
 
Abstract—Whisper is an indispensable way in speech

communication, especially for private conversation or
human-machine interaction in public places such as library and
hospital. Whisper is unvoiced pronunciation, and voiceless
sound is usually considered as noise-like signals. However,
unvoiced sound has unique acoustic features and can carry
enough information for effective communication. Although it
is a significant form of communication, currently there is much
less research work on whisper signal than common speech and
voiced pronunciation. Our work extends the research of
unvoiced pronunciation signal by introducing a novel signal
feature, which is further applied in unvoiced signal modeling
and whisper sound synthesis. The statistics of amplitude for
each frequency component is studied individually, based on
which a new feature of “consistent standard deviation
coefficient” is revealed for the amplitude spectrum of unvoiced
pronunciation. A synthesis method for unvoiced pronunciation
is proposed based on the new feature, which is implemented by
STFT with artificially generated short-time spectrum with
random amplitude and phase. The synthesis results have
identical quality of auditory perception as the original
pronunciation, and have similar autocorrelation as that of the
original signal, which proves the effectiveness of the proposed
stochastic model of short-time spectrum for unvoiced
pronunciation.

Keywords—Signal Processing, whisper, unvoiced
pronunciation, short-time spectrum, speech synthesis, standard
deviation coefficient

I. INTRODUCTION

HISPER is a socially significant form of daily speech
communication. It is characterized by the lack of vocal

cord vibration, which implies the absence of fundamental pitch.
Current development of speech technology introduces new
leading edge areas where whisper becomes of interest [1]. It
becomes more popular due to the widespread use of smart
phones and pads. Current research hotspots include
text-to-whispered-speech (as the case of the Whisper Mode of
Amazon Alexa), whisper speech recognition, speaker
identification in whisper speech [2-6]. These technologies will

be possibly promoted significantly if whisper signal feature be
well studied in the perceptual, acoustical, and signal analysis
domains [7-12]. However, despite the abundant research
literature supporting normal speech, relatively little effort has
been spent on whisper speech, especially the study on unique
features of whisper speech in perceptual and signal analysis
domain [13-15]. Although there has been sufficient work on
normal pronunciation synthesis, there is also a need for
efficient method to synthesize whisper speech for
human-machine communication [16-18]. In his paper, we aim
at study the unique or specific signal features of unvoiced
sound in whisper speech, and attempt to give an efficient model
of unvoiced pronunciation. We also attempt to provide an
efficient framework for whisper pronunciation synthesis based
on the signal features. To our knowledge, there is very little
study attempting to achieve this goal before [19].

Whisper speech is of unvoiced pronunciation. Speech signal
can be mathematically modeled by stochastic process,
especially the unvoiced pronunciation in whisper. There have
been researches on stochastic properties of continuous speech
signals (i.e. signals of daily conversations). Such researches are
based on the large amount of speech data in corpora like TIMIT
[20], AURORA [21] or other database of daily speech signal
from the internet [22]. These studies have investigated the
probability distribution for time-domain speech signal, and also
for the data in transformed domain as well, such as DCT, KLT,
DFT, etc. In these studies, several probability distributions have
been tested to propose a stochastic model for comprehensible
speech with meaningful language contents (i.e. sentences or
paragraphs). Such distributions include the Gaussian
distribution (GD), Laplacian distribution (LD), Gamma
distribution (ΓD), Generalized Gaussian distribution (GGD),
and Generalized Gamma distribution (GΓD). The probability
distribution function (pdf) of time-domain speech signal was
first studied in 1950s and 1960s, in which the Gamma and
Laplacian distributions were tested [23,24]. The two-side
Gamma distribution was also found to be a good approximation
of the underlying pdf for time-domain speech samples [25-27].
For different speech lengths and different speech classes, the
most proper pdf type was studied by Chi-square goodness-of-fit
test on time-domain speech signal, with Laplacian and
Gaussian distribution as two options [28]. Besides the
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time-domain, the pdf for transformed domain was also studied
for Karhunen-Loeve (K-L) transform and DCT, where the
Laplacian distribution showed prevailing performance by
Chi-square test and moment test [21]. In frequency domain, the
pdf of the spectrum’s real and imaginary parts was studied and
modeled by Generalized Gaussian distribution based on
Kullback-Leibler divergence as the fitting criterion [29]. And
the amplitude spectrum of speech signal was modeled as
Rayleigh distribution [30]. These stochastic models facilitates
the application of speech enhancement [31-34] and voice
activity detection [35], whose object is the daily-life speech
interfered by some kind of noise. Suchmodels also facilitate
speech coding [25] and speech recognition [36,37].

The stochastic property of speech signal can be analyzed on
multiple levels. For one level, the speech signal in daily
communication varies with the continuously changing of the
language content (i.e. different words in sentences). This can be
regarded as randomness at the language content level in speech.
On the other hand, for the same language content (i.e. the same
word or sentence), the speech signal will also vary randomly
due to the speaker characteristics such as gender, age, emotion,
etc. Moreover, even for a sustained pronunciation (such as a
single phoneme) by a specific speaker, randomness still exists
in the signal, which is caused by the physical mechanism of
pronunciation. Such randomness has been observed in previous
research. For voiced pronunciation there are phenomena of
jitter and shimmer observed [38-40], and for unvoiced
pronunciation the sound source is random by itself which is
caused by turbulence of air flow in the vocal tract [41]. Such
randomness can be regarded as another different level of speech
randomness.

