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Abstract— In this research the Expressions that determine the 

eigenfunctions and modes eigenvalues in waveguides with a 

composite sectorial cross-section are obtained. The possibility of 

characteristics changing for eigenvalues by changing the 

parameters that characterizing the cross-sectional shape was 

studied. The field modes of waveguide based on Ritz method was 

analyzed.it was determined the characteristics of the quasi – 𝑯𝒎𝒏 

modes in a cruciform sector waveguide, and quasi – 𝑯𝒎𝒏 modes 

in a composite sector waveguide with an arbitrary number of 

sectors.it was also shown the advantage of using the cross-section 

waveguide in single mode optical fiber wavelength range. The 

eigenvalues () and the normalized coefficients (𝒂 )for quasi – 

𝑯𝒎𝒏 modes in terms of Bessel functions (𝑸𝒎, 𝑷𝒎) and their 

combinations was obtained. 
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I. INTRODUCTION 
              In communication and signal processing technology, 
as well as in several other electrical devices, the using of metal 
and dielectric waveguides is enough widespread. In this case, 
most often waveguides have rectangular or circular cross-
sectional shape. 

The task of determining the eigenfunctions and 
eigenvalues of modes in such waveguides is relatively simple 
to solve since the lines that bounding the cross-sectional 
contour coincide with the coordinate surfaces of the 
rectangular and cylindrical coordinate systems, which does not 
cause difficulties in imposing boundary conditions for 
determining the integration constants when solving the wave 
equation [1, 2]. In this case, as a rule, the variable separation 
method is used [1].  

A special case of guiding systems in particular, 
waveguides having a complex cross-sectional shape, where 
the boundaries partially coincide with the coordinate surfaces 
of the selected coordinate system, for example as a cruciform 
L-shaped, H-shaped and others. In this case, to solve the wave 
equation, it is possible to apply approximate solution methods, 
such as the method of partial domains [2], the method of 
associated equations [3], and others. In addition to the above 
waveguide cross-sectional shapes, waveguides that having a 
 

 

composite sectorial cross-sectional shape are practically 
interesting to research, a special case of such shape is a 
waveguide with a cross sectorial sectional shape (fig. 1). The 
advantage of such a cross-sectional shape is that their 
electromagnetic waves as studies have shown [4], preserve the 
structure of the waveguides wave field with a circular cross-
sectional shape and, at the same time, such a shape allows 
changing the characteristics of the (eigenvalues) within 
specified limits by changing the parameters characterizing the 
cross-sectional shape [5,6,7]. 
 

 
(a)  

 

(b)  

 
Fig. 1:  waveguide with a cross sectorial sectional shape 

 
The dielectric waveguide which having the shape shown in 

(Fig. 1b) can be used in the optical wavelength range [8,9]. In 
other words, if the core of the optical fiber is given a shape 
like this figure, then in a single-mode operation of optical fiber 
the coupling between ordinary and extraordinary waves will 
significantly decrease in comparison with a fiber with a 
circular cross-section, and the crosstalk between the waves 
will increase [4,10,11]. As a result, the polarization mode 
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dispersion of the signal in it can be significantly reduced. 
Besides, the mode selection for directional couplers with good 
mode selectivity can be created based on cross sector of 
sectional shape [12,13].  

The purpose of this research is the determination the 
proper functions and proper values of modes in a waveguide 
with a cross sectorial of cross-sectional shape which is 
extremely important from both theoretical and practical points 
of view. 

II. METHOD AND PROCEDURE  
At the first stage of the study, let us determine the 

characteristics of the modes in a metal waveguide with a cross 
sectorial shaped of cross section. In this case, the method of 
variables separation cannot be used in solving the wave 
equation, since the lines that bounding the contour of the cross 
section of such a waveguide coincide with the coordinate 
surfaces of the cylindrical coordinate system only in some 
places. The method of partial regions in this case is extremely 
difficult to use because a rather complex shape of the 
waveguide cross-section composed from sectors. to analyze 
the mode fields in such a waveguide it is desirable to use a 
method that is versatile, relatively simple, and sufficiently 
accurate, these properties are largely possessed by the Ritz 
variational method [5, 6].  

