
 

 

 
Abstract—The output power of a wind turbine is the 

most critical variable reflecting the operating status of the 

turbine. To improve the interpretability of the prediction 

model, a segmented output power method based on wind 

energy utilization coefficient is established. First, the wind 

energy conversion system of the wind turbine is given, and 

the SCADA data of a wind turbine is visually analyzed. 

Then it is proposed to separate the data into three groups 

according to different operating regions of wind turbines: 

the Maximum Power Point Tracking region, the rotator 

speed control region, and the power control region. In the 

Maximum Power Point Tracking region, wind energy 

utilization coefficient is found by a fitted cubic polynomial 

of the tip speed ratio. In the rotator speed control region, a 

modeling method for determining wind energy utilization 

coefficient through dynamic labels is designed. In the power 

control region, the output power is kept at the rated value. 

Finally, the 3 models are connected so that time-series data 

can be handled. The SCADA data of a 2.1MW wind turbine 

is used to verify the above models. The performance of these 

models is given in the form of Root Mean Square Error, 

indicating that the output power predicted by this method 

has good accuracy. The segmented output power model 

based on wind energy utilization coefficient can simulate 

the operation process of wind turbines, and has good 

accuracy and interpretability. 

 

Keywords—Systems Theory, Applied Systems Theory, 

Wind turbine; Output power prediction; Wind energy 

utilization coefficient; Power generation performance. 

I. INTRODUCTION 
UE to the increasing concern for the environment, wind 
power generation has rapidly developed in new energy 

power generation by under its advantages such as low cost, 
clean and renewable. With the increase in the number of wind 

turbines, wind power companies pay more attention to the 
operation and management of turbines that have been put into 
operation. The power generation performance of wind turbines 
indicates the level of economic benefits of wind power 
companies. The power generation performance of wind turbines 
is analyzed with monitoring and grasping the operating status, 
abnormal operation and early failures can be detected in time, 
thereby reducing the maintenance costs of the wind turbines. 

Lots of work has been done on how to reflect the operating 
status and power generation performance of wind turbines. 
Reference [1] studied the influence of different air densities on 
the performance of wind turbine blades and used genetic 
algorithms to optimize the design of blades to improve the 
power generation performance. Reference [2] focused on the 
influence of wind turbine blade airfoil design on the output 
power and gave the blade design concept and correction method. 
Using intelligent algorithms to model SCADA data can detect 
the status of a wind turbine. Such data mining methods usually 
don’t require analysis of the mechanism of the wind turbine 
itself, thus their interpretability needs to be improved. 
Reference [3] used neural network algorithms on historical 
operating data to establish a normal behavior model for 
predicting the temperature of generator bearings. This model 
can make online predictions on real-time operating data, and 
evaluate the health condition of the bearing based on the 
residual index between the predicted value and the actual value. 
Reference [4] adopted empirical mode decomposition to extract 
feature vectors from vibration signals and used fuzzy support 
vector machines to solve outlier problems. Reference [5] 
established the conditionally expected wind output equation 
based on the interval estimation of wind speed. 

The wind turbine power curve is an important visual model 
reflecting the performance of the wind turbine. Reference [6] 
considered the influence of the ambient temperature and nearby 
obstacles on the output of wind turbines and established an 
adaptive neuro-fuzzy interference system model. By predicting 
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the power generation, it realized the monitoring of the operating 
status of wind turbines. Reference [7] regarded the power curve 
as the evaluation standard for the performance of wind turbines. 
Based on the Bins method to draw the wind power curve, 
non-parametric interval estimation was used to obtain the 
uncertainty estimation interval of the wind power curve, which 
improved the reliability of the estimation results. The input 
variables considered by above methods usually include natural 
environmental factors and wind turbine state variables. Some 
methods of time series are also used to predict the performance 
state of wind turbines in the future. Reference [8] proposed a 
stochastic wind power generation model based on the 
autoregressive integrated moving average (ARIMA) process, 
taking into account the non-stationarity, physical limitations, 
and time correlation of wind power generation. Reference [9] 
analyzed the chaotic characteristics of the time series of wind 
turbine operating status parameters and used the phase space 
reconstruction method to establish a weighted first-order local 
prediction model of the wind turbine operating status. 