Although several probability models have been proposed for
speech signal, the different levels of speech randomness
discussed above have not been differentiated and studied
separately. Since these studies are based on the large amount of
speech data as daily-life sentences in corpora like TIMIT,
AURORA, etc., the current stochastic models eventually
represent the overall stochastic property, which is the
combination of different randomness levels in speech
mentioned above. However, the overall statistic property of
speech can not represent the specific properties of different
pronunciation types, which is important for deeper
understanding of pronunciation mechanism, and also
improvement of algorithms in practical applications. As a
fundamental aspect for understanding the nature of speech
signal, detailed stochastic properties of different specific types
of pronunciation need to be studied. So far as we know, there is
very little study on the stochastic distribution of short-time
spectrum of specific unvoiced pronunciations yet, which may
reveal intrinsic property of such speech pronunciation.

The unvoiced pronunciation is closely related to the
aerodynamic process in vocal tract [41-46]. The physical
process during unvoiced pronunciation is complicated, while
the stochastic study of the signal produced may reveal some
underlying properties of this process. The randomness in
time-domain signal corresponds to the random fluctuation of its
short-time spectrum. The focus of this paper is the random

fluctuation of amplitude and phase for specific frequency
component in the short-time spectrum of a sustained unvoiced
pronunciation (or unvoiced phoneme), which forms the
whisper speech. Moreover, the relationship between two
different frequency components in amplitude probability
distribution is also investigated, which is important but
captured little research attention before.

The main contributions of this paper are: (1) a new feature of
short time spectrum for unvoiced signal is revealed, which has
not been reported before, and (2) a new efficient framework is
proposed for whisper pronunciation synthesis, which is based
on the signal model derived from the new spectrum feature.

II. NEW FEATURE FOR AMPLITUDE SPECTRUM OF UNVOICED
PRONUNCIATION

In the discrete spectrum obtained by STFT, we consider the
spectrum value of each discrete frequency component as
random variable due to the randomness of the signal. For each
frequency component, we study the statistics of short-time
amplitude spectrum by estimating the expectation and standard
deviation as two basic statistics. A novel stochastic property
about the relationship between these two basic statistics is
revealed for unvoiced pronunciation. Because large amount of
unvoiced data is needed for this statistic study, the signals
captured and used in this paper are sustained unvoiced
pronunciations, not the words or sentences in daily
communication. The study concentrates on the signal
randomness at the level of single unvoiced phoneme.

Although well-organized corpuses like TIMIT have well
labeled the detailed words and syllables on the time axis, the
single pronunciations in such data are too short for statistic
study. Since currently there is little corpus of sustained
phoneme pronunciation, signals have been captured by using
microphones connected to the sound card on computers. To
guarantee the generality of analysis, signals have been captured
for a group of unvoiced pronunciation by different speakers,
and on different recording platforms (different microphones
and sound cards on different computers). In the collection of
signal, the speakers were informed with the requirements of
stable pronunciation for sufficient time length, based on which
reliable statistic study can be achieved. For each speaker the
signals were captured repeatedly for several times, so that the
most stable signal suitable for study can be selected. The
signals were recorded at sample frequency of 16 kHz, with 16
bit per sample. Because the unvoiced pronunciation is produced
by the aero-acoustic process in the vocal tract without vocal
cord vibration, it is much less affected by individual difference
such as age and gender.

For a signal of a sustained unvoiced pronunciation, STFT is
performed on that signal. Large amount of short-time spectrum
data can then be obtained, based on which the expectation and
variance can be estimated for each frequency component. In the
experiments, the frame length is 512, which corresponds to a
time interval of 32ms with a 16 kHz sampling frequency. A
Hamming window is used on each frame for STFT. For all
frequency components, the unbiased estimation of amplitude
expectation and variance can be represented by two functions
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where N is the frame number, ωk is the k-th frequency
component in STFT, and ai(ωk) is the amplitude spectrum value
of ωk for the i-th frame. Moreover, the standard deviation σ(ωk)
is also estimated as the square root of σ2(ωk):
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Some of the estimation results are shown from Fig. 1 to Fig.
4 (for the pronunciation of [h], [s], unvoiced [a], unvoiced [e]
by a male speaker), where the curves of μ(ωk), σ2(ωk) and σ(ωk)
are plotted for comparison. By comparing the curves of μ(ωk)
and σ(ωk) in each figure, their evident similarity can be
observed, which inspires further study of the relationship
between μ(ωk) and σ(ωk).

(a) amplitude expectation μ(ωk)

(b) amplitude standard deviation σ(ωk)

(c) amplitude variance σ2(ωk)
Fig. 1. The estimated expectation, variance and standard deviation

of the short-time amplitude spectrum for [h]

(a) amplitude expectation μ(ωk)

(b) amplitude standard deviation σ(ωk)

(c) amplitude variance σ2(ωk)
Fig. 2. The estimated expectation, variance and standard deviation of

the short-time amplitude spectrum for [s]
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(a) amplitude expectation μ(ωk)

(b) amplitude standard deviation σ(ωk)

(c) amplitude variance σ2(ωk)
Fig. 3. The estimated expectation, variance and standard deviation

of the short-time amplitude spectrum for unvoiced [a]

(a) amplitude expectation μ(ωk)

(b) amplitude standard deviation σ(ωk)

(c) amplitude variance σ2(ωk)
Fig. 4. The estimated expectation, variance and standard deviation of

the short-time amplitude spectrum for unvoiced [e]

In order to investigate the relationship between μ(ωk) and
σ(ωk), for an unvoiced pronunciation, the two-dimensional
points of (μ(ωk), σ(ωk)) are plotted in Matlab for all ωk. For a
frequency component ωk, (μ(ωk), σ(ωk)) is a point with the
amplitude expectation as the x-coordinate and the amplitude
standard deviation as the y-coordinate. The results of such
plotting indicate a linear proportional relationship between
μ(ωk) and σ(ωk). Some results are shown in Fig. 5, which
demonstrate the linear relationship between μ(ωk) and σ(ωk) in
a more direct way.

