02820699-c812-4db1-9ce1-604672efc81320210408053743626naunmdt@crossref.orgMDT DepositInternational Journal of Circuits, Systems and Signal Processing1998-446410.46300/9106http://www.naun.org/cms.action?id=3029118202111820211510.46300/9106.2021.15https://naun.org/cms.action?id=23283High Performance DC-to-AC Converter Using Snubberless H-Bridge Power Switches and an Improved DC-to-DC ConverterCandidus U.EyaDepartment of Electrical Engineering, University of Nigeria, Nsukka, NigeriaAyodeji OlalekanSalauDepartment of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado Ekiti, NigeriaStephen EjioforOtiDepartment of Electrical Engineering, University of Nigeria, Nsukka, NigeriaThis paper presents the analysis, modeling, simulation, and implementation of a high performance DC-to-AC (DC-AC) converter. The system comprises of a combination of DC power source, stress less DC-to-DC (DC-DC) voltage converter, two snubberless power switches, and control unit. The system is portable, has a two-stage input voltage transformation and amplification with no transformer and occupies less space unlike the classical two-stage inverter systems. In addition, the system produces a constant DC boosted voltage with less stress on both the source and DC storage capacitor which are not found in conventional converters. The proposed power electronic converter system produced the following results: pure sine voltage and current waveforms, total harmonic distortion (THD) of 4.294%, power output of 5740W, efficiency of 98.9%, power loss of 60W and fast dynamic response. The target areas of applications of the proposed converter are in medium and small scale industries.482021482021315333https://www.naun.org/main/NAUN/circuitssystemssignal/2021/a722005-036(2021).pdf10.46300/9106.2021.15.36https://www.naun.org/main/NAUN/circuitssystemssignal/2021/a722005-036(2021).pdfM. H. Rashid. Power Electronics Hand book. 3rd Ed. Butterworth-Heinemann, 30 Corporate Drive, suite 400. Burlington, MA 01803, USA, 2011.M. U. Agu, Principles of Power Electronics Circuits, UNN Press, Nigeria, 2019.G. C. Diyoke and C. U. Eya. Modeling and Simulation of Five-Phase Induction Motor Fed With Pulse Width Modulated Five-Phase Multilevel Voltage Source Inverter Topologies,’ Journal of Advances in Electrical Devices Volume 4 Issue 2, pp. 6-22, 201910.17485/ijst/2015/v8i19/70129B. Jyothi, M. V. G. Rao, T. Karthik. Modelling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies. Indian Journal of Science and Technology, vol. 8, no. 19, pp. 1- 8, 2015.10.1109/tpel.2012.2212915G. C. Jiang, X. Li, Y. Chen, and J. Liu. A dc-link voltage self-balanced method for a diode-clamped modular multi-level converter with minimum number of voltage sensors. IEEE Transaction. Power Electron, vol. 28, no. 5, pp. 2125-2139, 2013. DOI: 10.1109/TPEL.2012.2212915. 10.1109/powerafrica46609.2019.9078670C.U. Eya, O. Crescent, J. M. Ukwejeh. Solar-powered five level output voltage of dc-to-ac converter using simplified capacitor voltage controlled scheme (SCVCS). IEEE PES/IAS PowerAfrica, Abuja, Nigeria, pp. 1-6, 2019. DOI: 10.1109/PowerAfrica46609.2019.9078670 10.1155/2020/8347462A. O. Salau, C. U. Eya, O. C. Onyebuchi. Nonzero staircase modulation scheme for switching DC-DC boost converter. Journal of Control Science and Engineering, vol. 2020, 8347462, pp. 1-15, 2020. DOI: 10.1155/2020/8347462.R. Akhit. A new Technique of PWM boost inverter for solar home application. BRAC University Journal, vol. 4, issues 1, pp. 39-45, 2007.S. Rajendran and S. S. Kumer. A solar power generation for single phase DC-AC inverter with non-linear variable structure control. Sci. Bull, vol. 