69e59938-afca-4517-940b-fada3a43902620211112062916565naun:naunmdt@crossref.orgMDT DepositInternational Journal of Circuits, Systems and Signal Processing1998-446410.46300/9106http://www.naun.org/cms.action?id=3029118202111820211510.46300/9106.2021.15https://naun.org/cms.action?id=23283A Simple and Efficient Technique to Generate Bounded Solutions for the Multidimensional Knapsack Problem: a Guide for OR PractitionersYunLuDepartment of Mathematics Kutztown University Kutztown, PA, U.S.ABryanMcNallyDepartment of Computer Science and Information Technology Kutztown University Kutztown, PA, U.S.AEmreShively-ErtasDepartment of Computer Science and Information Technology Kutztown University Kutztown, PA, U.S.AFrancis J.VaskoDepartment of Mathematic Kutztown University Kutztown, PA, U.S.A.The 0-1 Multidimensional Knapsack Problem (MKP) is a NP-Hard problem that has important applications in business and industry. Approximate solution approaches for the MKP in the literature typically provide no guarantee on how close generated solutions are to the optimum. This article demonstrates how general-purpose integer programming software (Gurobi) is iteratively used to generate solutions for the 270 MKP test problems in Beasley’s OR-Library such that, on average, the solutions are guaranteed to be within 0.094% of the optimums and execute in 88 seconds on a standard PC. This methodology, called the simple sequential increasing tolerance (SSIT) matheuristic, uses a sequence of increasing tolerances in Gurobi to generate a solution that is guaranteed to be close to the optimum in a short time. This solution strategy generates bounded solutions in a timely manner without requiring the coding of a problem-specific algorithm. The SSIT results (although guaranteed within 0.094% of the optimums) when compared to known optimums deviated only 0.006% from the optimums—far better than any published results for these 270 MKP test instances.111220211112202116501656178https://www.naun.org/main/NAUN/circuitssystemssignal/2021/d622005-178(2021).pdf10.46300/9106.2021.15.178https://www.naun.org/main/NAUN/circuitssystemssignal/2021/d622005-178(2021).pdf10.1007/s10479-006-0150-4Y. Akcay, H. Li, and SH Xu, “Greedy algorithm for the general multidimensional knapsack problem,” Ann Oper Res., vol.150, pp. 17- 29, 2007. 10.1016/j.cor.2010.02.002E. Angelelli, R. Mansini, and MG. Speranza, “Kernel search: a general heuristic for the multi-dimensional knapsack problem,” Comput. Oper. Res., vol 37, pp. 2017-2026, 2010. 10.1007/978-3-319-25751-8_92MDV. Baroni and FM. Varejao, “A shuffled complex evolution algorithm for the multidimensional knapsack problem,” Iberoamerican Congress on Pattern Recognition, Springer, pp. 768-775, 2015. 10.1016/j.dam.2009.08.007S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, “A multi-level search strategy for the 0-1 multidimensional knapsack problem,” Discr. App. Math., vol. 158, pp. 97-109, 2010. 10.1016/j.ejor.2007.06.068V. Boyer, M. Elkihel, D. El Baz, “Heuristics for the 0-1 multidimensional knapsack problem,” European Journal of Operational Research, vol. 199, pp. 658-664, 2009. P. Chu and J. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, vol 4, pp. 63-86, 1998. 10.1016/j.cor.2011.03.013F. Della Croce and A. Grosso, “Improved core problem based heuristics for the 0/1 multi-dimensional knapsack problem,” Comput. Oper. Res., vol. 39, pp. 27-31, 2012. 10.1016/0377-2217(84)90053-5AM. Frieze and MRB. Clarke, “Approximation algorithms for the mdimensional 0-1 knapsack problem: worst-case and probabilistic analyses,” European Journal of Operations Research, vol. 15, pp.100- 109, 1984. 10.1016/j.cor.2016.01.013H. Gu, “Improving problem reduction for 0-1 multidimensional knapsack problems with valid inequalities,” Comput. Oper. Res., vol. 71, pp. 82-89, 2016. K. Kang, “A Fast Particle Swarm Optimization algorithm for large scale multidimensional knapsack problems,” Journal of Computational Information Systems, vol. 8(7), pp. 2709-2716, 2012. 10.5267/j.ijiec.2019.6.004Z. Kern, Y. Lu, and FJ. Vasko, “An OR practitioner’s solution approach to the multidimensional knapsack problem,” International Journal of Industrial Engineering Computations, vol. 11(1), pp.1-10, 2020. 10.1016/j.cor.2015.04.018X. Kong, L. Gao, H. Ouyang, and S. Li, “Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm,” Computers & Operations Research, vol. 63, pp. 7- 22, 2015. 10.4236/ajor.2018.85023S. Laabadi, M. Naimi, H. El Amri, and B. Achchab, “The 0/1 multidimensional knapsack problem and its variants: a survey of practical models and heuristic approaches,” American Journal of Operations Research, vol. 8, pp. 395-439, 2018. 10.1007/978-3-642-30157-5_49S. Labed, A. Gherboudj, and S. Chikhi, “A modified hybrid particle swarm optimization algorithm for multidimensional knapsack problem,” International Journal of Computer Applications, vol. 34(2), pp. 11-16, 2011. 10.1287/ijoc.1110.0460R. Mansini and MG. Speranza, “CORAL: an exact algorithm for the multidimensional knapsack problem,” INFORMS J. Comput., vol. 24, pp. 399-415, 2012. B. McNally, “A simple sequential increasing tolerance matheuristic that generates bounded solutions for combinatorial optimization problems,” Master’s Thesis, Kutztown University of Pennsylvania, 2021. 10.1016/j.asoc.2016.11.023T. Meng and QK. Pan, “An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem,” Applied Soft Computing., vol. 50, pp. 79-93, 2017. 10.1016/j.cie.2004.02.008RJ. Moraga, WG. DePuy, and GE. Whitehouse, “Meta-RaPS approach for the 0-1 multidimensional knapsack problem,” Computers & Industrial Engineering, vol. 43, pp. 83-96, 2005. 10.1287/ijoc.1090.0344J. Puchinger, GR. Raidl, and U. Pferschy, “The multidimensional knapsack problem: structure and algorithms,” INFORMS J. Comput., vol. 22, pp. 250-265, 2010. 10.1504/ijbic.2016.078641A. Rezoug and D. Boughaci, “A self-adaptive harmony search combined with a stochastic local search for the 0–1 multidimensional knapsack problem,” Int J Bio Inspired Comput., vol. 8(4), pp. 234–239, 2016. 10.1007/s12293-017-0232-7A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Guided genetic algorithm for the multidimensional knapsack problem,” Memetic Computing, vol. 10, pp. 29-42, 2018.