(a) The result for [h]
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(b) The result for unvoiced [i]

(c) The result for [f]

(d) The result for unvoiced [a]

Fig. 5 The distribution of the points (μ(ωk), σ(ωk)) by point plotting
in Matlab

Besides the above experimental results, the relationship
between μ(ωk) and σ(ωk) is quantitatively verified by
calculating the correlation coefficient between the two curves
of μ(ωk) and σ(ωk). Since the spectrum obtained by STFT is
discrete in frequency domain, the correlation coefficient is
calculated in a discrete form:

1

2 2

1 1

( ) ( )

( ) ( )

N

k k
k

N N

k k
k k

sm

s w m w
r

s w m w

=

= =

×
=

×

å

å å

                      (4)

where N is the number of discrete frequencies in the discrete
spectrum.

Experimental results are shown in Table 1. The first part of
the results are based on the pronunciation signals recorded for

one male speaker. The correlation coefficients between μ(ωk)
and σ(ωk) are calculated for different unvoiced phonemes,
together with those between μ(ωk) and σ2(ωk) for comparison.
The correlation coefficients between μ(ωk) and σ(ωk) are close
to 1.0. Consider the error caused by the instability of natural
pronunciation, and also the noise introduced in the signal
capture process, the strong correlation between μ(ωk) and σ2(ωk)
observed in the experiments did not happen merely by chance.
This results prove that μ(ωk) and σ(ωk) are related by a linear
proportional relationship.

Experiments have also been done on the unvoiced
pronunciation recorded for other speakers, and by other
recording devices, which also yield results indicating the linear
proportional relationship between μ(ωk) and σ(ωk). Some of
these results are also shown in Table 1.

Since the standard deviation coefficient represents the σ to μ
ratio, the new property revealed in the experiments is named as
“consistent standard deviation coefficient”. It means that the
proportional coefficient between the standard deviation and the
expectation is consistent for all the frequency components in
the short-time spectrum of unvoiced pronunciation. From the
viewpoint of probability, for any frequency component of an
unvoiced pronunciation, the larger the amplitude expectation,
the larger the random fluctuation of amplitude in the short-time
spectrum..

Table 1  The correlation coefficient of μ(ωk), σ(ωk) and σ2(ωk) for
unvoiced pronunciation

Pronunciation
ρ between
μ(ωk) and
σ(ωk)

ρ between
μ(ωk)  and
σ2(ωk)

Number
of  frames

[s] (male) 0.9910 0.9375 35748
[θ] (male) 0.9852 0.8877 28126
[f] (male) 0.9948 0.8946 40179
[h] (male) 0.9982 0.9225 21909

unvoiced [a] (male) 0.9960 0.9374 17497
unvoiced [ə] (male) 0.9817 0.8933 45336
unvoiced [e] (male) 0.9913 0.9022 41872
unvoiced [i] (male) 0.9896 0.8525 44147

unvoiced [a] (female) 0.9960 0.9374 17497

unvoiced [ə] (female) 0.9817 0.8933 45336
unvoiced [a] (male;

recorded on another audio
capture platform)

0.9980 0.9130 39727

unvoiced [ə] (male;
recorded on another audio

capture platform)
0.9890 0.8978 21464

III. THE STATISTICAL ANALYSIS OF AMPLITUDE SPECTRUM
FOR UNVOICED PHONEME

Besides the basic statistics mentioned in Section 2, the
histogram of amplitude value for each frequency component is
also computed respectively using a voting method, which
corresponds to the amplitude probability distribution. Then a
new model is proposed as a uniform amplitude distributions for
different frequency components. The new amplitude pdf model
accords well with the property of “consistent standard deviation
coefficient”..

A. The estimation of ωk’s amplitude distribution
For amplitude histogram computation, a voting method is
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presented here. For each frequency component, the following
steps are carried out:
Step 1: Determine a reasonable range of amplitude value for

this frequency component. This range should contain
all the amplitude spectrum values obtained from
experimental data.

Step 2: Uniformly divide the above range into reasonable
amount of intervals (or bins) with equal length.

Step 3: For each amplitude value of this frequency component,
find the bin into which it falls. Increase the count of
that bin by one (the voting).

After the above voting process, the amplitude histogram can
be computed by dividing the voting results by the total number
of data. In Step 2, the length of the interval or bin for the
amplitude range can be determined by experiment. In order to
conveniently compare the amplitude distribution for any two
frequency components, a common value range [0, Amax] is used
for all the frequency components, where Amax is the maximum
of all the amplitude values for all the frequency components.