As it is known [2,14,15], determination the fields and 
finding the eigenfunctions and eigenvalues in a waveguide 
with ideal conducting walls lead to solving the scalar equation: 

                    
20                            (1) 

Where       - two-dimensional (transverse) Laplace operator. 
        - the eigenfunction of the magnetic mode, representing 
the longitudinal component of the Hertzian magnetic vector, 
and related to the longitudinal magnetic field by the relation 
[16,17]: 

             𝐻𝑧 2                                           (2) 

- Value of own modes 

               2 
k 

2 
2                                 (3) 

 – wave number in free space. 
 - the mode phase constant. 
First, we define the eigenfunctions and eigenvalues of 
magnetic modes with the boundary condition: 

          𝜕𝜓

𝜕𝑛
│𝐿 = 0                                          (4) 

L- waveguide cross-section contour. 
𝑛- outward normal to the contour. 

The solution for equation (1) will be sought based on 
the Ritz variational method [5,16]. According to the 
variational method, the task of determining the eigenvalues of 
modes is lead to study the extremum of the functional: 

            


2 
()

2 
dS                                      (5) 

 

provided that: 

       
2 

dS 1                                                      (6) 

Where   - two-dimensional Hamilton operator. 
                -   eigenfunction magnetic mode. 
               S- cross-sectional area of the waveguide.  
Indeed, the Laplace operator is a self-adjoint lower bounded 
operator. Then the smallest eigenvalue of the two-dimensional 
Laplace operator [5]: 

      ⍺ = 𝑖𝑛𝑓
(∆┴𝜓,𝜓)

(𝜓,𝜓)
                                           (7) 

in parentheses is a scalar product and  𝑖𝑛𝑓  is the infimum. 
Then (⍺) is the smallest eigenvalue of the operator ∆ with 
condition of existing the element  𝜓0 ,then: 

       ⍺ =
(∆┴𝜓0,𝜓0)

(𝜓0,𝜓0)
                                               (8) 

If such an element 𝜓0 exists, then the definition of the smallest 
eigenvalue of the operator( ∆┴  ) is leads to the determination 
of the lower bound of the quantity (7) or the same as the lower 
bound of the quantity: 

                 (∆┴𝜓, ψ)                                    (9) 
with the additional condition 

  (𝜓, 𝜓) = 1                                               (10) 

Multiplying scalar equation (1) by (ψ), we get: 

        𝜒2 =
(∆┴𝜓,𝜓)

(𝜓,𝜓)
                       (11) 

Using the well-known Green's formula [7], we get: 

(∆┴𝜓, ψ)= ∫ ∫
𝑆

(𝑔𝑟𝑎𝑑┴𝜓)2𝑑𝑆 − ∫
𝐿
 ψ𝜕𝜓

𝜕𝑛
𝜕𝑙        

(12) 
The contour integral in expression (12) is equal to zero due to 
boundary condition (4). Then from formula (11) considering 
(10) and (12) we get: 

 𝜒2 = ∫ ∫𝑆(𝑔𝑟𝑎𝑑┴𝜓)2 dS =   ∫ ∫𝑆(∇┴ ψ)2  dS         (13) 

According to the Ritz method [5], the approximate solution 
(𝜓𝑛) of equation (1) under condition (4) is in the form: 

     𝜓𝑛 = ∑ 𝑎𝑖, 𝑢𝑖
𝑛
𝑖=1                                   (14) 

The sequence of sufficiently smooth coordinate 
functions {𝑢𝑖 } must be a complete linearly independent 
system. according to the Ritz method, these functions are not 
required to satisfy the natural boundary condition. 

However, to improve the convergence of the series, 
we will choose them partially satisfying condition (4) on the 
part of the contour (𝐿)of the waveguide cross section. 
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The coefficients (𝑎𝑖) in solution (14) are chosen 
based on the minimum of function (13) taken in consideration 
(10). Thus, this is led to find the minimum function of 
(𝑛)variables : 

(∇┴ 𝜓𝑛, ∇┴𝑛 ) =∑ (∇┴
𝑛
𝑖,𝑗=1 𝑢𝑖𝛻𝑢𝑗)𝑎𝑖𝑎𝑗                (15) 

related by the equation: 

   (𝜓𝑛, 𝜓𝑛 ) =∑ (𝑛
𝑖,𝑗=1 𝑢𝑖 , 𝑢𝑗)𝑎𝑖𝑎𝑗 = 1                 (16) 

where in parentheses is a scalar product of functions. 