The wind energy conversion system is one of the important 
links in the energy conversion process of wind turbines. The 
wind energy utilization coefficient pC reflects the wind energy 
utilization efficiency of the wind turbines. It is an important 
indicator of the power generation performance and might be 
introduced into the output power curve model to strengthening 
the model interpretability. Several attempts have been tried. 
Reference [10] established a physics-based prediction model for 
a 120mW miniature horizontal axis wind turbine, studied the 
performance of the generator rotor, and obtained the 
approximate value of the power coefficient of the generator 
rotor. Reference [11] uses the least square method to fit the wind 
turbine data to a curved surface, and linearize the fitted curved 
surface to obtain a method for identifying the pC of the wind 
turbine. Reference [12] analyzed the influence of factors such as 
pitch angle, yaw angle, and tip speed ratio  on the power 
generation performance of wind turbines, and discussed that 
the pC can reflect the operating status of the wind turbine. 

In this study, a segmented output power model based on pC is 
suggested. First, data exploration, data visualization, and group 
processing according to the different operating regions of the 
wind turbine. Then, a segmented output power model based 
on pC is established, a method to determine through dynamic 
labels is proposed, the segmentation model is connected to 
make it suitable for time-series data, and the model is tested with 
actual data. Finally, comparisons with other studies are 
described and conclusions are drawn. Our method might be 
combined with [18],[19], [20]. 

II. MATERIALS AND METHOD 

A. Wind Turbine Characteristic Model 

The power generation system of a wind turbine is mainly 
composed of rotator blades, a mechanical transmission system, 
and a power control system [13], as shown in Fig. 1. 

The rotating blades of a wind turbine obtain energy from the 
moving air and transfer it to the generator to generate electricity  
through the mechanical drive unit. Aerodynamic equations are 
calculated as follows: 

2 3
w

1
2

P R           (1) 

where wP is the total wind power corresponding to air kinetic 
energy,  is the air density, R is the blade radius, and v is the 
wind speed. Ideally, the power a wind turbine obtains from wind 
energy can be expressed as: 

2 31( , ) ( , )
2a p w pP C P C R            (2) 
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


              (3) 

where
aP is the actual output power,  is the tip speed ratio, 

which is the ratio of the linear velocity of the wind turbine blade 
tip to the wind speed. The parameter ( , )PC   is the wind 
energy utilization coefficient, a nonlinear function of the tip 
speed ratio  and the pitch angle  .  is the blade angular 
velocity. 

 
Fig. 1 Functional chain of a wind energy turbine 

 The equation of ( , )pC   obtained from [14] is: 
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According to different types of wind turbines, different 
parameters 1C - 9C can be obtained, and the nonlinear 
relationship between ( , )pC   and  and  can be fitted. The 
maximum wind energy utilization coefficient pC does not 
exceed the Betz limit, which is 0.593. The greater pC , the more 
wind energy absorbed by the wind turbine, and the higher the 
power generation performance. 

B. Operating Regions Division of a Wind Turbine 

The rotator speed-power diagram of the variable speed 
variable pitch wind turbine [15] has been shown in Fig. 2, 
divided into different operating regions according to rotator 
speed. 0- inn is the grid-connected region, inn - rtdn  is the 
Maximum Power Point Tracking (MPPT) region [16], the 
rotator speed control region is when the rotator speed 
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reaches
rtdn to the power reaches

rtdP , and the power control 
region is the speed greater than

rtdn . 
 

 
Fig. 2 Wind turbine operating regions 

Among them, in the MPPT region, the pitch angle remains 
unchanged, ranging from 0° to 2°. When the wind speed 
changes, the control system of the wind turbine adjusts the 
impeller speed in time by adjusting the electromagnetic torque. 
The tip speed ratio is maintained near the optimal value

opt so 

that the wind turbine can obtain the maxi-mum
pC and achieve 

higher power generation performance. When the wind speed 
reaches the rated value and the output power reaches the rated 
power, if the wind speed continues to increase, the pitch angle 
will increase to control the absorption of wind energy and 
ensure that the output power remains unchanged. 

C. Data Exploration 

The wind turbine to be studied is the variable speed variable 
pitch double-fed wind turbine with a rated power of 2.1 MW in 
a wind farm in Chongming, Shanghai, China. The cut-in wind 
speed, rated wind speed, and cut-out wind speed are 4m/s, 
11m/s, and 25m/s, respectively, and the impeller diameter is 105 
m. The SCADA data sampling time is 30 seconds, including 
variable information such as time, wind speed, output power, 
pitch angle, and yaw angle. 