Besides the amplitude distribution of each frequency
component alone, the connection between the amplitude
probability distribution of any two frequency component is also
important. To investigate that, the estimated distribution curves
of all the frequency components are plotted together and shown
as family of curves. In Section 2, the experimental results
indicate that the expectation and variance of the amplitude
spectrum value for different frequency components are usually
different. The expectation and variance can determine the
location and sharpness of the distribution curve. The shape of
estimated amplitude distribution curve for each frequency
component is affected by the corresponding expectation, which
may make it inconvenient for study the connection between two
amplitude probability distribution curves estimated.

Therefore, for each frequency component, a preprocessing
step is added to normalize the expectation of amplitude values,
so that the connection between the amplitude probability
distribution of different frequencies may be revealed more
clearly. Considering the linear proportional relationship
between μ(ωk) and σ(ωk), the preprocessing is proposed as
dividing each amplitude spectrum data by the average
amplitude value of its corresponding frequency component.
This preprocessing is called “expectation-normalization”
hereafter, because after such processing the data will have an
average of 1. Some of the amplitude distributions after the
preprocessing of expectation-normalization are shown in Fig. 6
to Fig. 11.

Fig. 6. The estimated amplitude probability distribution of each
frequency ωk for [h]

Fig. 7. The estimated amplitude probability distribution of each
frequency ωk for [s]

Fig. 8. The estimated amplitude probability distribution of each
frequency ωk for unvoiced [a]

Fig. 9. The estimated amplitude probability distribution of each
frequency ωk for unvoiced [e]
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Fig. 10. The estimated amplitude probability distribution of each
frequency ωk for [θ]

Fig. 11. The estimated amplitude probability distribution of each
frequency ωk for unvoiced [i]

The results show that, after the preprocessing of
expectation-normalization, the estimated distribution curves
obviously converge to one central curve (shown in black color
in Fig. 6 to Fig. 11). Because the distribution curves converge
so closely, the mixed plotting results in a belt around a central
curve. From each figure, the strong connection between the
amplitude distributions of different frequency components is
indicated.

B. A model of the amplitude distributions for an unvoiced
phoneme

In Fig. 6 to Fig. 11, the estimated distribution curves after
expectation-normalization converge closely to one central
curve. Considering the inevitable error caused by pronunciation
instability and noise, it is reasonable to propose a common pdf
prototype of amplitude for all frequency components in a single
unvoiced phoneme. In another word, the amplitude
distributions of different frequency components are of the same
pdf type, but with different expectation values. In this model,
there is a prototype distribution function p0(a0), from which the
amplitude distribution of any frequency component can be
derived by varying the expectation (i.e. altering the expectation
with a scaling factor). The prototype p0(a0) corresponds to the
central curve to which the estimated curves converge in Fig. 6
to Fig. 11. As a random variable, the amplitude of a frequency
component a is modeled as some scaling of a prototype variable
a0, whose expectation is 1 (the unit expectation):

0a k a= ×                                   (5)

where k is the scaling parameter. Equation (5) is a mathematical
description of the model proposed. Different ωk may have
different value of k, but a0 is unique for each frequency
component in a single unvoiced phoneme.

Moreover, we prove that this amplitude model accords well
with the “consistent standard deviation coefficient” property.
First, we derive the probability distribution of a in Equation (5),
given the probability distribution of a0 as the prototype
distribution p0(a0). The expectation of a is:

0 0 0[ ] [ ] [ ]a E a E k a k E a km m= = × = × = ×                 (6)
where μ0 is the expectation of a0.

Based on the probability theory, the probability distribution
of a can then be deduced as:

0
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                                 (7)

Second, we derive the standard deviation coefficient of a:
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Consider Equation (6) and (7), Equation (8) can be rewritten
as:
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Then do the variable substitution a=ka0 to the integral on the
right side of Equation (9):
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Remember that the variables a and a0 represent the amplitude
value, which is non-negative. Therefore, k is also non-negative.
Then Equation (10) can be rewritten as:
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Notice that the numerator of the right side of Equation (11) is
just the standard deviation of a0. Therefore,

0

0

a

a

s s
m m

=                                 (12)

Notice that the right side of Equation (12) is constant given
the prototype distribution p0(a0). Therefore, the standard
deviation coefficient of a is consistent whatever the scaling
factor k is. Therefore, this amplitude model accords well with
the property of “consistent standard deviation coefficient”. If
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the prototype pdf p0(a0) is determined, the pdf of any
frequency’s amplitude a can then be derived by a=μa0, where μ
is a’s expectation.

C. The prototype pdf for ωk’s amplitude spectrum value
As shown in Fig. 6(b) to Fig. 11(b), for each frequency

component, a curve of amplitude distribution after
expectation-normalization can be obtained. And these curves
are very close to each other. The curves in Fig. 6 to Fig. 11 are
averaged. The averaged curve is shown as a black one (the
central curve mentioned in Section 3.1), surrounding by the belt
area formed by those curves estimated for each ωk.

Based on these results, a probability distribution is proposed
for the average curve (the prototype pdf). The Weibull
distribution is used as that prototype distribution, which is
adaptive to represent multiple distributions (including the
exponential distribution, Rayleigh distribution, Gaussian
distribution, etc.) by varying the shape parameter of the
function [47-50]. Such generalization ability is quite suitable
for the study here. There are two other reasons to use Weibull
distribution. First, the amplitude spectrum data is non-negative,
which suits the requirement of the Weibull distribution. Second,
in the experiment all the estimated distribution curves of
expectation-normalized amplitude data have single-peak shape
(as shown in Fig. 6 to Fig. 11), which also suits the
characteristic of Weibull distribution function.