     𝐹 = ( ∇┴ 𝜓𝑛, ∇┴ 𝜓𝑛) − 𝜒2 ( 𝜓𝑛, 𝜓𝑛)            (17) 

and from condition   
𝜕𝐹

𝜕𝑎𝑖
 = 0, we obtain a symmetric system: 

    ∑ 𝑎𝑗
𝑛
𝑖,𝑗=1 |∇┴𝑢𝑖, ∇┴𝑢𝑗) − 𝜒2(𝑢𝑖, 𝑢𝑗)| = 0       (18) 

Where  𝑖, 𝑗 = 1,2,3, … , 𝑛. 
From the condition that the determinant of the linear system 
(18) homogeneous with respect to (𝑎𝑗)equal to zero, we obtain 
the characteristic equation for (𝜒2). 
The smallest roots of system determinant (18) will be equal to 
the minimum of expression (15). And to find the approximate 
(𝑘𝑡ℎ) eigenvalue, it is necessary to find the minimum of (15) 
with additional orthogonality conditions for eigen functions: 

 (𝜓𝑙 , 𝜓𝑙) = 1   ,  (𝜓𝑙 , 𝜓𝑚) = 0  ,  (𝑚 = 1,2,3, … , 𝑙 −  1)  
(19) 

Where (𝜓𝑚 )-the approximate value of the (𝑚𝑡ℎ)normalized 
function of the Laplace operator. 

So, let us determine the eigenfunctions and eigenvalues of 
magnetic modes in a composite sector waveguide. Modes 
𝐻𝑚𝑛of a circular waveguide upon transition to a composite 
sector waveguide will excite its quasi – 𝐻𝑚𝑛  modes. We 
represent the eigenfunction of the quasi-𝐻𝑚𝑛mode in a 
waveguide with (2k) sectors in the form of a superposition of 
(k) degenerate quasi – 𝐻𝑚𝑛modes which differing from each 
other in polarization: 

 𝜓𝑚𝑛 = ∑ 𝑎𝑚𝑚 𝑗𝑚(𝑣𝑚𝑛
𝑟

𝑎
) ∑ cos 𝑚 [∅ + (𝑗 −𝑘

𝑗=1

1)
𝜋

𝑘
]                                               (20) 

Where 𝑗𝑚(𝑥) − first kind of Bessel function of order 𝑚. 
         𝑣𝑚𝑛 −𝑛𝑡ℎroot of equation 𝑗𝑚

′ (𝑥) = 0. 

        𝑎 −the size of waveguide cross-section (fig. 1). 
       𝑟, ∅ −  coordinates of the cylindrical system. 
       𝑎𝑚 - coefficient normalized to the area (𝑆 )of the 
waveguide cross-section, determinable from condition (6). 

 
For a composite sectorial waveguide with an arbitrary 

number of sectors (2k), it was possible to obtain relatively 
simple analytical expressions that determine the 
eigenfunctions and eigenvalues in terms of the Bessel 

functions and their combinations in general form only for the 
quasi – 𝐻𝑚𝑛 modes. For quasi – 𝐻𝑚𝑛  modes with 
arbitrary( 𝑚), these expressions were obtained only for the 
cruciform sector waveguide (Fig. 1b). 

III. RESULTS AND DISCUSIONS 
Thus, for k = 2, and from (20) we obtain an 

expression for the eigenfunction of the quasi – 𝐻𝑚𝑛 mode: 

   𝜓𝑚𝑛 = ∑ 𝑎𝑚𝑚 𝑗𝑚(𝑣𝑚𝑛
𝑟

𝑎
)(cos 𝑚∅ − sin 𝑚∅)      (21) 

This function is an approximate solution to equation (1) under 
conditions (2) and (19). 