The pC is calculated by (1) and (2), where
aP is the output 

power in the wind turbine data. The   is calculated by (3). The 
characteristic diagrams are shown in Fig. 3. 

 
(a) wind speed-output power diagram 

 
(b) wind speed-rotator speed diagram 

 
(c) rotator speed-output power diagram 

 
(d) wind speed-pitch angle diagram 

Fig. 3 The characteristic diagrams of the wind turbine 

The rated wind speed of this wind turbine is 11m/s, as shown 
in Fig. 3(a). In Fig. 3(b), when the wind speed reaches 8.5m/s, 
the rated rotator speed begins to appear. Combined with Fig. 
3(c), the wind turbine is in the MPPT region from the start of the 
cut wind speed to 8.5m/s. Fig. 3(b) shows that when the wind 
speed reaches 10m/s, the rotator speed reaches around the rated 
speed, and the output power rises steadily. When the wind speed 
reaches 14m/s, the output power is near the rated value, and this 
period is in the rotator speed control region. According to Fig. 
3(d), the pitch angle is near 0 before reaching the rated wind 
speed, and the pitch angle starts to increase after the rated wind 
speed. When the wind speed is greater than 14m/s, the output 
power of the wind turbine is rated power, and the wind turbine is 
in the power control region. At this time, the pitch angle needs 
to get rid of excess wind energy to prevent excessive output 
power. 

Based on the above analysis, this study will group the data 
into 3 different operating regions: the MPPT region, the rotator 
speed control region, and the power control region. 
1) The MPPT region. When the wind speed is less than 

8.5m/s, as shown in Fig. 4, the corresponding relationship 
between  and pC is all located on the right side of the 
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image, showing an obvious functional relationship. At this 
time, the wind turbine is in the MPPT region. By adjusting 
the blade speed, the wind turbine is always near the best  , 
to fully capture the wind energy. 

2) The rotator speed control region. When the wind speed is 
greater than 8.5m/s and less than 14m/s, the relationship 
between  and

pC is shown in Fig. 5, which is located on the 

left side of the  -
pC diagram, showing a non-linear 

band-like distribution. 
3) The power control region. For wind speed is greater than 

14m/s, the wind turbine must be in the power control 
region, so it is considered that the output power of the wind 
turbine under normal conditions is the rated power. This 
study focuses on modeling the first two operating regions. 

 
Fig. 4 Blade tip speed ratio  - wind energy utilization 

coefficient 
pC diagram in the MPPT 

 
Fig. 5 Blade tip speed ratio  - wind energy utilization 

coefficient
pC diagram in the rotator speed control region 

D. Model Based on Dynamic Label 

When the wind turbine operates in the rotator speed control 
region, it can be derived from formulas (2) and (3): 

3

3
a

p

P
C

n


           (6) 

At this time, the wind speed is greater than 8.5m/s, and the 
rotator speed has reached near the rated speed, and it is 
reasonable to suppose that the rotator speed is constant. 

Equation (6) shows that 
pC is proportional to  and the output 

power of the wind turbine. The data of the rotator speed control 
region is divided into 11 groups according to different ranges of 
output power. The relationship between  and

pC is shown in 
Fig. 6. 

As shown in Fig. 6, when grouped according to different 
power ranges,  and 

pC of each group of data shows a certain 
linear relationship, and this relationship can be fitted with 
simple mathematical methods. It is desired to determine a 
unique

pC through  . However, it can be seen from Fig. 5 that 
each  corresponds to multiple different wind energy utilization 
coefficients. Inspired by Fig. 6, it is proposed to introduce a new 
variable 

ilabel  to name the above 11 sets of data, as shown in 
(7). 

= , 0,1,...,10ilabel i i                (7) 

The 11 labels represent the 11 corresponding relation-ships 
between  and

pC . 
ilabel is used as a new variable of the data to 

participate in the model establishment to determine
pC . 

Through the dynamic adjustment of labels, the purpose of 
predicting a unique pC is achieved.  

 
Fig. 6 The relationship between the tip speed ratio   and 

the
pC in different power ranges 

This paper proposes a dynamic label mechanism for 
determining the relationship between  and pC in the rotator 
speed control region, and the steps are as follows: 
1) The above has completed grouping the data according to 

different power ranges, and the data has obtained new 
variables 

ilabel . 
2) This part of the modeling data is uniformly calculated for 

the tip speed ratio time series difference 1= m m     and 
the label time series difference 1= m mlabel label label   , 
where m is the tip speed ratio of the wind turbine at the mth 
time point and mlabel is the wind turbine at the mth time 
point time label. 