The Weibull distribution is expressed as a two-parameter
function [49,50]:

( )( 1)( )
bx

b b ap x b a x e
-- -= × × ×                        (13)

where a is the scale parameter and b is the shape parameter. The
shape parameter b makes the distribution adaptive to represent
different distribution types [47-50]. If b=1, Equation (13)
reduces to the exponential distribution. If b=2, it turns to the
Rayleigh distribution. If b=3, it well approximates the Gaussian
distribution. Therefore, it is highly flexible in fitting
experimental data.

For unvoiced pronunciation, in order to estimate Weibull
parameters a and b for the prototype pdf, all the
expectation-normalized amplitude data of every frequency
component are used as a whole data set, since all the frequency
components share a unique prototype of amplitude distribution.
The statistic toolbox in Matlab is used to estimate Weibull
parameters a and b. The estimation results are shown in Table
2.

The results in Table 2 indicate that different pronunciations
have obviously different shape parameter values of b, but their
scale parameters a are similar due to the preprocessing of
expectation-normalization. The shape parameter values
approximately range in (1.5, 2.1), which indicate the
probability distribution falls in between the exponential
distribution (with b=1) to the Rayleigh distribution (with b=2),
and with an obvious tendency to the Rayleigh distribution.
Using the Weibull distribution here has obvious advantage over
those distributions of fixed shape, because the study is mainly
based on experimental data, and there is little prior knowledge
which can determine the distribution of the spectrum data.

There is an interesting phenomenon found in the results that the
pronunciations of the same phoneme by different speakers or
different recording platform result in same parameters (such as
the unvoiced [a] or [ə] in Table 2), which may be utilized in
whisper voice recognition.

Table 2 The estimated parameters of Weibull distribution for the
expectation-normalized amplitude spectrum data

Unvoiced phonation scale
parameter a

shape
parameter b

[s] (male) 1.1228 1.6855
[θ] (male) 1.1255 2.0888
[f] (male) 1.1285 2.0261
[h] (male) 1.1234 1.6985

unvoiced [a] (male) 1.1223 1.6758
unvoiced [ə] (male) 1.1154 1.5347
unvoiced [e] (male) 1.1232 1.7170
unvoiced [i] (male) 1.1248 1.7538

unvoiced [a] (female) 1.1223 1.6758
unvoiced [ə] (female) 1.1154 1.5347

unvoiced [a] (male; other recording
platform) 1.1223 1.6758

unvoiced [ə] (male; other recording
platform) 1.1154 1.5347

IV. THE MODEL OF THE SHORT-TIME SPECTRUM FOR
UNVOICED PRONUNCIATION

A. The analysis of phase distribution
The spectrum value is usually complex number, whose

modulus represents the amplitude and the argument represents
the phase. Besides the amplitude, the phase distribution is also
studied for sustained unvoiced pronunciation. The similar
method is used to estimate the phase probability distribution as
in Section 3.1, except that the range of phase value is defined as
[-π, π]. The phase distribution is estimated for each frequency
component respectively. Some of the results are shown in Fig.
12 for the pronunciation of [h], [s], unvoiced [a] and unvoiced
[e]. The experimental results indicate a uniform distribution for
the phase spectrum value.

(a) The result for [s]
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(b) The result for [h]

(c) The result for unvoiced [a]

(d) The result for unvoiced [e]

Fig. 12. Some results of the estimation of phase distribution

B. The model of short-time amplitude and phase spectrum
By combining the model of amplitude pdf proposed in

Section 3 and the phase distribution in Section 4.1, a model is
proposed for the short-time spectrum of an unvoiced phoneme:
(1) The short-time spectrum of unvoiced pronunciation is

random; for each frequency component ωk, its amplitude
can be modeled as Weibull distribution; its phase can be
modeled as uniform distribution in the range of [-π, π].

(2) The standard deviation coefficient of amplitude is
consistent for all frequency components.

(3) For a specific unvoiced phoneme, all the frequency
components have a common prototype of amplitude
distribution a0. a0 is the prototype random variable of

Weibull distribution. For any frequency component ωk, the
probability distribution of its amplitude is modeled as μk a0,
where μk is the expectation.

Although the above model is based on the experiments for
sustained unvoiced pronunciation, due to the short-time stable
property of speech, the above model can also be valid for a
short period (such as 16ms) during which the signal is
considered as stable.

V. SYNTHESIS OF WHISPERED PRONUNCIATION BASED ON THE
SHORT-TIME SPECTRUM MODEL

In this section, the signal of sustained unvoiced
pronunciation is synthesized based on the proposed model of
short-time spectrum. The purpose of the synthesis here has two
aspects. The first one is to generate synthesized signal with the
same perception quality as the original pronunciation. The
second one is to experimentally verify the proposed model.
Based on the model proposed above, random short-time
spectrum data can be artificially generated, and the synthesis of
unvoiced pronunciation can be implemented by the reverse
STFT.

There are three steps for the proposed synthesis:
Step 1: Estimate the model parameters from the original signal
of unvoiced pronunciation. The key parameters of the proposed
model are the average amplitude value μ(ωk) for each frequency
ωk, and the two parameters a and b of the Weibull distribution
p0(x) for the expectation-normalized amplitude data.