To determine 𝜓𝑚𝑛and 𝜒𝑚𝑛, we can restrict ourselves to the 
approximation functions (cos 𝑚∅𝑗𝑚 (𝑣𝑚𝑛𝑟)) and 
 ( sin 𝑚∅𝑗𝑚 (𝑣𝑚𝑛𝑟))  considered for all pairs of indices of the 
orthogonal system [4]. For the quasi – 𝐻01mode, the 
maximum correction to the eigenvalue does not exceed 6%, 
and to the eigenfunction — no more than 10%. Subsequent 
approximations will give even smaller corrections. Then, for 
the quasi – 𝐻𝑚𝑛  mode, considering the first approximation, 
expression (21) will be in the form: 

𝜓𝑚𝑛 = 𝑎𝑚𝑗𝑚(𝑣𝑚𝑛
𝑟

𝑎
)(cos 𝑚∅ + sin 𝑚∅)            (22) 

The eigenvalue( χ 𝑚𝑛) of the quasi – 𝐻𝑚𝑛 modes of a 
cruciform sector waveguide is determined in the first 
approximation from relation (18): 

            χ 𝑚𝑛 = √
(∇┴𝑢𝑖,∇┴𝑢𝑖)

(𝑢1,𝑢1)
                            (23) 

In accordance with (23), we obtain an expression for the 
eigenvalue(  χ 𝑚𝑛) of a cruciform sector waveguide: 

     χ 𝑚𝑛 = 
𝑣𝑚𝑛

𝑎
[

(2𝜋−8𝜃)0.5𝜇2𝑄𝑚(𝑣𝑚𝑛𝜇)+4𝜃𝑄𝑚(𝑣𝑚𝑛)

(2𝜋−8𝜃)𝜇2𝑃𝑚(𝑣𝑚𝑛𝜇)+8𝜃𝑃𝑚(𝑣𝑚𝑛)
]       (24) 

Where 𝜃 - the angle characterizing the opening of the sectors 
(fig. 1). 

      𝜇 =
𝑏

𝑎
 , 𝑎 , 𝑏  - dimensions of the cross-section of the 

waveguide (fig. 1). 
In this case, the coefficient (𝑎𝑚𝑛) normalized in accordance 
with (4), is determined by the expression: 

  𝑎𝑚𝑛 =
√2

𝑎√𝜇2(2𝜋−8𝜃)𝑃𝑚(𝑣𝑚𝑛𝜇)+8𝜃𝑃𝑚(𝑣𝑚𝑛)
   (25) 

Where: 

           𝑄𝑚 = [𝐽𝑚−1
2 (𝑥) − 𝐽𝑚−2(𝑥)𝐽𝑚(𝑥) + 𝐽𝑚+1

2 (𝑥) −

𝐽𝑚(𝑥)𝐽𝑚=2(𝑥)]                                                                 (26) 

      𝑃𝑚(𝑥) = [𝐽𝑚
2 (𝑥) − 𝐽𝑚−1(𝑥)𝐽𝑚+1(𝑥)]                  (27) 
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Thus, from expressions (24) and (25), the values of the 
eigenvalues (𝜒) and the normalized coefficients ( 𝑎 )of any 

mode of the quasi – 𝐻𝑚𝑛  of the cruciform sector waveguide 

can be obtained in terms of the functions 𝑄𝑚(𝑣𝑚𝑛𝜇) and, 
𝑃𝑚(𝑣𝑚𝑛𝜇) which are contain some combinations of first kind 
of Bessel functions of order 𝑚. 
Figure.2 shows, as an example, the dependence of 
(𝑄𝑚, 𝑃𝑚)𝑜𝑛 (𝜇) calculated by formulas (26) and (27), 
respectively.  
 

 
 
Fig. 2: The dependence of (Qm, Pm) functions on (μ) 
 
       Where: (1)- 0.5𝑄1(1.84𝜇) ; (2)- 𝑃1(1.84𝜇) 

 (3)- 0.5𝑄2(3.054𝜇); (4)- 𝑃2(3.054𝜇) 
                                                             

IV. CONCLUSION 

- The obtained expressions in this research make it possible to 
determine the characteristics of the quasi – 𝐻𝑚𝑛  modes in a 
cruciform sector waveguide, as well as quasi – 𝐻𝑚𝑛modes in 
a composite sector waveguide with an arbitrary number of 
sectors.  
- To determine the eigenvalues  ) and normalized 
coefficients of the eigenfunctions, it is necessary to know the 
parameters (𝜇 )and (𝜃), which characterize the shape of the 
waveguide cross-section, as well as the functions 𝑄𝑚(𝑣𝑚𝑛𝜇) 
proposed in this work.  
- The characteristics of modes in a dielectric waveguide with a 
cross-shaped sectorial cross-section can be determined 
similarly to a metal waveguide, based on the Ritz method.  
This paper is very useful for signal processing and 
communications academic community. 
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