) ( )  

 

(6) 

 

The results are as follows: 1(g v)
( )

T

R
J R v






  ,The dual property 

of Legendre is obtained as: 1 ( )
( )

T

R g v
R v J



 


 

 

let (g v)
T

R
w


  , w  is the optimal solution of the formula below 

2min
1

|| w || (w)
2

T

w

RTg R R
J

 


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(7) 

 
T( g/ )

K
w R  , that is T

K(g ) ( g)T
R v R  .Combined 

formula 7 has
 1 T

KJ( ) ( ) ( g)R v J u R  


     (8) 

 
The above formula shows that in convolution problems, the 
derivative of the regular term can be calculated by nonlinear 
projection T

K (R g) . 

B.   RL_TV regularization algorithm based on Chambolle 
projection 

Through the above analysis, it is concluded that the 
canonical derivative of full difference can be calculated by 
chambolle projection T

K (R g) in convolution problem. Based 
on this,  it is obtained a new iterative formula of TV regularized 
RL algorithm. In RL algorithm with TV regular term, let the 
derivative of objective function be zero. 

( )
( ) d ( ) ( ) 0

( )( )
TV

i x
h x x h x J

h o x
o      


  

 

(9) 

 
It is further simplified as follows:
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The following iterative formula is obtained as: 

T
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This formula is the iterative formula of RL algorithm based 
on chambolle projection TV regularization. And it is applied to 
the reconstruction of MCS. TheShearlet coefficients of the 
original image NY R  can be represented as follows: 
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(12) 

 
Gaussian random matrix is selected as sampling matrix, a

nd TV regularization RL algorithm based on chambolle project
ion is used to solve the following equation: 

 

( ) ( )
, , , ,

ˆ ˆmin . .T X T X

w p s p s p s w p s
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s t y     

 

(13) 

 
In order to ensure ( )

,
ˆT X

w p s  can accurantly reconstruct ,p sy  

and make ( )
,

ˆT X

w p s sparse, the number of m measurements 

should subject to    
2

logP

p

N
m C n K N

B
     : 

pN is the 

dimension of pth scale for original image. 
Finally, The high resolution image reconstructed by MCS 

method is as follows: 
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(14) 

 

IV.  EXPERIMENTAL RESULTS  AND ANALYSIS 
In order to prove the effectiveness of this algorithm, The 
cameraman and Barbara images with Poisson noise are selected 
as test images, and the image size is 256 256 . The total scale 
number of decomposition is P , and the number of directional 
subbands corresponding to each scale in high frequency region 
is 2 2p

pd   . In order to ensure the accurate reconstruction of 
subband information, the observation times of each direction 

subband is  , 1 logp
p s p

p

N
m C N

d


 
    

 
 where C is a 

constant, 
pN  represented the dimension of thp subband on the 

scale (the dimensions of subbands in different directions are 
consistent in the same scale). According to the scale 
decomposition characteristics of LP in DST, it can be seen 
that  22 P p

pN N
 

  , N is the dimension of the original 
image.  is the sparsity of the directional subband. The higher 
the scale, the higher the corresponding sparsity. If 

 1
2 10 p

pC s
 

   ( 2C is a constant), 3P  , 1 4C  , 2 2.5C   
then the number of observations is shown in TABLE I.The 

total number 0 ,
1

14240
P

p s p

p S

M m m s


     of MCS 

observations can be obtained from TABLE I. The results show 
that the convergence threshold is 0.005, the regularization 
factor is 0.02, the  iteration times is set to 30, and the number of 
internal chambolle iterations is 15, =1 / 8 . Under the same 
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conditions, the validity of the proposed model is verified by 
comparing with the standard full difference regularized RL 
iterative algorithm. The the recovery image quality is compared 

from the subjective visual effect and the objective index. The 
objective quantitative indexes are MSE, SNR and ISNR [20]. 