3) According to the variable ilabel , take out the current 
moment data corresponding to the data with the same label 
at the previous moment and determine the relationship 
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between
i and

ilabel in this part of the data. This step is 
to study how much

ilabel will change in the next moment 
according to

i when the data is on a certain label at the 
previous moment. 

4) According to the relationship in step 3), get   
t ilabel label   , -1tlabel =

ilabel at the previous moment. 
The calculation method of the label at the current time t is: 

-1=t t tlabel label label . 
5) Calculate 

pC according to the fitting equation at each label. 
Now the method of step 3) above will be described. The steps 

are as follows: 

 
Fig. 7 The corresponding relationship between

i and 

ilabel under different labels 

1) Determine the numerical relationship 
i and 

ilabel . 
Take out the data, which have the same label at the previous 
moment, and observe the change of 

ilabel with
i , as 

shown in Fig.7. Fig. 7 shows the data at the current moment 
which is on the same label at the previous moment. The 
overall relationship between i and ilabel is inversely 
proportional, and the distribution is scattered. Since the 
least-squares fitting is susceptible to outliers, it will cause a 
greater error, so it cannot be used for curve fitting. 
Therefore, this article proposes the following processing 
methods. According to the variation range of

i between 
-3 and 2, divide

i into 25 intervals with 0.2 as the step, 
count the probability value of 

tlabel  corresponding 
to

i in each interval, and then take the 
tlabel with the 

highest probability in each interval as the final value of 
i . The essence of this step is to deter-mine the numerical 

relationship between t and tlabel , and predict the next 
moment label. 

2) Consider the influence of continuous-time and modify the 
numerical relationship. Since the wind turbine is a complex 
nonlinear coupling system with inertia, the state at the 
current moment is related to the state at the previous 
moment. Even if the wind speed and rotation speed are the 
same at two moments, the corresponding output power may 
be different. The ordinary wind speed-output power, wind 

speed-rotation speed, and other characteristic curves lose 
time information, and it is difficult to reflect the inertia 
effect of wind turbines. Therefore, this paper also considers 
the influence of continuous-time. Put the numerical 
relationship in the continuous-time data and correct the 
obtained numerical relationship. The rules are as follows: 
Arrange the data in chronological order. If   
continuously rises and label calculated from the 
numerical value is 0, the predicted value of the label will 
remain unchanged for a while. At this time, label needs to 
be adjusted to decrease; similarly, if  continuously falls, 
the label  obtained by numerical calculation is 0, so that 
the predicted value of the label remains unchanged for a 
while. At this time, label needs to be adjusted to 
increase. This is because the numerical result of

ilabel is 
obtained by selecting the maximum value of

ilabel in each 
interval, and there is a certain error. If the  continues to 
increase or decrease within a period of time, the output 
power will definitely change, and the corresponding label 
must also change. Therefore, adjustments should be made 
to the results that remain unchanged. 

To sum up, firstly calculate the single-step change, and then 
put the single-step prediction result into continuous time. 
According to the data change pattern, if the adjustment 
condition is met, 

ilabel is corrected to obtain the final 
result optlabel . The method in the rotator speed control region 
is shown in Fig. 8. 

Since the data above is divided according to the operating 
regions, each model is only suitable for the data under one 
operating region, so the following processing needs to be done 
in the connection and use of the model: 
1) The model of the MPPT region is a cubic curve obtained by 

the fitting. Regardless of the state at the previous moment, 
as long as the wind speed condition is met, the model can be 
used for calculation. 

2) In the power control region, as long as the wind speed and 
speed conditions are met, the output power of the wind 
turbine is considered to be the rated power. 

3) The rotator speed control region is in the middle position in 
the 3 operating regions. At this time, the control state of 
each system of the wind turbine is complicated. When the 
front and back two operating regions are switched to this 
region, the initial state of the model in this region will be 
changed. Therefore, set the data label of the MPPT region 
to be =0ilabel , and set the data label of the power control 
region to be =10ilabel to connect the three regions. 