76, issue 4, 2014.R. Akhter and A. Hoque. Analysis of a PWM Boost inverter for solar home application. World Academy of Science, Engineering and Technology, PWASET, vol. 17, pp. 793-797, 2006.10.1109/tpel.2012.2205407G. R Zhu, S.C Tan, Y.chen and C.K Tse. Mitigation of Low frequency current ripple in fuel-cell inverter systems through waveform control. IEEE Transaction, Power Electronics, vol. 28, no. 2, pp. 779-792, 2013.10.37394/23201.2021.20.2C. U. Eya, A. O. Salau, S. E. Oti. Uninterruptible DC-powered boost differential inverter with a Sensorless Changeover System. WSEAS Transactions on Circuits and Systems, vol. 20, pp. 10-26, 2021. DOI: 10.37394/23201.2021.20.210.4314/njt.v34i1.21C. U. Eya and M. U. Agu. Solar-based Boost differential single phase inverter. Nigeria Journal of Technology, vol. 34., no. 1, pp. 164-176, 2015. B. Wu, et al. A New hybrid boosting converters for renewable energy applications. IEEE Transaction on Power Electronics, vol. 31, no. 2, pp. 1203-1215, 2016.10.1109/tpel.2016.2594016B. P. Baddigadiga and M. Ferdowsi. A high voltage gain DC-DC converter based on Modified Dickson Charger Pump Voltage Multiplier. IEEE Transaction on Power Electronics, vol. 32, no. 10, pp. 7707 –7715, 2017.10.1109/ecce.2009.5316399F. Gao, D. Li, P. C. Loh, Y. Tang, and P. Wang. Indirect dc link voltage control of two stage single phase PV Inverter. Energy conversion Congress and Exposition, pp. 1166-1172, 2009.10.1109/ecce.2011.6064305F. He, Z. Zhao, L. Yaun and S. Lu. A DC-link voltage control scheme for single phase grid-connected PV Inverters Energy conversion Congress and Exposition, pp. 3941-3945, 2011.10.6113/jpe.2010.10.3.328S. H. Lee, T. P. An, and H. Cha. Mitigation of Low frequency Ac ripple in single-phase photovoltaic power conditioning. Journal of Power electronics, vol. 10, pp. 1-7, 2006.C. U. Eya. Practical implementation of an improved standby boost uninterruptible power supply, vol. 3, pp. 1-7, 2014.10.1109/apec.2012.6165802S. Poshtkouhi, A. Biswas and O. Trescases. DC-DC converter for high granularity, sub-string MPPT in Photovoltaic applications using a virtual parallel connection. Proc. IEEE 27th Annu. Appl. Power Electron. Conf. Expo., pp. 86–92, 2012.10.1109/tpel.2017.2652318M. Forouzesh, Y. Siwakoti, Saman A. Gorji, F. Blaabjerg, and B. Lehman. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017.10.11591/ijpeds.v6.i2.pp242-252T. M. Aiswarya and M. Prabhakar. An efficient High Gain DC-DC Converter for Automotive Applications. International Journal of Power Electronicsm, vol. 6, pp. 242-252, 2015. 10.11591/ijece.v10i1.pp660-669B. E. Elnaghi, M. E. Dessouki, M. N. Abd-Alwahab and E. Eikholy. Development of two stage Converter for single-phase Inverter without Transformer for PV systems, vol. 9, pp. 101-111, 2019.www.data sheet of IXYS ISOPLUS FII 40-06D.com, 2011T. L. Skvarenina. The power Electronics Handbook Industrial Electronics Series. CRC Press, Library of Congress Cataloging-in-Publication, 2002.Nur Aqilah Othman, Hamzah Ahmad, The Analysis of Covariance Matrix for Kalman Filter based SLAM with Intermittent Measurement, Int. J. of Applied Mathematics, Computational Science and Systems Engineering, pp.66-70, Volume 1, 2019S.Sivaperumal, V. Sundarapandian, "Hybrid Synchronization of Hyperchaotic Qi Systems via Sliding Mode Control", Int. J. of Applied Mathematics, Computational Science and Systems Engineering, pp.71-75, Volume 1, 2019. Rashed Bahrekazemi, Alireza Jalilian, "Assessment of Different Compensation Strategies in Hybrid Active Power Filters", Int. J. of Applied Mathematics, Computational Science and Systems Engineering, pp.19-24, Volume 2, 2020.