STFT is performed on the original signal to get the group of
short-time spectrums, and the average value of amplitude is
estimated for each frequency. Then for each frequency ωk, its
amplitude value for each signal frame is normalized by dividing
the corresponding amplitude average μ(ωk), and the two
parameters of Weibull distribution are estimated based on the
normalized amplitude data of all frequencies as a whole data
set.
Step 2: Generate random amplitude and phase values of each
ωk for each synthesized frame. For each frequency component,
the amplitude value is generated according to the Weibull
distribution, and the phase value is generated according to
uniform distribution.

The Weibull distribution for the expectation-normalized
amplitude data can be determined by the two parameter s a and
b (which are estimated in Step 1):

( )( 1)
0( )

bx
b b ap x b a x e

-- -= × × ×                       (14)
where p0(x) is the prototype pdf of amplitude, a and b are the
scale parameter and shape parameter respectively. The actual
amplitude pdf of the k-th frequency component should be
deduced from p0(x). The actual amplitude data for the k-th
frequency component has the expectation value μ(ωk), and the
corresponding amplitude distribution can be deduced as:

0
1( )

( ) ( )k
k k

xp x p
m w m w

æ ö
= × ç ÷

è ø
                      (15)

where pk(x) is the amplitude pdf of ωk. Then the amplitude data
for ωk can be generated artificially according to Equation (15).
The phase value can be generated according to the uniform
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distribution in the range of [-π, π]. Because the DFT results of
real signal has the conjugate symmetric property, the short-time
spectrum Xi(k) can be constructed with the artificially generated
amplitude and phase values in a conjugate symmetric way. By
Step 2, a group of artificial spectrum data of signal frames can
be generated for the corresponding whisper pronunciation.
Step 3: Time domain signal construction by reverse STFT. The
reverse STFT transforms a group of successive short-time
spectrum to the time domain signal frames. IDFT (inverse
discrete Fourier transform) is performed on each short-time
spectrum:

21

0

1( ) ( )
N j kn

N
i i

k
x n X k e

N

p-

=

= ×å                        (16)

where xi(n) is the i-th synthesized frame, and Xi(k) is its
corresponding spectrum. Then the successive frames are
combined to produce the synthesized signal by an overlap and
adding process: two adjacent frames are overlapped by half of
the frame length, and then added. The final result is the
synthesized signal.

In the listening test, the listeners (ten male and ten female
listeners of the age 19-25 with normal audition), the
synthesized signals have identical quality of auditory
perception compared to the corresponding original whisper
pronunciation. On the other hand, the average amplitude μ(ωk)
and the signal autocorrelation of the original and synthesized
pronunciation are computed for comparison. Some of the
results are shown in Fig. 13 to Fig. 16. It is indicated that the
time-domain autocorrelation of the synthesized signals are
linear proportional to those of the original pronunciations.
Because the power spectrum of a stochastic signal can be
determined by its time-domain autocorrelation, similar
autocorrelation functions correspond to similar power spectrum.
That is why the synthesized signals have  identical perception
quality compared to the original ones. This is also indicated by
the similar average amplitude curve μ(ωk) of the original and
the synthesized signal, which is shown in Fig. 13 to Fig. 16. The
high quality of synthesis for unvoiced pronunciation proves the
effectiveness of the model proposed in Section 4.2.

(a) original autocorrelation

(b) autocorrelation of the synthesized signal

(c) original average amplitude μ(ωk)

(d) μ(ωk) of the synthesized signal

Fig. 13. The comparison between the original unvoiced signal and the
synthesized signal for [θ]

(a) original autocorrelation
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(b) autocorrelation of the synthesized signal

(c) original average amplitude μ(ωk)

(d) μ(ωk) of the synthesized signal

Fig. 14. The comparison between the original unvoiced signal and the
synthesized signal for [h]

(a) original autocorrelation

(b) autocorrelation of the synthesized signal

(c) original average amplitude μ(ωk)

(d) μ(ωk) of the synthesized signal

Fig. 15. The comparison between the original unvoiced signal and the
synthesized signal for unvoiced [a]

(a) original autocorrelation
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(b) autocorrelation of the synthesized signal

(c) original average amplitude μ(ωk)

(d) μ(ωk) of the synthesized signal

Fig. 16. The comparison between the original unvoiced signal and the
synthesized signal for unvoiced [i]

VI. CONCLUSION AND DISCUSSION

In this paper, we study the signal features of unvoiced
pronunciation in whisper speech. The stochastic feature of the
short-time spectrum for unvoiced pronunciation is investigated.
For the short-time amplitude spectrum of single unvoiced
phonemes, the relationship between the amplitude’s
expectation and standard deviation is analyzed for individual
frequency components. In the experiments, for an unvoiced
phoneme, the ratio of standard deviation to expectation (also
called the standard deviation coefficient) is proved to be
consistent for all the frequency components. This new feature
is related to the physical aero-acoustic process of whisper
pronunciation. Based on this new feature, a stochastic model of
amplitude spectrum value is proposed, in which all the

frequency components share a common prototype of pdf.
Moreover, the probability distribution of amplitude after
expectation-normalization is estimated. The probability
distribution of phase is also studied.

By combining the proposed amplitude and phase distribution,
a stochastic model of short-time spectrum is proposed for
whisper pronunciation, with a Weibull distribution for the
expectation-normalized amplitude, and a uniform distribution
for the phase. Based on this model, an efficient synthesis
method is presented whisper speech, which yields equivalent
quality of auditory perception as the original unvoiced
pronunciation, and also similar autocorrelation compared to
that of the original signal. The effectiveness of the synthesis
proves the validity of the proposed stochastic model of
unvoiced pronunciation in frequency domain.