 The main idea to predict the output power of wind turbines is 
summarized in Fig. 9. Input continuous SCADA data and divide 
the data into three groups according to different wind speed 
ranges, corresponding to three operating regions of wind 
turbines. In the first two regions, pC is obtained by 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.39 Volume 15, 2021

E-ISSN: 1998-4464 360



 

 

calculating  or labels, then P is calculated. Finally, three 
regions are connected by the connection criterion. 
 

 

 

 

 

 

Fig. 8 Flow chart of calculation of wind energy utilization coefficient
pC in the rotator speed control region 

 
Fig. 9 The summarized model for predicting output power of wind turbines 

III. RESULTS 

A. Data Experiment in the MPPT Region 

Select 997 pieces of eligible continuous-time data as training 
data. At this time, the wind speed is between 4 - 8.5m/s. The   
and pC present a concentrated nonlinear relationship, as shown 
in Fig. 10. Using SPSS software and the least square method to 
fit the data, a cubic curve (8) with a good fitting effect can be 
obtained in Fig. 10. 

The fitted pC is: 
2 30.00516-0.000378  + 0.000318pC        (8) 

In the MPPT region, the goal of the control strategy of the 
wind turbine main control system is to maintain the wind turbine 
near the best  . The adjustment and operating process of the 
wind turbine is a dynamic change process, and the polynomial 
model (8) obtained by fitting conforms to the operation law of 
wind turbines. 
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Fig. 10 The fitting curve of 

pC of the training data 

 

 

 
Fig. 11 The actual and predicted

pC of test data with  

 
Fig. 12 The actual and predicted pC of test data with time 

 Select 390 pieces of continuous-time data that meet the 
conditions as the test data to test the performance of the fitted 
cubic model. The prediction of the relationship between  of the 
test data and

pC is shown in Fig. 11. The prediction of 
pC  that 

changes continuously with time is shown in Fig. 12. 
From the wind power generation model (2), the output power 

of the wind turbine over time can be predicted in Fig. 13. It can 
be seen from Fig. 11, 12, and 13 that the cubic model 
between  and

pC  shows higher prediction accuracy on the test 

data. Compared with the actual value of 
pC , the root mean 

square error (RMSE) of the residual between the actual value 
and the predicted value is 0.0058. 

 
Fig. 13 Power prediction results of test data 

B. Data Experiment in the Rotator Speed Control Region 

 From the analysis of Section II, this part of the data includes 
3010 pieces of data whose wind speed is greater than 8.5m/s and 
does not reach the rated power. The relationship between    
and 

pC  presents a band-like nonlinear distribution, as shown in 
Fig. 5. It is difficult to fit through functions. Therefore, new 
variables 

ilabel  are set according to different power ranges, and 
the defined standards are shown in Table 1. 

Table 1 Labels definition based on power ranges 

Power range 

(KW) 
<=1000 

1000- 

1100 

1100- 

1200 

1200- 

1300 

1300- 

1400 

1400- 

1500 

1500- 

1600 

1600- 

1700 

1700- 

1800 

1800- 

1900 
>1900 

ilabel  0label  1label  2label  3label  4label  5label  6label  7label  8label  9label  10label  

Table 2   -
p

C fitting equations under each label 

Power range  - pC fitting equation 

<=1000 2 30.684 1.1029 0.699 0.114pC       
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1000-1100 )4.605  0.3( 4exp 8pC     
1100-1200 )4.65 3exp 66( 8  0.pC     
1200-1300 ( 4.663  0.377 )exppC     
1300-1400 ( 4.643  0.384 )exppC     
1400-1500 ( 4.804  0.415 )exppC     
1500-1600 ( 4.817  0.426 )exppC     
1600-1700 ( 4.666  0.414 )exppC     
1700-1800 ( 4.742  0.433 )exppC     
1800-1900 ( 4.805  0.451 )exppC     

>1900 ( 5.118  0.508 )exppC     

The 11 labels represent 11 relationships between the tip 
speed ratio  and the

pC . The 11 labels convert the band-like 
distribution into a line-like distribution and facilitate curve 
fitting. The SPSS software is used to fit 11 sets of data to obtain 
the corresponding fitting curves, as shown in Table 2. 

751 pieces of new test data is used to verify the modeling 
method.  