 
TABLE I. The value of ,p sm with different scales 

 pN  
pS    ,p sm

 

0p   32*32 0 1 1
024 

1p   64*64 4 22.5 10 4   1
479 

2p   128*128 6 32.5 10 6   6
90 

 

Original image Poisson Noisy image RL-TV recovery image MCS recovery image

Original image Poisson Noisy image RL-TV recovery image MCS recovery image
 

Fig. 2.  The image reconstruction results of two methods 

 

TABLE Ⅱ  The comparison of reconstruction results of two methods(The unit of SNR is dB) 

Image Index Poisson 
noisy image RL_TV MCS 

 
Eyetest 

MSE 1.19 654.971 588.179 

SNR 5.785 7.891 8.698 

ISNR 1.01 0.9639 0.8737 

 
Raccoon 

MSE 646.407 558.120 313.432 

SNR 7.112 7.809 10.311 

ISNR 1.02 0.8539 0.4761 
 

 
It can be seen from  Fig. 2.that the image restored by the 

traditional RL_TV method is blurred seriously, and there is 
obvious confusion when reconstructing the edge, contour and 
other details of the image. As can be seen from Fig. 2., the area 
in the black box reflects the obvious difference between the 
traditional RL_TV and the restoration image details in this 

paper. When some details of the degraded image are seriously 
deficient, the image reconstructed by the traditional RL_TV 
method is not ideal. The MCS method can basically restore the 
fine details of the image. This is because MCS method 
changes the image signal into sparse signal by sparse 
representation, and CS theory is more suitable for 
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reconstructing the signal with strong sparsity. It can be seen 
from the original image that there are slight noises and artifacts 
in the white smooth area of the image reconstructed by MCS. 
This is because MCS algorithm can effectively collect the 
information of high-frequency sub-band, and retain all the 
information of low-frequency sub-band, so that the details of 
the image remain intact. At the same time, due to the 
introduction of rl-tv algorithm, it can effectively remove the 
influence of Poisson noise and achieve good reconstruction 
effect. 

As can be seen from TABLE Ⅱ, the average SNR value of 
MCS method is 2.5dB higher than that of RL_TV method, and 
the MSE average value is 176 lower; therefore, the algorithm 
in this paper is more effective for image reconstruction. 

In this experiment, in order to compare the advantages of 
the MCS algorithm based on DST, we use the traditional CS 
algorithm and the Curvelet based MCS algorithm to 
reconstruct the image respectively. In order to better compare 
the reconstruction effect, the sampling rate is set as 30%. Fig.3. 

gives the simulation results of two images. 

 
Fig.3. The reconstruction results of image Boats. From first to forth row: Boats image and its detail part; Reconstructed results using traditional 

CS, PSNR=22.12; Reconstructed results using Curvelet based MCS, PSNR=25.63;  Reconstructed results using our scheme, PSNR=30.03. 
 

It can be seen from Fig.3. that the traditional CS algorithm 
has great distortion, because the traditional algorithm does not 
retain the low-frequency information of the image, and there is 
a large amount of useless information due to non adaptive 
sampling. The reconstruction quality of MCS algorithm based 
on Curvelet is slightly better than that of traditional CS 
algorithm. However, due to the lack of FDFB  in Curvelet, it is 
necessary to overcome the interference caused by spectrum 
aliasing, so the reconstruction effect is affected. This algorithm 
can effectively decompose the image with FDFB while 
retaining the low-frequency components, and sample the 
information on the high-frequency subband to the maximum 
extent, At the same sampling rate, the quality of the 
reconstructed image is obviously better than that of the contrast 
algorithm. 

IV. CONCLUSIONS 
The most important feature of MCS method is established 

inShearlet domain. This algorithm can effectively reduce the 
sampling value and ensure the quality of the reconstructed 
image. By applying the successful application of nonlinear 
projection based on closed convex set in image denoising, the 
nonlinear projection equivalent to the total differential 
derivative in image deconvolution is derived. The nonlinear 
projection is used instead of the derivative of total difference to 
keep more details of image. In order to solve the problem of 
inaccuracy of reconstruction results caused by human loss of 
information in the process of derivation of regularization term, 
a new fully differential RL iterative algorithm based on 

nonlinear projection of closed convex sets is proposed. Based 
on this algorithm, the image reconstruction model and 
algorithm are given. Finally, the simulation results show the 
effectiveness of the new algorithm. 
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