The work in this paper indicates that, besides the general
statistic properties of speech signals in daily communication, it
is worthwhile to study the stochastic properties of specific
pronunciation types, which is on a different level of
randomness for speech signal. Just as the whisper
pronunciation studied in this paper, specific type of
pronunciation signal has more detailed and unique features
compared to normal speech signals. Since the whisper
pronunciation is physically based on an aerodynamic process,
the signal feature revealed in this paper is also inspiring for the
research on acoustic signal produced by physical aerodynamic
process.

References
[1] M. Cotescu, T. Drugman, G. Huybrechts, J.

Lorenzo-Trueba and A. Moinet, 2020, Voice Conversion
for Whispered Speech Synthesis, IEEE Signal Processing
Letters, vol. 27, 186-190.

[2] A. R. Naini, A. R. M. V. and P. K. Ghosh, 2019,
Formant-gaps Features for Speaker Verification Using
Whispered Speech, 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, United Kingdom, 6231-6235.

[3] [3] V. Vestman, D. Gowda, Md Sahidullah, P. Alku, T.
Kinnunen, 2018, Speaker recognition from whispered
speech: A tutorial survey and an application of
time-varying linear prediction, Speech Communication,
Vol 99, 62-79.

[4] F. Kelly and J. H. L. Hansen,  2018, Detection and
Calibration of Whisper for Speaker Recognition, 2018
IEEE Spoken Language Technology Workshop (SLT),
Athens, Greece, 1060-1065.

[5] D. T. Grozdic, S. T. Jovicic, 2017, Whispered Speech
Recognition Using Deep Denoising Autoencoder and
Inverse Filtering, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, no. 12,
2313-2322

[6] H. Konno, M. Kudo, H. Imai, M. Sugimoto, 2016, Whisper
to normal speech conversion using pitch estimated from
spectrum, Speech Communication, Vol. 83, 10-20.

[7] H. R. Sharifzadeh, I. V. McLoughlin, M. J. Russell, 2012,
A Comprehensive Vowel Space for Whispered Speech,
Journal of Voice, Vol 26, Issue 2, e49-e56.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.144 Volume 14, 2020

ISSN: 1998-4464 1173



[8] J. Sundberg, R. Scherer, M. Hess, F. Muller, 2010,
Whispering-A Single-Subject Study of Glottal
Configuration and Aerodynamics, Journal of Voice, Vol
24, Issue 5, 574-584.

[9] S. T. Jovicic, Z. Saric, 2008, Acoustic Analysis of
Consonants in Whispered Speech, Journal of Voice,
Volume 22, Issue 3, 263-274.

[10]M. Parmar, S. Doshi, N. J. Shah, M. Patel and H. A. Patil,
2019, Effectiveness of Cross-Domain Architectures for
Whisper-to-Normal Speech Conversion, 27th European
Signal Processing Conference (EUSIPCO), A Coruna,
Spain, 1-5.

[11]D. Sivan and C. Gopakumar, 2017, Emotion recognition
and spoof detection from whispered speech, 2017
International Conference on Computing Methodologies
and Communication (ICCMC), Erode, 1091-1095.

[12]G. Srinivasan, A. Illa and P. K. Ghosh, 2019, A Study on
Robustness of Articulatory Features for Automatic Speech
Recognition of Neutral and Whispered Speech, 2019 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, United Kingdom,
5936-5940.

[13]O. Perrotin and I. V. McLoughlin, 2020, Glottal Flow
Synthesis for Whisper-to-Speech Conversion, IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 28, 889-900.

[14]K. Khoria, M. R. Kamble and H. A. Patil, 2020, Teager
Energy Cepstral Coefficients for Classification of Normal
vs. Whisper Speech, 28th European Signal Processing
Conference (EUSIPCO), Amsterdam, 1-5.

[15]R. Konnai, R. C. Scherer, A. Peplinski, K. Ryan, 2017,
Whisper and Phonation: Aerodynamic Comparisons
Across Adduction and Loudness, Journal of Voice, Vol 31,
Issue 6, 773.e11-773.e20.

[16]Y. Okada et al., 2020, Effects of Touch Behaviors and
Whispering Voices in Robot-Robot Interaction for
Information Providing Tasks, 29th IEEE International
Conference on Robot and Human Interactive
Communication (RO-MAN), Naples, Italy, 7-13.

[17]S. Petridis, J. Shen, D. Cetin and M. Pantic, 2018,
Visual-Only Recognition of Normal, Whispered and Silent
Speech, 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, AB,
6219-6223

[18]Y. Zhao, W. Lin, 2016,Study of the formant and duration
in Chinese whispered vowel speech, Applied Acoustics,
Vol. 114, 240-243.

[19]T. G. Csapo, G. Nemeth, M. Cernak and P. N. Garner,
2016, Modeling unvoiced sounds in statistical parametric
speech synthesis with a continuous vocoder, 2016 24th
European Signal Processing Conference (EUSIPCO),
Budapest, 1338-1342.

[20]Garofolo J., Lamel L., Fisher W., Fiscus J., Pallett D.,
Dahlgren N., Zue V., 1993. TIMIT Acoustic-phonetic
continuous speech corpus, Linguistic Data Consortium,
Philadelphia.

[21]Hirsch, H.-G., Pearce, D., 2000. The Aurora experimental
framework for the performance evaluation of speech
recognition systems under noisy conditions. Automatic

Speech Recognition: Challenges for the Next Millennium
(ISCA ITRW ASR2000), Paris, France, pp. 181-188.