 
Fig. 14 Comparison of actual and predicted values of wind 

energy utilization coefficient from test data 
In Fig. 14, the changing trend of the predicted pC is similar to 

the actual value. Where the test data changes sharply, the 
predicted pC shows a gentle change with a root mean square 
error (RMSE) of 0.029, which has high accuracy. According to 
(2), the output power of the wind turbine is calculated. As 
shown in Fig. 15, the predicted output power has the same 
changing trend as the real value. 

 
Fig. 15 Comparison of actual and predicted output power of test 

data 

C. A Comprehensive Experiment of Continuous Time-series 

Data 

Take 200 pieces of continuous data for a certain period as the 
test data. The data cover all the 3 operating regions, the MPPT 
region, the rotator speed control region, and the power control 
region. These data are used to verify the connected models 
established in Section 2.5. The prediction results of pC and 
output power are shown in Fig. 16 and Fig. 17. 

The predicted value has a similar trend to the true value. 
Where the actual value changes quickly, the model predicted 
value changes more slowly. The RMSE of the predicted value 
of pC is 0.027, which has high accuracy. 

 The wind speed-output power relationship diagram of the 
model is shown in Fig. 18. Compared with the power curve by 
the Bins method in [7], the model in this paper does not give the 
point value of the output power at a certain wind speed. 

The wind speed-output power scatter points in this study 
present a loose strip-like distribution, which can more 
effectively reflect the relationship between wind speed and 
output power of wind turbines. 
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Fig. 16 Comparison of actual and the predicted values of wind 

energy utilization coefficient 
pC  

 
Fig. 17 Comparison of actual value and the predicted value of 

output power from test data 

 
Fig. 18 Wind speed-output power scatter plot of test data 

D. Comparison and Discussion 

In the MPPT region, the least square method is used to 
directly fit the curve of   and pC . In the rotator speed control 
region, the intermediate variable label is introduced to solve the 
problem of one  corresponds to multiple pC . SPSS is used to 
fit the relationship between  and pC on each label. In the rotator 
speed control region, to determine the relationship between the 
tip speed ratio time series difference and the label time series 
difference, this paper takes the maximum probability of the tip 
speed ratio time series difference interval. The influence of the 

inertia of the wind turbine is taken into account to optimize the 
results. Determine the

pC in which label should be taken at the 
current moment, and calculate the power generation based on 
the model of the wind turbine power generation. In the power 
control region, it is considered that the wind turbine generator 
reaches the rated power. After building the models, the 
connected model is given. In the part of model verification, first, 
the two models are verified with two types of data that meet the 
model input conditions, and then the connected model is 
verified with continuous-time data covering the entire region. 
Experiments show that the

pC fitted by this method has good 
accuracy. 

At the same time, this method can simulate the operating 
process of wind turbines. Compared with intelligent algorithms, 
the model has better interpretability. Compared with the use of 
Gaussian process regression to establish the output power 
model in [12], the model established in this article is equivalent 
to the white-box model. Although accuracy is sacrificed to a 
certain extent, the knowledge of the wind turbine mechanism is 
used as the theoretical support. The modeling method is easy to 
understand. In addition, the common modeling methods using 
intelligent algorithms, generally do not consider the time 
sequence, while the method in this paper considers the impact of 
the state of the wind turbine at the previous moment on the 
current state of the wind turbine, reflecting the operating 
process of the wind turbine. 

Compared with the sixth-order polynomial wind power curve 
model [17], it only considered the single variable wind speed 
and didn’t consider the influence of other variables on the 
model. The relationship between the wind speed and the output 
power presented was a one-to-one correspondence. In this 
paper, the wind speed, rotator speed, and tip speed ratio are used 
for modeling. The relationship between wind speed and output 
power is distributed in a band, which is closer to the real 
situation. 

IV. CONCLUSION 
Starting from the wind energy conversion system of the wind 

turbine, this article visually analyzes the variables of the 
SCADA data. According to the different operating regions of 
the wind turbine, the data is grouped and processed, and three 
models of the relationship between  and pC are established. 
Experiments show that the pC fitted by this method has good 
accuracy, and verifies the feasibility of the proposed method in 
predicting output power. 

The output power is a direct reflection of the power 
generation performance of the wind turbines. The prediction 
results obtained from the modeling can be used to monitor the 
operating status of the wind turbines and discover abnormal 
operation and early failure in time. For example, the 3σ 
principle may be used for the residual difference between the 
predicted value and the true value to determine whether the state 
of the wind turbine is normal. This will be the direction of future 
work. 
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