[22]Gazor S., Zhang W., 2003. Speech probability distribution,
IEEE Signal Processing Letters, 10(7), 204-207.

[23]Davenport W. B., 1952. An experimental study of speech
wave probability distributions. J. Acoust. Soc. Amer.,
24(4), 390–399.

[24]Richards D. L., 1964. Statistical properties of speech
signals, Proc. Inst. Elect. Eng., 111(5), 941–949.

[25]Paez M. D., Glisson T. H., 1972. Minimum mean-square
error quantization in speech. IEEE Trans. Comm., 20,
225–230.

[26] Jayant N. S., Noll P., 1984. Digital coding of waveforms.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[27]Shin J. W., Chang J.-H., Kim N. S., 2005. Statistical
modeling of speech signals based on generalized gamma
distribution. IEEE Signal Processing Letters, 12(3),
258-261.

[28] Jensen J., Batina I., Hendriks R. C., Heusdens R., 2005. A
study of the distribution of time-domain speech samples
and discrete Fourier coefficients. Proceedings of
SPS-DARTS (The first annual IEEE BENELUX/DSP
Valley Signal Processing Symposium), pp. 155-158.

[29]Tashev I., Acero A., 2010. Statistical modeling of the
speech signal, International Workshop on Acoustic, Echo,
and Noise Control (IWAENC), Tel Aviv, Israel.

[30]Erkelens J. S., Jensen J., Heusdens R., 2007. Speech
enhancement based on Rayleigh mixture modeling of
speech spectral amplitude distributions. 15th European
Signal Processing Conference (EUSIPCO 2007), pp.
65-69.

[31]Martin R., 2005. Speech enhancement based on minimum
mean-square error estimation and supergaussian priors.
IEEE Transactions on Speech and Audio Processing. 13(5),
845-856.

[32]Loizou P. C., 2007. Speech enhancement, theory and
practice. Taylor & Francis, New York, NY, USA, 1st
edition.

[33]Boubakir C., Berkani D., 2010. Speech enhancement using
minimum mean-square error amplitude estimators under
normal and generalized gamma distribution. Journal of
Computer Science, 6(7), 700-705.

[34]Borgstrom B. J., Alwan A., 2011. Log-spectral amplitude
estimation with Generalized Gamma distributions for
speech enhancement. 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp.
4756-4759.

[35]Sohn J., Kim, N. S., Sung W., 1999. A statistical
model-based voice activity detection. IEEE Signal
Processing Letters, 6, 1-3.

[36]Rabiner L., Juang B.-H., 1993. Fundamentals of speech
recognition. Prentice-Hall International, Inc..

[37]Huang J. and Zhao Y., 2000. A DCT-based fast signal
subspace technique for robust speech recognition. IEEE
Trans. Speech Audio Processing, 8, 747–751.

[38]Teixeira J. P., Oliveira C., Lopes C., 2013. Vocal acoustic
analysis - jitter, shimmer and HNR parameters. Procedia
Technology, 9, 1112-1122.

[39]Ghosh P. K., Narayanan S. S., 2011. Joint source-filter
optimization for robust glottal source estimation in the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.144 Volume 14, 2020

ISSN: 1998-4464 1174



presence of shimmer and jitter. Speech Communication,
53(1), pp. 98-109.

[40]Farrus M., Hernando J., 2009. Using jitter and shimmer in
speaker verification. IET Signal Processing, 3(4), pp.
247-257.

[41]Sinder D. J., Krane M. H., Flanagan J. L.,1998. Synthesis
of fricative sounds using an aeroacoustic noise generation
model. Proceedings of 16th International Congress
Acoustics, 1, pp. 249–250.

[42]Mittal R., Erath B. D., Plesniak M. W., 2013. Fluid
dynamics of human phonation and speech. Annual Review
of Fluid Mechanics, 45, 437-467.

[43]Lu X. B., Thorpe C. W., Cater J. E., Hunter P. J., 2011.
Aeroacoustic modeling of frictives /s/ and /sh/.
Proceedings of the 18th international congress on sound &
vibration, pp. 373-380.

[44]Sinder D., Richard G., Duncan H., Lin Q., Flanagan J.,
1996. A fluid flow approach to speech generation, First
ETRW on Speech Production Modelling, pp. 203-206.

[45]Hirschberg A., 1992. Some fluid dynamic aspects of
speech. Bulletin de la Communication Parlee, 2, 7-30.

[46]McGowan R. S., 1987. An aeroacoustics approach to
phonation: some experimental and theoretical observations.
Haskins Laboratories: Status Report on Speech Research
SR-86/87, pp. 107-116.

[47]Weibull W., 1951. A statistical distribution function of
wide applicability. Journal of Applied Mechanics, 18,
293-297.

[48]Lindquist E. S., 1994. Strength of materials and the
Weibull distribution, Probabilistic Engineering Mechanics,
9(3), 191-194.

[49]Khaledi B.-E., Kochar S., 2006. Weibull distribution:
Some stochastic comparisons results. Journal of Statistical
Planning and Inference, 136(9), 3121-3129.

[50]Szymkowiak M., Iwinska M., 2016. Characterizations of
Discrete Weibull related distributions. Statistics &
Probability Letters, 111, 41-48.

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  
This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.144 Volume 14, 2020

ISSN: 1998-4464 1175




